Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
PLoS Pathog ; 18(2): e1009831, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35130312

RESUMEN

During chronic human immunodeficiency virus (HIV) or simian immunodeficiency virus (SIV) infection prior to AIDS progression, the vast majority of viral replication is concentrated within B cell follicles of secondary lymphoid tissues. We investigated whether infusion of T cells expressing an SIV-specific chimeric antigen receptor (CAR) and the follicular homing receptor, CXCR5, could successfully kill viral-RNA+ cells in targeted lymphoid follicles in SIV-infected rhesus macaques. In this study, CD4 and CD8 T cells from rhesus macaques were genetically modified to express antiviral CAR and CXCR5 moieties (generating CAR/CXCR5-T cells) and autologously infused into a chronically infected animal. At 2 days post-treatment, the CAR/CXCR5-T cells were located primarily in spleen and lymph nodes both inside and outside of lymphoid follicles. Few CAR/CXCR5-T cells were detected in the ileum, rectum, and lung, and no cells were detected in the bone marrow, liver, or brain. Within follicles, CAR/CXCR5-T cells were found in direct contact with SIV-viral RNA+ cells. We next infused CAR/CXCR5-T cells into ART-suppressed SIV-infected rhesus macaques, in which the animals were released from ART at the time of infusion. These CAR/CXCR5-T cells replicated in vivo within both the extrafollicular and follicular regions of lymph nodes and accumulated within lymphoid follicles. CAR/CXR5-T cell concentrations in follicles peaked during the first week post-infusion but declined to undetectable levels after 2 to 4 weeks. Overall, CAR/CXCR5-T cell-treated animals maintained lower viral loads and follicular viral RNA levels than untreated control animals, and no outstanding adverse reactions were noted. These findings indicate that CAR/CXCR5-T cell treatment is safe and holds promise as a future treatment for the durable remission of HIV.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Receptores CXCR5/inmunología , Receptores Quiméricos de Antígenos/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/terapia , Virus de la Inmunodeficiencia de los Simios/inmunología , Animales , Linfocitos B/inmunología , Centro Germinal/inmunología , Humanos , Inmunoterapia , Ganglios Linfáticos/inmunología , Macaca mulatta , ARN Viral , Receptores CXCR5/metabolismo , Receptores Quiméricos de Antígenos/metabolismo , Carga Viral
2.
J Virol ; 96(23): e0142422, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36377872

RESUMEN

Vaccine strategies aimed at eliciting human immunodeficiency virus (HIV)-specific CD8+ T cells are one major target of interest in HIV functional cure strategies. We hypothesized that CD8+ T cells elicited by therapeutic vaccination during antiretroviral therapy (ART) would be recalled and boosted by treatment with the interleukin 15 (IL-15) superagonist N-803 after ART discontinuation. We intravenously immunized four simian immunodeficiency virus-positive (SIV+) Mauritian cynomolgus macaques receiving ART with vesicular stomatitis virus (VSV), modified vaccinia virus Ankara strain (MVA), and recombinant adenovirus serotype 5 (rAd-5) vectors all expressing SIVmac239 Gag. Immediately after ART cessation, these animals received three doses of N-803. Four control animals received no vaccines or N-803. The vaccine regimen generated a high-magnitude response involving Gag-specific CD8+ T cells that were proliferative and biased toward an effector memory phenotype. We then compared cells elicited by vaccination (Gag specific) to cells elicited by SIV infection and unaffected by vaccination (Nef specific). We found that N-803 treatment enhanced the frequencies of both bulk and proliferating antigen-specific CD8+ T cells elicited by vaccination and the antigen-specific CD8+ T cells elicited by SIV infection. In sum, we demonstrate that a therapeutic heterologous prime-boost-boost (HPBB) vaccine can elicit antigen-specific effector memory CD8+ T cells that are boosted by N-803. IMPORTANCE While antiretroviral therapy (ART) can suppress HIV replication, it is not a cure. It is therefore essential to develop therapeutic strategies to enhance the immune system to better become activated and recognize virus-infected cells. Here, we evaluated a novel therapeutic vaccination strategy delivered to SIV+ Mauritian cynomolgus macaques receiving ART. ART was then discontinued and we delivered an immunotherapeutic agent (N-803) after ART withdrawal with the goal of eliciting and boosting anti-SIV cellular immunity. Immunologic and virologic analysis of peripheral blood and lymph nodes collected from these animals revealed transient boosts in the frequency, activation, proliferation, and memory phenotype of CD4+ and CD8+ T cells following each intervention. Overall, these results are important in educating the field of the transient nature of the immunological responses to this particular therapeutic regimen and the similar effects of N-803 on boosting T cells elicited by vaccination or elicited naturally by infection.


Asunto(s)
Linfocitos T CD8-positivos , Vacunas contra el SIDAS , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Proliferación Celular , Macaca mulatta/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Vacunación , Virus Vaccinia
3.
PLoS Pathog ; 16(3): e1008339, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32163523

RESUMEN

Despite the success of antiretroviral therapy (ART) to halt viral replication and slow disease progression, this treatment is not curative and there remains an urgent need to develop approaches to clear the latent HIV reservoir. The human IL-15 superagonist N-803 (formerly ALT-803) is a promising anti-cancer biologic with potent immunostimulatory properties that has been extended into the field of HIV as a potential "shock and kill" therapeutic for HIV cure. However, the ability of N-803 to reactivate latent virus and modulate anti-viral immunity in vivo under the cover of ART remains undefined. Here, we show that in ART-suppressed, simian-human immunodeficiency virus (SHIV)SF162P3-infected rhesus macaques, subcutaneous administration of N-803 activates and mobilizes both NK cells and SHIV-specific CD8+ T cells from the peripheral blood to lymph node B cell follicles, a sanctuary site for latent virus that normally excludes such effector cells. We observed minimal activation of memory CD4+ T cells and no increase in viral RNA content in lymph node resident CD4+ T cells post N-803 administration. Accordingly, we found no difference in the number or magnitude of plasma viremia timepoints between treated and untreated animals during the N-803 administration period, and no difference in the size of the viral DNA cell-associated reservoir post N-803 treatment. These results substantiate N-803 as a potent immunotherapeutic candidate capable of activating and directing effector CD8+ T and NK cells to the B cell follicle during full ART suppression, and suggest N-803 must be paired with a bona fide latency reversing agent in vivo to facilitate immune-mediated modulation of the latent viral reservoir.


Asunto(s)
Antirretrovirales/administración & dosificación , Linfocitos B/efectos de los fármacos , Linfocitos T CD8-positivos/efectos de los fármacos , Infecciones por VIH/tratamiento farmacológico , Interleucina-15/antagonistas & inhibidores , Células Asesinas Naturales/efectos de los fármacos , Proteínas/administración & dosificación , Animales , Linfocitos B/citología , Linfocitos B/inmunología , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/inmunología , Movimiento Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Infecciones por VIH/genética , Infecciones por VIH/inmunología , Infecciones por VIH/fisiopatología , VIH-1/efectos de los fármacos , VIH-1/fisiología , Humanos , Interleucina-15/genética , Interleucina-15/inmunología , Células Asesinas Naturales/citología , Células Asesinas Naturales/inmunología , Ganglios Linfáticos/efectos de los fármacos , Ganglios Linfáticos/inmunología , Macaca mulatta , Proteínas Recombinantes de Fusión , Síndrome de Inmunodeficiencia Adquirida del Simio/tratamiento farmacológico , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/fisiopatología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/efectos de los fármacos , Virus de la Inmunodeficiencia de los Simios/fisiología , Latencia del Virus/efectos de los fármacos
4.
PLoS Pathog ; 15(3): e1007311, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30897187

RESUMEN

CD8+ T cells play an important role in controlling of HIV and SIV infections. However, these cells are largely excluded from B cell follicles where HIV and SIV producing cells concentrate during chronic infection. It is not known, however, if antigen-specific CD8+ T cells are excluded gradually as pathogenesis progresses from early to chronic phase, or this phenomenon occurs from the beginning infection. In this study we determined that SIV-specific CD8+ T cells were largely excluded from follicles during early infection, we also found that within follicles, they were entirely absent in 60% of the germinal centers (GCs) examined. Furthermore, levels of SIV-specific CD8+ T cells in follicular but not extrafollicular areas significantly correlated inversely with levels of viral RNA+ cells. In addition, subsets of follicular SIV-specific CD8+ T cells were activated and proliferating and expressed the cytolytic protein perforin. These studies suggest that a paucity of SIV-specific CD8+ T cells in follicles and complete absence within GCs during early infection may set the stage for the establishment of persistent chronic infection.


Asunto(s)
Linfocitos T CD8-positivos/fisiología , Centro Germinal/fisiología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Enfermedad Aguda , Animales , Linfocitos B/fisiología , Linfocitos T CD8-positivos/metabolismo , Centro Germinal/inmunología , Macaca mulatta , Síndrome de Inmunodeficiencia Adquirida del Simio/fisiopatología , Virus de la Inmunodeficiencia de los Simios/inmunología , Carga Viral/inmunología , Replicación Viral
5.
Cytometry A ; 99(3): 278-288, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32713108

RESUMEN

A vaccine to ameliorate cytomegalovirus (CMV)-related pathogenicity in transplantation patients is considered a top priority. A therapeutic vaccine must include components that elicit both neutralizing antibodies, and highly effective CD8 T-cell responses. The most important translational model of vaccine development is the captive-bred rhesus macaque (Macaca mulatta) of Indian origin. There is a dearth of information on rhesus cytomegalovirus (rhCMV)-specific CD8 T cells due to the absence of well-defined CD8 T-cell epitopes presented by classical MHC-I molecules. In the current study, we defined two CD8 T-cell epitopes restricted by high-frequency Mamu alleles: the Mamu-A1*002:01 restricted VY9 (VTTLGMALY aa291-299) epitope of protein IE-1, and the Mamu-A1*008:01 restricted NP8 (NPTDRPIP aa96-103) epitope of protein phosphoprotein 65-2. We developed tetramers and determined the level, phenotype, and functional capability of the two epitope-specific T-cell populations in circulation and various tissues. We demonstrated the value of these tetramers for in situ tetramer staining. Here, we first provided critical reagents and established a flow cytometric staining strategy to study rhCMV-specific T-cell responses in up to 40% of captive-bred rhesus macaques. © 2020 The Authors. Cytometry Part A published by Wiley Periodicals LLC on behalf of International Society for Advancement of Cytometry.


Asunto(s)
Infecciones por Citomegalovirus , Virus de la Inmunodeficiencia de los Simios , Animales , Linfocitos T CD8-positivos , Citomegalovirus , Epítopos de Linfocito T , Antígenos de Histocompatibilidad Clase I , Humanos , Inmunofenotipificación , Macaca mulatta
6.
Proc Natl Acad Sci U S A ; 114(8): 1976-1981, 2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28159893

RESUMEN

A significant challenge to HIV eradication is the elimination of viral reservoirs in germinal center (GC) T follicular helper (Tfh) cells. However, GCs are considered to be immune privileged for antiviral CD8 T cells. Here, we show a population of simian immunodeficiency virus (SIV)-specific CD8 T cells express CXCR5 (C-X-C chemokine receptor type 5, a chemokine receptor required for homing to GCs) and expand in lymph nodes (LNs) following pathogenic SIV infection in a cohort of vaccinated macaques. This expansion was greater in animals that exhibited superior control of SIV. The CXCR5+ SIV-specific CD8 T cells demonstrated enhanced polyfunctionality, restricted expansion of antigen-pulsed Tfh cells in vitro, and possessed a unique gene expression pattern related to Tfh and Th2 cells. The increase in CXCR5+ CD8 T cells was associated with the presence of higher frequencies of SIV-specific CD8 T cells in the GC. Following TCR-driven stimulation in vitro, CXCR5+ but not CXCR5- CD8 T cells generated both CXCR5+ as well as CXCR5- cells. However, the addition of TGF-ß to CXCR5- CD8 T cells induced a population of CXCR5+ CD8 T cells, suggesting that this cytokine may be important in modulating these CXCR5+ CD8 T cells in vivo. Thus, CXCR5+ CD8 T cells represent a unique subset of antiviral CD8 T cells that expand in LNs during chronic SIV infection and may play a significant role in the control of pathogenic SIV infection.


Asunto(s)
Linfocitos T CD8-positivos/fisiología , Centro Germinal/citología , Receptores CXCR5/metabolismo , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Animales , Enfermedad Crónica , Macaca mulatta , Masculino
7.
PLoS Comput Biol ; 14(10): e1006461, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30335747

RESUMEN

Data from SIV-infected macaques indicate that virus-specific cytotoxic T lymphocytes (CTL) are mostly present in the extrafollicular (EF) compartment of the lymphoid tissue, with reduced homing to the follicular (F) site. This contributes to the majority of the virus being present in the follicle and represents a barrier to virus control. Using mathematical models, we investigate these dynamics. Two models are analyzed. The first assumes that CTL can only become stimulated and expand in the extrafollicular compartment, with migration accounting for the presence of CTL in the follicle. In the second model, follicular CTL can also undergo antigen-induced expansion. Consistent with experimental data, both models predict increased virus compartmentalization in the presence of stronger CTL responses and lower virus loads, and a more pronounced rise of extrafollicular compared to follicular virus during CD8 cell depletion experiments. The models, however, differ in other aspects. The follicular expansion model results in dynamics that promote the clearance of productive infection in the extrafollicular site, with any productively infected cells found being the result of immigration from the follicle. This is not observed in the model without follicular CTL expansion. The models further predict different consequences of introducing engineered, follicular-homing CTL, which has been proposed as a therapeutic means to improve virus control. Without follicular CTL expansion, this is predicted to result in a reduction of virus load in both compartments. The follicular CTL expansion model, however, makes the counter-intuitive prediction that addition of F-homing CTL not only results in a reduction of follicular virus load, but also in an increase in extrafollicular virus replication. These predictions remain to be experimentally tested, which will be relevant for distinguishing between models and for understanding how therapeutic introduction of F-homing CTL might impact the overall dynamics of the infection.


Asunto(s)
Interacciones Huésped-Patógeno/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Linfocitos T Citotóxicos , Animales , Biología Computacional , Macaca , Modelos Inmunológicos , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/patogenicidad , Virus de la Inmunodeficiencia de los Simios/fisiología , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/virología
8.
Int J Mol Sci ; 20(20)2019 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-31635220

RESUMEN

The development of in situ major histocompatibility complex (MHC) tetramer (IST) staining to detect antigen (Ag)-specific T cells in tissues has radically revolutionized our knowledge of the local cellular immune response to viral and bacterial infections, cancers, and autoimmunity. IST combined with immunohistochemistry (IHC) enables determination of the location, abundance, and phenotype of T cells, as well as the characterization of Ag-specific T cells in a 3-dimensional space with respect to neighboring cells and specific tissue locations. In this review, we discuss the history of the development of IST combined with IHC. We describe various methods used for IST staining, including direct and indirect IST and IST performed on fresh, lightly fixed, frozen, and fresh then frozen tissue. We also describe current applications for IST in viral and bacterial infections, cancer, and autoimmunity. IST combined with IHC provides a valuable tool for studying and tracking the Ag-specific T cell immune response in tissues.


Asunto(s)
Epítopos de Linfocito T/inmunología , Complejo Mayor de Histocompatibilidad , Multimerización de Proteína , Especificidad del Receptor de Antígeno de Linfocitos T , Linfocitos T/inmunología , Linfocitos T/metabolismo , Humanos , Inmunohistoquímica , Sensibilidad y Especificidad , Coloración y Etiquetado
9.
PLoS Pathog ; 12(10): e1005924, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27716848

RESUMEN

During chronic HIV infection, viral replication is concentrated in secondary lymphoid follicles. Cytotoxic CD8 T cells control HIV replication in extrafollicular regions, but not in the follicle. Here, we show CXCR5hiCD44hiCD8 T cells are a regulatory subset differing from conventional CD8 T cells, and constitute the majority of CD8 T cells in the follicle. This subset, CD8 follicular regulatory T cells (CD8 TFR), expand in chronic SIV infection, exhibit enhanced expression of Tim-3 and IL-10, and express less perforin compared to conventional CD8 T cells. CD8 TFR modestly limit HIV replication in follicular helper T cells (TFH), impair TFH IL-21 production via Tim-3, and inhibit IgG production by B cells during ex vivo HIV infection. CD8 TFR induce TFH apoptosis through HLA-E, but induce less apoptosis than conventional CD8 T cells. These data demonstrate that a unique regulatory CD8 population exists in follicles that impairs GC function in HIV infection.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Centro Germinal/inmunología , Infecciones por VIH/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Subgrupos de Linfocitos T/inmunología , Animales , Técnicas de Cocultivo , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Humanos , Macaca mulatta , Tonsila Palatina/inmunología
10.
J Virol ; 90(24): 11168-11180, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27707919

RESUMEN

Human immunodeficiency virus (HIV)- and simian immunodeficiency virus (SIV)-specific CD8+ T cells are typically largely excluded from lymphoid B cell follicles, where HIV- and SIV-producing cells are most highly concentrated, indicating that B cell follicles are somewhat of an immunoprivileged site. To gain insights into virus-specific follicular CD8+ T cells, we determined the location and phenotype of follicular SIV-specific CD8+ T cells in situ, the local relationship of these cells to Foxp3+ cells, and the effects of CD8 depletion on levels of follicular SIV-producing cells in chronically SIV-infected rhesus macaques. We found that follicular SIV-specific CD8+ T cells were able to migrate throughout follicular areas, including germinal centers. Many expressed PD-1, indicating that they may have been exhausted. A small subset was in direct contact with and likely inhibited by Foxp3+ cells, and a few were themselves Foxp3+ In addition, subsets of follicular SIV-specific CD8+ T cells expressed low to medium levels of perforin, and subsets were activated and proliferating. Importantly, after CD8 depletion, the number of SIV-producing cells increased in B cell follicles and extrafollicular areas, suggesting that follicular and extrafollicular CD8+ T cells have a suppressive effect on SIV replication. Taken together, these results suggest that during chronic SIV infection, despite high levels of exhaustion and likely inhibition by Foxp3+ cells, a subset of follicular SIV-specific CD8+ T cells are functional and suppress viral replication in vivo These findings support HIV cure strategies that augment functional follicular virus-specific CD8+ T cells to enhance viral control. IMPORTANCE: HIV- and SIV-specific CD8+ T cells are typically largely excluded from lymphoid B cell follicles, where virus-producing cells are most highly concentrated, suggesting that B cell follicles are somewhat of an immunoprivileged site where virus-specific CD8+ T cells are not able to clear all follicular HIV- and SIV-producing cells. To gain insights into follicular CD8+ T cell function, we characterized follicular virus-specific CD8+ T cells in situ by using an SIV-infected rhesus macaque model of HIV. We found that subsets of follicular SIV-specific CD8+ T cells are able to migrate throughout the follicle, are likely inhibited by Foxp3+ cells, and are likely exhausted but that, nonetheless, subsets are likely functional, as they express markers consistent with effector function and show signs of suppressing viral replication in vivo These findings support HIV cure strategies that increase the frequency of functional follicular virus-specific CD8+ T cells.


Asunto(s)
Linfocitos B/inmunología , Linfocitos T CD8-positivos/inmunología , Centro Germinal/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Animales , Linfocitos B/virología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/virología , Linfocitos T CD8-positivos/virología , Movimiento Celular , Proliferación Celular , Femenino , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/inmunología , Regulación de la Expresión Génica , Centro Germinal/virología , Humanos , Depleción Linfocítica , Macaca mulatta , Masculino , Perforina/genética , Perforina/inmunología , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/genética , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/crecimiento & desarrollo , Carga Viral , Replicación Viral
12.
J Immunol ; 193(11): 5613-25, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25362178

RESUMEN

We previously demonstrated that HIV replication is concentrated in lymph node B cell follicles during chronic infection and that HIV-specific CTL fail to accumulate in large numbers at those sites. It is unknown whether these observations can be generalized to other secondary lymphoid tissues or whether virus compartmentalization occurs in the absence of CTL. We evaluated these questions in SIVmac239-infected rhesus macaques by quantifying SIV RNA(+) cells and SIV-specific CTL in situ in spleen, lymph nodes, and intestinal tissues obtained at several stages of infection. During chronic asymptomatic infection prior to simian AIDS, SIV-producing cells were more concentrated in follicular (F) compared with extrafollicular (EF) regions of secondary lymphoid tissues. At day 14 of infection, when CTL have minimal impact on virus replication, there was no compartmentalization of SIV-producing cells. Virus compartmentalization was diminished in animals with simian AIDS, which often have low-frequency CTL responses. SIV-specific CTL were consistently more concentrated within EF regions of lymph node and spleen in chronically infected animals regardless of epitope specificity. Frequencies of SIV-specific CTL within F and EF compartments predicted SIV RNA(+) cells within these compartments in a mixed model. Few SIV-specific CTL expressed the F homing molecule CXCR5 in the absence of the EF retention molecule CCR7, possibly accounting for the paucity of F CTL. These findings bolster the hypothesis that B cell follicles are immune privileged sites and suggest that strategies to augment CTL in B cell follicles could lead to improved viral control and possibly a functional cure for HIV infection.


Asunto(s)
Ganglios Linfáticos/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/fisiología , Bazo/inmunología , Linfocitos T Citotóxicos/inmunología , Animales , Antígenos Virales/inmunología , Movimiento Celular , Células Cultivadas , Progresión de la Enfermedad , Macaca mulatta , ARN Viral/análisis , Receptores CCR7/metabolismo , Receptores CXCR5/metabolismo , Linfocitos T Citotóxicos/virología , Replicación Viral
13.
J Immunol ; 193(6): 3113-25, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25135832

RESUMEN

We sought design principles for a vaccine to prevent HIV transmission to women by identifying correlates of protection conferred by a highly effective live attenuated SIV vaccine in the rhesus macaque animal model. We show that SIVmac239Δnef vaccination recruits plasma cells and induces ectopic lymphoid follicle formation beneath the mucosal epithelium in the rhesus macaque female reproductive tract. The plasma cells and ectopic follicles produce IgG Abs reactive with viral envelope glycoprotein gp41 trimers, and these Abs are concentrated on the path of virus entry by the neonatal FcR in cervical reserve epithelium and in vaginal epithelium. This local Ab production and delivery system correlated spatially and temporally with the maturation of local protection against high-dose pathogenic SIV vaginal challenge. Thus, designing vaccines to elicit production and concentration of Abs at mucosal frontlines could aid in the development of an effective vaccine to protect women against HIV-1.


Asunto(s)
Cuello del Útero/inmunología , Vacunas contra el SIDAS/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/prevención & control , Virus de la Inmunodeficiencia de los Simios/inmunología , Vagina/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Formación de Anticuerpos/inmunología , Cuello del Útero/virología , Femenino , Proteína gp41 de Envoltorio del VIH/inmunología , Infecciones por VIH/inmunología , Infecciones por VIH/prevención & control , VIH-1/inmunología , Inmunoglobulina G/biosíntesis , Inmunoglobulina G/inmunología , Macaca mulatta , Membrana Mucosa/inmunología , Vacunas contra el SIDAS/administración & dosificación , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Vacunación , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/inmunología , Vagina/virología
14.
Biol Proced Online ; 17(1): 2, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25657614

RESUMEN

BACKGROUND: For decades, the Vibratome served as a standard laboratory resource for sectioning fresh and fixed tissues. In skilled hands, high quality and consistent fresh unfixed tissue sections can be produced using a Vibratome but the sectioning procedure is extremely time consuming. In this study, we conducted a systematic comparison between the Vibratome and a new approach to section fresh unfixed tissues using a Compresstome. We used a Vibratome and a Compresstome to cut fresh unfixed lymphoid and genital non-human primate tissues then used in situ tetramer staining to label virus-specific CD8 T cells and immunofluorescent counter-staining to label B and T cells. We compared the Vibratome and Compresstome in five different sectioning parameters: speed of cutting, chilling capability, specimen stabilization, size of section, and section/staining quality. RESULTS: Overall, the Compresstome and Vibratome both produced high quality sections from unfixed spleen, lymph node, vagina, cervix, and uterus, and subsequent immunofluorescent staining was equivalent. The Compresstome however, offered distinct advantages; producing sections approximately 5 times faster than the Vibratome, cutting tissue sections more easily, and allowing production of larger sections. CONCLUSIONS: A Compresstome can be used to generate fresh unfixed primate lymph node, spleen, vagina, cervix and uterus sections, and is superior to a Vibratome in cutting these fresh tissues.

15.
Front Immunol ; 14: 1101446, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36825014

RESUMEN

During chronic HIV and SIV infections, the majority of viral replication occurs within lymphoid follicles. In a pilot study, infusion of SIV-specific CD4-MBL-CAR-T cells expressing the follicular homing receptor, CXCR5, led to follicular localization of the cells and a reduction in SIV viral loads in rhesus macaques. However, the CAR-T cells failed to persist. We hypothesized that temporary disruption of follicles would create space for CAR-T cell engraftment and lead to increased abundance and persistence of CAR-T cells. In this study we treated SIV-infected rhesus macaques with CAR-T cells and preconditioned one set with anti-CD20 antibody to disrupt the follicles. We evaluated CAR-T cell abundance and persistence in four groups of SIVmac239-infected and ART-suppressed animals: untreated, CAR-T cell treated, CD20 depleted, and CD20 depleted/CAR-T cell treated. In the depletion study, anti-CD20 was infused one week prior to CAR-T infusion and cessation of ART. Anti-CD20 antibody treatment led to temporary depletion of CD20+ cells in blood and partial depletion in lymph nodes. In this dose escalation study, there was no impact of CAR-T cell infusion on SIV viral load. However, in both the depleted and non-depleted animals, CAR-T cells accumulated in and around lymphoid follicles and were Ki67+. CAR-T cells increased in number in follicles from 2 to 6 days post-treatment, with a median 15.2-fold increase in follicular CAR-T cell numbers in depleted/CAR-T treated animals compared to an 8.1-fold increase in non-depleted CAR-T treated animals. The increase in CAR T cells in depleted animals was associated with a prolonged elevation of serum IL-6 levels and a rapid loss of detectable CAR-T cells. Taken together, these data suggest that CAR-T cells likely expanded to a greater extent in depleted/CAR-T cell treated animals. Further studies are needed to elucidate mechanisms mediating the rapid loss of CAR-T cells and to evaluate strategies to improve engraftment and persistence of HIV-specific CAR-T cells. The potential for an inflammatory cytokine response appears to be enhanced with anti-CD20 antibody treatment and future studies may require CRS control strategies. These studies provide important insights into cellular immunotherapy and suggest future studies for improved outcomes.


Asunto(s)
Infecciones por VIH , Receptores Quiméricos de Antígenos , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Macaca mulatta , Receptores Quiméricos de Antígenos/uso terapéutico , Proyectos Piloto , Anticuerpos/uso terapéutico , Tratamiento Basado en Trasplante de Células y Tejidos
16.
Methods Mol Biol ; 2421: 171-185, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34870819

RESUMEN

HIV-specific chimeric antigen receptor (CAR) T cells that target lymphoid follicles have the potential to functionally cure HIV infection. CD8+ T cells, NK cells, or peripheral blood mononuclear cells (PBMC) may be modified to express HIV-specific CARs as well as follicular homing molecules such as CXCR5 to target the virally infected T follicular helper cells that concentrate within B cell follicles during HIV infection. This chapter outlines methods utilizing a simian immunodeficiency virus (SIV) rhesus macaque model of HIV to produce transduced T cells from primary PBMCs. Methods are presented for production of an SIV-specific CAR/CXCR5-encoding retrovirus used to transduce primary rhesus macaque PBMCs. Procedures to evaluate the functionality of the expanded CAR/CXCR5 T cells in vitro and ex vivo are also presented. An in vitro migration assay determines the ability of the T cells expressing CAR/CXCR5 to migrate to the CXCR5 ligand CXCL13, while an ex vivo migration assay allows measurement of the transduced T cell migration into the B cell follicle. Antiviral activity of the CAR/CXCR5 transduced T cells is determined using a viral suppression assay. These methods can be used to produce T cells for immunotherapy in SIV-infected rhesus macaques and to evaluate the functionality of the cells prior to infusion. Similar procedures can be used to produce HIV-specific CAR/CXCR5 T cells.


Asunto(s)
Virus de la Inmunodeficiencia de los Simios , Linfocitos T , Animales , Linfocitos T CD8-positivos , Infecciones por VIH , Leucocitos Mononucleares , Macaca mulatta , Receptores CXCR5/genética
17.
Immunohorizons ; 6(10): 693-704, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36220186

RESUMEN

Despite mounting a robust antiviral CD8 T cell response to HIV infection, most infected individuals are unable to control HIV viral load without antiretroviral therapy (ART). Chimeric Ag receptor (CAR) T cell treatment is under intensive investigation as an alternative therapy for ART-free remission of chronic HIV infection. However, achieving durable remission of HIV will require a successful balance between CAR T cell effector function and persistence. CAR T cells with CD28 costimulatory domains have robust effector function but limited persistence in vivo, whereas CAR T cells with 4-1BB costimulatory domains present a more undifferentiated phenotype and greater in vivo persistence. We compared the in vitro phenotype and function of rhesus macaque and human CAR T cells that contained either the CD28 or 4-1BB costimulatory domain; both constructs also included CARs that are bispecific for gp120 of HIV or SIV and the CXCR5 moiety to promote in vivo homing of CAR/CXCR5 T cells to B cell follicles. Cells were transduced using a gammaretroviral vector and evaluated using flow cytometry. 4-1BB-CAR/CXCR5 T cells were phenotypically distinct from CD28-CAR/CXCR5 T cells and showed increased expression of CAR and CD95. Importantly, both CD28- and 4-1BB-CAR/CXCR5 T cells retained equal capacity to recognize and suppress SIV in vitro. These studies provide new insights into rhesus macaque and human 4-1BB- and CD28-bearing CAR T cells.


Asunto(s)
Infecciones por VIH , Receptores Quiméricos de Antígenos , Virus de la Inmunodeficiencia de los Simios , Animales , Antivirales , Antígenos CD28 , Infecciones por VIH/terapia , Humanos , Macaca mulatta
18.
Front Immunol ; 13: 1032537, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36582226

RESUMEN

T cells expressing a simian immunodeficiency (SIV)-specific chimeric antigen receptor (CAR) and the follicular homing molecule, CXCR5, were infused into antiretroviral therapy (ART) suppressed, SIV-infected rhesus macaques to assess their ability to localize to the lymphoid follicle and control the virus upon ART interruption. While the cells showed evidence of functionality, they failed to persist in the animals beyond 28 days. Development of anti-CAR antibodies could be responsible for the lack of persistence. Potential antigenic sites on the anti-SIV CAR used in these studies included domains 1 and 2 of CD4, the carbohydrate recognition domain (CRD) of mannose-binding lectin (MBL), and an extracellular domain of the costimulatory molecule, CD28, along with short linker sequences. Using a flow cytometry based assay and target cells expressing the CAR/CXCR5 construct, we examined the serum of the CD4-MBL CAR/CXCR5-T cell treated animals to determine that the animals had developed an anti-CAR antibody response after infusion. Binding sites for the anti-CAR antibodies were identified by using alternative CARs transduced into target cells and by preincubation of the target cells with a CD4 blocking antibody. All of the treated animals developed antibodies in their serum that bound to CD4-MBL CAR/CXCR5 T cells and the majority were capable of inducing an ADCC response. The CD4 antibody-blocking assay suggests that the dominant immunogenic components of this CAR are the CD4 domains with a possible additional site of the CD28 domain with its linker. This study shows that an anti-drug antibody (ADA) response can occur even when using self-proteins, likely due to novel epitopes created by abridged self-proteins and/or the self-domain of the CAR connection to a small non-self linker. While in our study, there was no statistically significant correlation between the ADA response and the persistence of the CD4-MBL CAR/CXCR5-T cells in rhesus macaques, these findings suggest that the development of an ADA response could impact the long-term persistence of self-based CAR immunotherapies.


Asunto(s)
Inmunoterapia , Receptores Quiméricos de Antígenos , Síndrome de Inmunodeficiencia Adquirida del Simio , Animales , Anticuerpos/uso terapéutico , Formación de Anticuerpos , Antígenos CD28 , Macaca mulatta , Síndrome de Inmunodeficiencia Adquirida del Simio/terapia , Virus de la Inmunodeficiencia de los Simios
19.
J Vis Exp ; (157)2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-32250358

RESUMEN

Emerging immunotherapies to treat infectious diseases and cancers often involve transduction of cellular populations with genes encoding disease-targeting proteins. For example, chimeric antigen receptor (CAR)-T cells to treat cancers and viral infections involve the transduction of T cells with synthetic genes encoding CAR molecules. The CAR molecules make the T cells specifically recognize and kill cancer or virally infected cells. Cells can also be co-transduced with other genes of interest. For example, cells can be co-transduced with genes encoding proteins that target cells to specific locations. Here, we present a protocol to transduce primary peripheral blood mononuclear cells (PBMCs) with genes encoding a virus-specific CAR and the B cell follicle homing molecule chemokine receptor type 5 (CXCR5). This procedure takes nine days and results in transduced T cell populations that maintain a central memory phenotype. Maintenance of a central memory or less differentiated phenotype has been shown to associate with persistence of cells post-infusion. Furthermore, cells produced with this method show high levels of viability, high levels of co-expression of the two transduced genes, and large enough quantities of cells for immunotherapeutic infusion. This nine-day protocol may be broadly used for CAR-T cell and other T cell immunotherapy approaches. The methods described here are based on studies presented in our previous publications.


Asunto(s)
Receptores de Antígenos de Linfocitos T/inmunología , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/inmunología , Técnicas de Cultivo de Célula , Supervivencia Celular , Inmunoterapia Adoptiva , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Fenotipo , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores CXCR5/genética , Receptores CXCR5/metabolismo , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo , Linfocitos T/metabolismo , Transducción Genética
20.
Mol Ther Methods Clin Dev ; 16: 1-10, 2020 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-31673565

RESUMEN

Chimeric antigen receptor (CAR)-T cells show great promise in treating cancers and viral infections. However, most protocols developed to expand T cells require relatively long periods of time in culture, potentially leading to progression toward populations of terminally differentiated effector memory cells. Here, we describe in detail a 9-day protocol for CAR gene transduction and expansion of primary rhesus macaque peripheral blood mononuclear cells (PBMCs). Cells produced and expanded with this method show high levels of viability, high levels of co-expression of two transduced genes, retention of the central memory phenotype, and sufficient quantity for immunotherapeutic infusion of 1-2 × 108 cells/kg in a 10 kg rhesus macaque. This 9-day protocol may be broadly used for CAR-T cell and other T cell immunotherapy approaches to decrease culture time and increase maintenance of central memory populations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA