Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Mol Genet Genomics ; 297(6): 1587-1600, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36001174

RESUMEN

MAIN CONCLUSION: Through selective genotyping of pooled phenotypic extremes, we identified a number of loci and candidate genes putatively controlling timing of stem elongation in red clover. We have identified candidate genes controlling the timing of stem elongation prior to flowering in red clover (Trifolium pratense L.). This trait is of ecological and agronomic significance, as it affects fitness, competitivity, climate adaptation, forage and seed yield, and forage quality. We genotyped replicate pools of phenotypically extreme individuals (early and late-elongating) within cultivar Lea using genotyping-by-sequencing in pools (pool-GBS). After calling and filtering SNPs and GBS locus haplotype polymorphisms, we estimated allele frequencies and searched for markers with significantly different allele frequencies in the two phenotypic groups using BayeScan, an FST-based test utilizing replicate pools, and a test based on error variance of replicate pools. Of the three methods, BayeScan was the least stringent, and the error variance-based test the most stringent. Fifteen significant markers were identified in common by all three tests. The candidate genes flanking the markers include genes with potential roles in the vernalization, autonomous, and photoperiod regulation of floral transition, hormonal regulation of stem elongation, and cell growth. These results provide a first insight into the potential genes and mechanisms controlling transition to stem elongation in a perennial legume, which lays a foundation for further functional studies of the genetic determinants regulating this important trait.


Asunto(s)
Trifolium , Mapeo Cromosómico/métodos , Frecuencia de los Genes , Genotipo , Polimorfismo de Nucleótido Simple/genética , Trifolium/genética
2.
Theor Appl Genet ; 135(12): 4337-4349, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36153770

RESUMEN

KEY MESSAGE: High variability for and candidate loci associated with resistance to southern anthracnose and clover rot in a worldwide collection of red clover provide a first basis for genomics-assisted breeding. Red clover (Trifolium pratense L.) is an important forage legume of temperate regions, particularly valued for its high yield potential and its high forage quality. Despite substantial breeding progress during the last decades, continuous improvement of cultivars is crucial to ensure yield stability in view of newly emerging diseases or changing climatic conditions. The high amount of genetic diversity present in red clover ecotypes, landraces, and cultivars provides an invaluable, but often unexploited resource for the improvement of key traits such as yield, quality, and resistance to biotic and abiotic stresses. A collection of 397 red clover accessions was genotyped using a pooled genotyping-by-sequencing approach with 200 plants per accession. Resistance to the two most pertinent diseases in red clover production, southern anthracnose caused by Colletotrichum trifolii, and clover rot caused by Sclerotinia trifoliorum, was assessed using spray inoculation. The mean survival rate for southern anthracnose was 22.9% and the mean resistance index for clover rot was 34.0%. Genome-wide association analysis revealed several loci significantly associated with resistance to southern anthracnose and clover rot. Most of these loci are in coding regions. One quantitative trait locus (QTL) on chromosome 1 explained 16.8% of the variation in resistance to southern anthracnose. For clover rot resistance we found eight QTL, explaining together 80.2% of the total phenotypic variation. The SNPs associated with these QTL provide a promising resource for marker-assisted selection in existing breeding programs, facilitating the development of novel cultivars with increased resistance against two devastating fungal diseases of red clover.


Asunto(s)
Sitios de Carácter Cuantitativo , Trifolium , Trifolium/genética , Medicago/genética , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Variación Biológica Poblacional , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
3.
J Exp Bot ; 72(2): 302-319, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33064149

RESUMEN

Toxic concentrations of aluminium cations and low phosphorus availability are the main yield-limiting factors in acidic soils, which represent half of the potentially available arable land. Brachiaria grasses, which are commonly sown as forage in the tropics because of their resilience and low demand for nutrients, show greater tolerance to high concentrations of aluminium cations (Al3+) than most other grass crops. In this work, we explored the natural variation in tolerance to Al3+ between high and low tolerant Brachiaria species and characterized their transcriptional differences during stress. We identified three QTLs (quantitative trait loci) associated with root vigour during Al3+ stress in their hybrid progeny. By integrating these results with a new Brachiaria reference genome, we identified 30 genes putatively responsible for Al3+ tolerance in Brachiaria. We observed differential expression during stress of genes involved in RNA translation, response signalling, cell wall composition, and vesicle location homologous to aluminium-induced proteins involved in limiting uptake or localizing the toxin. However, there was limited regulation of malate transporters in Brachiaria, which suggests that exudation of organic acids and other external tolerance mechanisms, common in other grasses, might not be relevant in Brachiaria. The contrasting regulation of RNA translation and response signalling suggests that response timing is critical in high Al3+-tolerant Brachiaria.


Asunto(s)
Brachiaria , Aluminio/toxicidad , Brachiaria/genética , Poaceae/genética , Sitios de Carácter Cuantitativo
4.
BMC Genomics ; 17(1): 756, 2016 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-27671367

RESUMEN

BACKGROUND: Sainfoin (Onobrychis viciifolia) is a highly nutritious tannin-containing forage legume. In the diet of ruminants sainfoin can have anti-parasitic effects and reduce methane emissions under in vitro conditions. Many of these benefits have been attributed to condensed tannins or proanthocyanidins in sainfoin. A combination of increased use of industrially produced nitrogen fertilizer, issues with establishment and productivity in the first year and more reliable alternatives, such as red clover led to a decline in the use of sainfoin since the middle of the last century. In recent years there has been a resurgence of interest in sainfoin due to its potential beneficial nutraceutical and environmental attributes. However, genomic resources are scarce, thus hampering progress in genetic analysis and improvement. To address this we have used next generation RNA sequencing technology to obtain the first transcriptome of sainfoin. We used the library to identify gene-based simple sequence repeats (SSRs) and potential single nucleotide polymorphisms (SNPs). RESULTS: One genotype from each of five sainfoin accessions was sequenced. Paired-end (PE) sequences were generated from cDNA libraries of RNA extracted from 7 day old seedlings. A combined assembly of 92,772 transcripts was produced de novo using the Trinity programme. About 18,000 transcripts were annotated with at least one GO (gene ontology) term. A total of 63 transcripts were annotated as involved in the tannin biosynthesis pathway. We identified 3786 potential SSRs. SNPs were identified by mapping the reads of the individual assemblies against the combined assembly. After stringent filtering a total of 77,000 putative SNPs were identified. A phylogenetic analysis of single copy number genes showed that sainfoin was most closely related to red clover and Medicago truncatula, while Lotus japonicus, bean and soybean are more distant relatives. CONCLUSIONS: This work describes the first transcriptome assembly in sainfoin. The 92 K transcripts provide a rich source of SNP and SSR polymorphisms for future use in genetic studies of this crop. Annotation of genes involved in the condensed tannin biosynthesis pathway has provided the basis for further studies of the genetic control of this important trait in sainfoin.

5.
BMC Genet ; 17(1): 124, 2016 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-27576309

RESUMEN

BACKGROUND: Sainfoin is a perennial forage legume with beneficial properties for animal husbandry due to the presence of secondary metabolites. However, worldwide cultivation of sainfoin is marginal due to the lack of varieties with good agronomic performance, adapted to a broad range of environmental conditions. Little is known about the genetics of sainfoin and only few genetic markers are available to assist breeding and genetic investigations. The objective of this study was to develop a set of SSR markers useful for genetic studies in sainfoin and their characterization in diverse germplasm. RESULTS: A set of 400 SSR primer combinations were tested for amplification and their ability to detect polymorphisms in a set of 32 sainfoin individuals, representing distinct varieties or landraces. Alleles were scored for presence or absence and polymorphism information content of each SSR locus was calculated with an adapted formula taking into account the tetraploid character of sainfoin. Relationships among individuals were visualized using cluster and principle components analysis. Of the 400 primer combinations tested, 101 reliably detected polymorphisms among the 32 sainfoin individuals. Among the 1154 alleles amplified 250 private alleles were observed. The number of alleles per locus ranged from 2 to 24 with an average of 11.4 alleles. The average polymorphism information content reached values of 0.14 to 0.36. The clustering of the 32 individuals suggested a separation into two groups depending on the origin of the accessions. CONCLUSIONS: The SSR markers characterized and tested in this study provide a valuable tool to detect polymorphisms in sainfoin for future genetic studies and breeding programs. As a proof of concept, we showed that these markers can be used to separate sainfoin individuals based on their origin.


Asunto(s)
Fabaceae/fisiología , Repeticiones de Microsatélite , Semillas/genética , Fabaceae/genética , Marcadores Genéticos , Fitomejoramiento , Análisis de Componente Principal , Sitios de Carácter Cuantitativo , Análisis de Secuencia de ADN
6.
BMC Genomics ; 15: 453, 2014 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-24912738

RESUMEN

BACKGROUND: Red clover (Trifolium pratense L.) is a versatile forage crop legume, which can tolerate a variety of soils and is suitable for silage production for winter feed and for grazing. It is one of the most important forage legumes in temperate livestock agriculture. Its beneficial attributes include ability to fix nitrogen, improve soil and provide protein rich animal feed. It is however, a short-lived perennial providing good biomass yield for two or three years. Improved persistency is thus a major breeding target. Better water-stress tolerance is one of the key factors influencing persistency, but little is known about how red clover tolerates water stress. RESULTS: Plants from a full sib mapping family were used in a drought experiment, in which the growth rate and relative water content (RWC) identified two pools of ten plants contrasting in their tolerance to drought. Key metabolites were measured and RNA-Seq analysis was carried out on four bulked samples: the two pools sampled before and after drought. Massively parallel sequencing was used to analyse the bulked RNA samples. A de novo transcriptome reconstruction based on the RNA-Seq data was made, resulting in 45181 contigs, representing 'transcript tags'. These transcript tags were annotated with gene ontology (GO) terms. One of the most striking results from the expression analysis was that the drought sensitive plants were characterised by having approximately twice the number of differentially expressed transcript tags than the tolerant plants after drought. This difference was evident in most of the major GO terms. Before onset of drought the sensitive plants overexpressed a number of genes annotated as senescence-related. Furthermore, the concentration of three metabolites, particularly pinitol, but also proline and malate increased in leaves after drought stress. CONCLUSIONS: This de novo assembly of a red clover transcriptome from leaf material of droughted and non-droughted plants provides a rich source for gene identification, single nucleotide polymorphisms (SNP) and short sequence repeats (SSR). Comparison of gene expression levels between pools and treatments identified candidate genes for further analysis of the genetic basis of drought tolerance in red clover.


Asunto(s)
Sequías , Estrés Fisiológico/genética , Transcriptoma , Trifolium/genética , Adaptación Biológica/genética , Alelos , Análisis por Conglomerados , Biología Computacional , Etiquetas de Secuencia Expresada , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Estudios de Asociación Genética , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Fenotipo , Hojas de la Planta/genética , Polimorfismo de Nucleótido Simple , Trifolium/metabolismo
7.
Front Plant Sci ; 15: 1407609, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38916032

RESUMEN

Genomic prediction has mostly been used in single environment contexts, largely ignoring genotype x environment interaction, which greatly affects the performance of plants. However, in the last decade, prediction models including marker x environment (MxE) interaction have been developed. We evaluated the potential of genomic prediction in red clover (Trifolium pratense L.) using field trial data from five European locations, obtained in the Horizon 2020 EUCLEG project. Three models were compared: (1) single environment (SingleEnv), (2) across environment (AcrossEnv), (3) marker x environment interaction (MxE). Annual dry matter yield (DMY) gave the highest predictive ability (PA). Joint analyses of DMY from years 1 and 2 from each location varied from 0.87 in Britain and Switzerland in year 1, to 0.40 in Serbia in year 2. Overall, crude protein (CP) was predicted poorly. PAs for date of flowering (DOF), however ranged from 0.87 to 0.67 for Britain and Switzerland, respectively. Across the three traits, the MxE model performed best and the AcrossEnv worst, demonstrating that including marker x environment effects can improve genomic prediction in red clover. Leaving out accessions from specific regions or from specific breeders' material in the cross validation tended to reduce PA, but the magnitude of reduction depended on trait, region and breeders' material, indicating that population structure contributed to the high PAs observed for DMY and DOF. Testing the genomic estimated breeding values on new phenotypic data from Sweden showed that DMY training data from Britain gave high PAs in both years (0.43-0.76), while DMY training data from Switzerland gave high PAs only for year 1 (0.70-0.87). The genomic predictions we report here underline the potential benefits of incorporating MxE interaction in multi-environment trials and could have perspectives for identifying markers with effects that are stable across environments, and markers with environment-specific effects.

8.
Plant Biotechnol J ; 11(5): 572-81, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23331642

RESUMEN

Perennial ryegrass (Lolium perenne L.) is the most important forage crop in temperate livestock agriculture. Its nutritional quality has significant impact on the quality of meat and milk for human consumption. Evidence suggests that higher energy content in forage can assist in reducing greenhouse gas emissions from ruminants. Increasing the fatty acid content (especially α-linolenic acid, an omega-3 fatty acid) may thus contribute to better forage, but little is known about the genetic basis of variation for this trait. To this end, quantitative trait loci (QTLs) were identified associated with major fatty acid content in perennial ryegrass using a population derived from a cross between the heterozygous and outbreeding high-sugar grass variety AberMagic and an older variety, Aurora. A genetic map with 434 restriction-associated DNA (RAD) and SSR markers was generated. Significant QTLs for the content of palmitic (C16:0) on linkage groups (LGs) 2 and 7; stearic (C18:0) on LGs 3, 4 and 7; linoleic (C18:2n-6) on LGs 2 and 5; and α-linolenic acids (C18:3n-3) on LG 1 were identified. Two candidate genes (a lipase and a beta-ketoacyl CoA synthase), both associated with C16:0, and separately with C18:2n-6 and C18:0 contents, were identified. The physical positions of these genes in rice and their genetic positions in perennial ryegrass were consistent with established syntenic relationships between these two species. Validation of these associations is required, but the utility of RAD markers for rapid generation of genetic maps and QTL analysis has been demonstrated for fatty acid composition in a global forage crop.


Asunto(s)
ADN de Plantas/genética , Ácidos Grasos/metabolismo , Técnicas de Genotipaje/métodos , Lolium/genética , Carácter Cuantitativo Heredable , Mapeo Restrictivo , Análisis de Secuencia de ADN , Secuencia de Aminoácidos , Mapeo Cromosómico , Cruzamientos Genéticos , Estudios de Asociación Genética , Marcadores Genéticos , Humanos , Escala de Lod , Repeticiones de Microsatélite/genética , Datos de Secuencia Molecular , Fenotipo , Proteínas de Plantas/química , Sitios de Carácter Cuantitativo/genética , Estadísticas no Paramétricas
9.
Front Plant Sci ; 14: 1189662, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37235014

RESUMEN

Improvement of persistency is an important breeding goal in red clover (Trifolium pratense L.). In areas with cold winters, lack of persistency is often due to poor winter survival, of which low freezing tolerance (FT) is an important component. We conducted a genome wide association study (GWAS) to identify loci associated with freezing tolerance in a collection of 393 red clover accessions, mostly of European origin, and performed analyses of linkage disequilibrium and inbreeding. Accessions were genotyped as pools of individuals using genotyping-by-sequencing (pool-GBS), generating both single nucleotide polymorphism (SNP) and haplotype allele frequency data at accession level. Linkage disequilibrium was determined as a squared partial correlation between the allele frequencies of pairs of SNPs and found to decay at extremely short distances (< 1 kb). The level of inbreeding, inferred from the diagonal elements of a genomic relationship matrix, varied considerably between different groups of accessions, with the strongest inbreeding found among ecotypes from Iberia and Great Britain, and the least found among landraces. Considerable variation in FT was found, with LT50-values (temperature at which 50% of the plants are killed) ranging from -6.0°C to -11.5°C. SNP and haplotype-based GWAS identified eight and six loci significantly associated with FT (of which only one was shared), explaining 30% and 26% of the phenotypic variation, respectively. Ten of the loci were found within or at a short distance (<0.5 kb) from genes possibly involved in mechanisms affecting FT. These include a caffeoyl shikimate esterase, an inositol transporter, and other genes involved in signaling, transport, lignin synthesis and amino acid or carbohydrate metabolism. This study paves the way for a better understanding of the genetic control of FT and for the development of molecular tools for the improvement of this trait in red clover through genomics assisted breeding.

10.
Front Plant Sci ; 14: 1128823, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36938037

RESUMEN

Red clover (Trifolium pratense L.) is an outcrossing forage legume that has adapted to a wide range of climatic and growing conditions across Europe. Red clover is valued for its high yield potential and its forage quality. The high amount of genetic diversity present in red clover provides an invaluable, but often poorly characterized resource to improve key traits such as yield, quality, and resistance to biotic and abiotic stresses. In this study, we examined the genetic and phenotypic diversity within a diverse set of 395 diploid red clover accessions via genome wide allele frequency fingerprinting and multi-location field trials across Europe. We found that the genetic structure of accessions mostly reflected their geographic origin and only few cases were detected, where breeders integrated foreign genetic resources into their local breeding pools. The mean dry matter yield of the first main harvesting season ranged from 0.74 kg m-2 in Serbia and Norway to 1.34 kg m-2 in Switzerland. Phenotypic performance of accessions in the multi-location field trials revealed a very strong accession x location interaction. Local adaptation was especially prominent in Nordic red clover accessions that showed a distinct adaptation to the growing conditions and cutting regime of the North. The traits vigor, dry matter yield and plant density were negatively correlated between the trial location in Norway and the locations Great Britain, Switzerland, Czech Republic and Serbia. Notably, breeding material and cultivars generally performed well at the location where they were developed. Our results confirmed that red clover cultivars were bred from regional ecotypes and show a narrow adaptation to regional conditions. Our study can serve as a valuable basis for identifying interesting materials that express the desired characteristics and contribute to the adaptation of red clover to future climatic conditions.

11.
Plant Physiol ; 155(2): 1013-22, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21115808

RESUMEN

The Arabidopsis (Arabidopsis thaliana) FLOWERING LOCUS T (FT) gene and its orthologs in other plant species (e.g. rice [Oryza sativa] OsFTL2/Hd3a) have an established role in the photoperiodic induction of flowering response. The genomic and phenotypic variations associated with the perennial ryegrass (Lolium perenne) ortholog of FT, designated LpFT3, was assessed in a diverse collection of nine European germplasm populations, which together constituted an association panel of 864 plants. Sequencing and genotyping of a series of amplicons derived from the nine populations, containing the complete exon and intron sequences as well as 5' and 3' noncoding sequences of LpFT3, identified a total of seven haplotypes. Genotyping assays designed to detect the genomic variation showed that three haplotypes were present in approximately equal proportions and represented 84% of the total, with a fourth representing a further 11%. Of the three major haplotypes, two were predicted to code for identical protein products and the third contained two amino acid substitutions. Association analysis using either a mixed model with a relationship matrix to correct for population structure and relatedness or structured association with further correction using genomic control indicated significant associations between LpFT3 and variation in flowering time. These associations were corroborated in a validation population segregating for the same major alleles. The most "diagnostic" region of genomic variation was situated 5' of the coding sequence. Analysis of this region identified that the interhaplotype variation was closely associated with sequence motifs that were apparently conserved in the 5' region of orthologs of LpFT3 from other plant species. These may represent cis-regulatory elements involved in influencing the expression of this gene.


Asunto(s)
Flores/fisiología , Variación Genética , Lolium/genética , Proteínas de Plantas/metabolismo , Alelos , Proteínas de Arabidopsis , ADN de Plantas/genética , Exones , Flores/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Haplotipos , Intrones , Lolium/metabolismo , Proteínas de Plantas/genética , Análisis de Secuencia de ADN
12.
Ann Bot ; 110(6): 1341-50, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22437665

RESUMEN

UNLABELLED: BACKGOUND AND AIMS: Extending the cultivation of forage legume species into regions where they are close to the margin of their natural distribution requires knowledge of population responses to environmental stresses. This study was conducted at three north European sites (Iceland, Sweden and the UK) using AFLP markers to analyse changes in genetic structure over time in two population types of red and white clover (Trifolium pratense and T. repens, respectively): (1) standard commercial varieties; (2) wide genetic base (WGB) composite populations constructed from many commercial varieties plus unselected material obtained from germplasm collections. METHODS: At each site populations were grown in field plots, then randomly sampled after 3-5 years to obtain survivor populations. AFLP markers were used to calculate genetic differentiation within and between original and survivor populations. KEY RESULTS: No consistent changes in average genetic diversity were observed between original and survivor populations. In both species the original varieties were always genetically distinct from each other. Significant genetic shift was observed in the white clover 'Ramona' grown in Sweden. The WGB original populations were more genetically similar. However, genetic differentiation occurred between original and survivor WGB germplasm in both species, particularly in Sweden. Regression of climatic data with genetic differentiation showed that low autumn temperature was the best predictor. Within the set of cold sites the highest level of genetic shift in populations was observed in Sweden. CONCLUSIONS: The results suggest that changes in population structure can occur within a short time span in forage legumes, resulting in the rapid formation of distinct survivor populations in environmentally challenging sites.


Asunto(s)
Fabaceae/genética , Variación Genética/genética , Trifolium/genética , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Clima , Cartilla de ADN/genética , Marcadores Genéticos , Genética de Población , Islandia , Estaciones del Año , Suecia , Temperatura , Factores de Tiempo , Trifolium/fisiología , Reino Unido
13.
Plants (Basel) ; 11(10)2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35631746

RESUMEN

Phenotypic and genotypic characterization were performed to assess heritability, variability, and seed yield stability of pea genotypes used in breeding to increase the pea production area. A European pea diversity panel, including genotypes from North America, Asia, and Australia consisting of varieties, breeding lines, pea, and landraces was examined in 2019 and 2020 in Serbia and Belgium using augmented block design. The highest heritability was for thousand seed weight; the highest coefficient of variation was for seed yield. The highest positive correlation was between number of seeds per plant and number of pods per plant; the highest negative correlation was between seed yield and protein content. Hierarchical clustering separated pea germplasm based on use and type. Different Principal component analysis grouping of landraces, breeding lines, and varieties, as well as forage types and garden and dry peas, confirms that there was an apparent decrease in similarity between the genotypes, which can be explained by their different purposes. Pea breeding should be focused on traits with consistent heritability and a positive effect on seed yield when selecting high-yielding genotypes, and on allowing for more widespread use of pea in various agricultural production systems.

14.
Methods Mol Biol ; 2467: 521-541, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35451789

RESUMEN

The majority of forage grass species are obligate outbreeders. Their breeding classically consists of an initial selection on spaced plants for highly heritable traits such as disease resistances and heading date, followed by familial selection on swards for forage yield and quality traits. The high level of diversity and heterozygosity, and associated decay of linkage disequilibrium (LD) over very short genomic distances, has hampered the implementation of genomic selection (GS) in these species. However, next generation sequencing technologies in combination with the development of genomic resources have recently facilitated implementation of GS in forage grass species such as perennial ryegrass (Lolium perenne L.), switchgrass (Panicum virgatum L.), and timothy (Phleum pratense L.). Experimental work and simulations have shown that GS can increase significantly the genetic gain per unit of time for traits with different levels of heritability. The main reasons are (1) the possibility to select single plants based on their genomic estimated breeding values (GEBV) for traits measured at sward level, (2) a reduction in the duration of selection cycles, and less importantly (3) an increase in the selection intensity associated with an increase in the genetic variance used for selection. Nevertheless, several factors should be taken into account for the successful implementation of GS in forage grasses. For example, it has been shown that the level of relatedness between the training and the selection population is particularly critical when working with highly structured meta-populations consisting of several genetic groups. A sufficient number of markers should be used to estimate properly the kinship between individuals and to reflect the variability of major QTLs. It is also important that the prediction models are trained for relevant environments when dealing with traits with high genotype × environment interaction (G × E). Finally, in these outbreeding species, measures to reduce inbreeding should be used to counterbalance the high selection intensity that can be achieved in GS.


Asunto(s)
Lolium , Panicum , Genoma , Genómica , Lolium/genética , Herencia Multifactorial , Panicum/genética , Fenotipo , Fitomejoramiento
15.
BMC Plant Biol ; 10: 177, 2010 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-20712870

RESUMEN

BACKGROUND: Genetic markers and linkage mapping are basic prerequisites for marker-assisted selection and map-based cloning. In the case of the key grassland species Lolium spp., numerous mapping populations have been developed and characterised for various traits. Although some genetic linkage maps of these populations have been aligned with each other using publicly available DNA markers, the number of common markers among genetic maps is still low, limiting the ability to compare candidate gene and QTL locations across germplasm. RESULTS: A set of 204 expressed sequence tag (EST)-derived simple sequence repeat (SSR) markers has been assigned to map positions using eight different ryegrass mapping populations. Marker properties of a subset of 64 EST-SSRs were assessed in six to eight individuals of each mapping population and revealed 83% of the markers to be polymorphic in at least one population and an average number of alleles of 4.88. EST-SSR markers polymorphic in multiple populations served as anchor markers and allowed the construction of the first comprehensive consensus map for ryegrass. The integrated map was complemented with 97 SSRs from previously published linkage maps and finally contained 284 EST-derived and genomic SSR markers. The total map length was 742 centiMorgan (cM), ranging for individual chromosomes from 70 cM of linkage group (LG) 6 to 171 cM of LG 2. CONCLUSIONS: The consensus linkage map for ryegrass based on eight mapping populations and constructed using a large set of publicly available Lolium EST-SSRs mapped for the first time together with previously mapped SSR markers will allow for consolidating existing mapping and QTL information in ryegrass. Map and markers presented here will prove to be an asset in the development for both molecular breeding of ryegrass as well as comparative genetics and genomics within grass species.


Asunto(s)
Mapeo Cromosómico , Etiquetas de Secuencia Expresada , Lolium/genética , Repeticiones de Microsatélite , ADN de Plantas/genética , Ligamiento Genético , Marcadores Genéticos , Genoma de Planta , Genotipo , Polimorfismo Genético , Sitios de Carácter Cuantitativo
16.
Sci Rep ; 10(1): 8364, 2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32433569

RESUMEN

Red clover (Trifolium pratense L.) is a highly adaptable forage crop for temperate livestock agriculture. Genetic variation can be identified, via molecular techniques, and used to assess diversity among populations that may otherwise be indistinguishable. Here we have used genotyping by sequencing (GBS) to determine the genetic variation and population structure in red clover natural populations from Europe and Asia, and varieties or synthetic populations. Cluster analysis differentiated the collection into four large regional groups: Asia, Iberia, UK, and Central Europe. The five varieties clustered with the geographical area from which they were derived. Two methods (BayeScan and Samßada) were used to search for outlier loci indicating signatures of selection. A total of 60 loci were identified by both methods, but no specific genomic region was highlighted. The rate of decay in linkage disequilibrium was fast, and no significant evidence of any bottlenecks was found. Phenotypic analysis showed that a more prostrate and spreading growth habit was predominantly found among populations from Iberia and the UK. A genome wide association study identified a single nucleotide polymorphism (SNP) located in a homologue of the VEG2 gene from pea, associated with flowering time. The identification of genetic variation within the natural populations is likely to be useful for enhancing the breeding of red clover in the future.


Asunto(s)
Productos Agrícolas/genética , Genoma de Planta/genética , Selección Genética , Trifolium/genética , Asia , Mapeo Cromosómico , Análisis por Conglomerados , Estudio de Asociación del Genoma Completo , Desequilibrio de Ligamiento , Filogeografía , Fitomejoramiento , Polimorfismo de Nucleótido Simple , España , Reino Unido
17.
Front Plant Sci ; 10: 718, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31244867

RESUMEN

Survivor populations of red clover (Trifolium pratense L.) from plots in a field experiment in southern Norway were genetically characterized using genotyping by sequencing, and compared with the original population and each other. Genetic differentiation between populations was characterized on the basis of allele frequencies of single nucleotide polymorphisms (SNPs), using principal component analysis. SNPs that had been under selection, i.e., SNPs with significantly different allele frequencies in survivor populations relative to the original population, or between survivor populations that had received different treatments, were identified by analysis of F ST values, using BayeScan and a simple and stringent F ST-based test utilizing replicate populations from the field experiment. In addition, we tested the possibility of pooling DNA samples prior to sequencing, and pooling leaf samples prior to DNA extraction and sequencing, followed by allele frequency estimation on the basis of number of variant reads. Overall, survivor populations were more different from each other than from the original population, indicating random changes in allele frequency, selection in response to local variation in conditions between plots in the field experiment, or sampling error. However, some differentiation was observed between plots sown as pure stands or species mixtures, plots sown at different densities, and plots subjected to different harvesting regimes. Allele frequencies could be accurately estimated from pooled DNA, and SNPs under selection could be identified when leaf samples were pooled prior to DNA extraction. However, substantial sampling error required replicate populations and/or a high number of sampled individuals. We identified a number of chromosomal loci that had been under selection in pure stand plots relative to the original sown population, and loci that had been under differential selection in pure stands of red clover vs. red clover grown in species mixtures. These are all candidate loci for establishment success or persistence in red clover.

18.
Genetics ; 177(1): 535-47, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17660575

RESUMEN

We describe a candidate gene approach for associating SNPs with variation in flowering time and water-soluble carbohydrate (WSC) content and other quality traits in the temperate forage grass species Lolium perenne. Three analysis methods were used, which took the significant population structure into account. First, a linear mixed model was used enabling a structured association analysis to be incorporated with the nine populations identified in the structure analysis as random variables. Second, a within-population analysis of variance was performed. Third, a tree-scanning method was used, in which haplotype trees were associated with phenotypes on the basis of inferred haplotypes. Analysis of variance within populations identified several associations between WSC, nitrogen (N), and dry matter digestibility with allelic variants within an alkaline invertase candidate gene LpcAI. These associations were only detected in material harvested in one of the two years. By contrast, consistent associations between the L. perenne homolog (LpHD1) of the rice photoperiod control gene HD1 and flowering time were identified. One SNP, in the immediate upstream region of the LpHD1 coding sequence (C-4443-A), was significant in the linear mixed model. Within-population analysis of variance and tree-scanning analysis confirmed and extended this result to the 2118 polymorphisms in some of the populations. The merits of the tree-scanning method are compared to the single SNP analysis. The potential usefulness of the 4443 SNP in marker-assisted selection is currently being evaluated in test crosses of genotypes from this work with turf-grass varieties.


Asunto(s)
Carbohidratos/análisis , Flores/crecimiento & desarrollo , Genes de Plantas/genética , Lolium/genética , Polimorfismo de Nucleótido Simple , ADN de Plantas/genética , Frecuencia de los Genes , Marcadores Genéticos , Genética de Población , Haplotipos/genética , Datos de Secuencia Molecular , Fenotipo
19.
Front Plant Sci ; 8: 1331, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28824669

RESUMEN

Self-incompatibility (SI) is a mechanism that many flowering plants employ to prevent fertilisation by self- and self-like pollen ensuring heterozygosity and hybrid vigour. Although a number of single locus mechanisms have been characterised in detail, no multi-locus systems have been fully elucidated. Historically, examples of the genetic analysis of multi-locus SI, to make analysis tractable, are either made on the progeny of bi-parental crosses, where the number of alleles at each locus is restricted, or on crosses prepared in such a way that only one of the SI loci segregates. Perennial ryegrass (Lolium perenne L.) possesses a well-documented two locus (S and Z) gametophytic incompatibility system. A more universal, realistic proof of principle study was conducted in a perennial ryegrass population in which allelic and non-allelic diversity was not artificially restricted. A complex pattern of pollinations from a diallel cross was revealed which could not possibly be interpreted easily per se, even with an already established genetic model. Instead, pollination scores were distilled into principal component scores described as Compatibility Components (CC1-CC3). These were then subjected to a conventional genome-wide association analysis. CC1 associated with markers on linkage groups (LGs) 1, 2, 3, and 6, CC2 exclusively with markers in a genomic region on LG 2, and CC3 with markers on LG 1. BLAST alignment with the Brachypodium physical map revealed highly significantly associated markers with peak associations with genes adjacent and four genes away from the chromosomal locations of candidate SI genes, S- and Z-DUF247, respectively. Further significant associations were found in a Brachypodium distachyon chromosome 3 region, having shared synteny with Lolium LG 1, suggesting further SI loci linked to S or extensive micro-re-arrangement of the genome between B. distachyon and L. perenne. Significant associations with gene sequences aligning with marker sequences on Lolium LGs 3 and 6 were also identified. We therefore demonstrate the power of a novel association genetics approach to identify the genes controlling multi-locus gametophytic SI systems and to identify novel loci potentially involved in already established SI systems.

20.
Mol Plant Microbe Interact ; 19(1): 80-91, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16404956

RESUMEN

Development of molecular tools for the analysis of the plant genetic contribution to rhizobial and mycorrhizal symbiosis has provided major advances in our understanding of plant-microbe interactions, and several key symbiotic genes have been identified and characterized. In order to increase the efficiency of genetic analysis in the model legume Lotus japonicus, we present here a selection of improved genetic tools. The two genetic linkage maps previously developed from an interspecific cross between L. japonicus Gifu and L. filicaulis, and an intraspecific cross between the two ecotypes L. japonicus Gifu and L. japonicus MG-20, were aligned through a set of anchor markers. Regions of linkage groups, where genetic resolution is obtained preferentially using one or the other parental combination, are highlighted. Additional genetic resolution and stabilized mapping populations were obtained in recombinant inbred lines derived by a single seed descent from the two populations. For faster mapping of new loci, a selection of reliable markers spread over the chromosome arms provides a common framework for more efficient identification of new alleles and new symbiotic loci among uncharacterized mutant lines. Combining resources from the Lotus community, map positions of a large collection of symbiotic loci are provided together with alleles and closely linked molecular markers. Altogether, this establishes a common genetic resource for Lotus spp. A web-based version will enable this resource to be curated and updated regularly.


Asunto(s)
Mapeo Cromosómico , Genes de Plantas/genética , Lotus/genética , Simbiosis/genética , Alelos , Ligamiento Genético , Marcadores Genéticos , Genoma de Planta , Repeticiones de Microsatélite , Mutación/genética , Fenotipo , Recombinación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA