Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Am J Hum Genet ; 111(7): 1352-1369, 2024 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-38866022

RESUMEN

Primary proteasomopathies have recently emerged as a new class of rare early-onset neurodevelopmental disorders (NDDs) caused by pathogenic variants in the PSMB1, PSMC1, PSMC3, or PSMD12 proteasome genes. Proteasomes are large multi-subunit protein complexes that maintain cellular protein homeostasis by clearing ubiquitin-tagged damaged, misfolded, or unnecessary proteins. In this study, we have identified PSMD11 as an additional proteasome gene in which pathogenic variation is associated with an NDD-causing proteasomopathy. PSMD11 loss-of-function variants caused early-onset syndromic intellectual disability and neurodevelopmental delay with recurrent obesity in 10 unrelated children. Our findings demonstrate that the cognitive impairment observed in these individuals could be recapitulated in Drosophila melanogaster with depletion of the PMSD11 ortholog Rpn6, which compromised reversal learning. Our investigations in subject samples further revealed that PSMD11 loss of function resulted in impaired 26S proteasome assembly and the acquisition of a persistent type I interferon (IFN) gene signature, mediated by the integrated stress response (ISR) protein kinase R (PKR). In summary, these data identify PSMD11 as an additional member of the growing family of genes associated with neurodevelopmental proteasomopathies and provide insights into proteasomal biology in human health.


Asunto(s)
Drosophila melanogaster , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Obesidad , Complejo de la Endopetidasa Proteasomal , Adolescente , Animales , Niño , Preescolar , Femenino , Humanos , Masculino , Drosophila melanogaster/genética , Discapacidad Intelectual/genética , Interferones/metabolismo , Interferones/genética , Mutación con Pérdida de Función , Trastornos del Neurodesarrollo/genética , Obesidad/genética , Fenotipo , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo
2.
Hum Genet ; 143(3): 437-453, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38520561

RESUMEN

General transcription factor IIIC subunit 5 (GTF3C5) encodes transcription factor IIIC63 (TFIIIC63). It binds to DNA to recruit another transcription factor, TFIIIB, and RNA polymerase III (Pol III) to mediate the transcription of small noncoding RNAs, such as tRNAs. Here, we report four individuals from three families presenting with a multisystem developmental disorder phenotype with biallelic variants in GTF3C5. The overlapping features include growth retardation, developmental delay, intellectual disability, dental anomalies, cerebellar malformations, delayed bone age, skeletal anomalies, and facial dysmorphism. Using lymphoblastoid cell lines (LCLs) from two affected individuals, we observed a reduction in TFIIIC63 protein levels compared to control LCLs. Genome binding of TFIIIC63 protein is also reduced in LCL from one of the affected individuals. Additionally, approximately 40% of Pol III binding regions exhibited reduction in the level of Pol III occupancy in the mutant genome relative to the control, while approximately 54% of target regions showed comparable levels of Pol III occupancy between the two, indicating partial impairment of Pol III occupancy in the mutant genome. Yeasts with subject-specific variants showed temperature sensitivity and impaired growth, supporting the notion that the identified variants have deleterious effects. gtf3c5 mutant zebrafish showed developmental defects, including a smaller body, head, and eyes. Taken together, our data show that GTF3C5 plays an important role in embryonic development, and that biallelic variants in this gene cause a multisystem developmental disorder. Our study adds GTF3C5-related disorder to the growing list of genetic disorders associated with Pol III transcription machinery.


Asunto(s)
Discapacidades del Desarrollo , ARN Polimerasa III , Factores de Transcripción TFIII , Animales , Niño , Preescolar , Femenino , Humanos , Masculino , Alelos , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/patología , Discapacidad Intelectual/genética , Mutación , Linaje , Fenotipo , ARN Polimerasa III/genética , ARN Polimerasa III/metabolismo , Factores de Transcripción TFII/genética , Factores de Transcripción TFII/metabolismo , Factores de Transcripción TFIII/genética , Factores de Transcripción TFIII/metabolismo , Transcripción Genética , Pez Cebra/genética
3.
Am J Med Genet A ; : e63816, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39007708

RESUMEN

RFX7 encodes a transcription factor that is ubiquitously expressed and important for neural development. Haploinsufficiency of RFX7 is associated with intellectual disability, developmental delay, and diverse malformations of brain structures. Currently, there are only 16 clinically described individuals who have variants in RFX7. A recognizable pattern of malformation associated with mutation in RFX7 has not yet been uncovered. Here we describe the phenotypic presentation of two additional individuals who have novel de novo variants in RFX7. One of the individuals we describe is from an under-represented Afro-Caribbean population.

4.
Am J Med Genet A ; : e63817, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39031459

RESUMEN

Exome sequencing (ES) has emerged as an essential tool in the evaluation of neurodevelopmental disorders (NDD) of unknown etiology. Genome sequencing (GS) offers advantages over ES due to improved detection of structural, copy number, repeat number and non-coding variants. However, GS is less commonly utilized due to higher cost and more intense analysis. Here, we present nine cases of pediatric NDD that were molecularly diagnosed with GS between 2017 and 2022, following non-diagnostic ES. All individuals presented with global developmental delay or regression. Other features present in our cohort included epilepsy, white matter abnormalities, brain malformation and dysmorphic features. Two cases were diagnosed on GS due to newly described gene-disease relationship or variant reclassification (MAPK8IP3, CHD3). Additional features missed on ES that were later detected on GS were: intermediate-size deletions in three cases who underwent ES that were not validated for CNV detection, pathogenic variants within the non-protein coding genes SNORD118 and RNU7-1, pathogenic variant within the promoter region of GJB1, and a coding pathogenic variant within BCAP31 which was not sufficiently covered on ES. GS following non-diagnostic ES led to the identification of pathogenic variants in this cohort of nine cases, four of which would not have been identified by reanalysis alone.

5.
Am J Med Genet A ; 191(8): 2149-2155, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37212523

RESUMEN

SRRM2-related neurodevelopmental disorder is a recently described genetic diagnosis caused by loss-of-function variants in SRRM2. In order to understand the clinical spectrum of SRRM2-related neurodevelopmental disorder, we performed a retrospective exome data and clinical chart review at a single tertiary children's hospital, Children's Hospital of Philadelphia (CHOP). Among approximately 3100 clinical exome sequencing cases performed at CHOP, we identified three patients with SRRM2 loss-of-function pathogenic variants, in addition to one patient previously described in the literature. Common clinical features include developmental delay, attention deficit hyperactivity disorder, macrocephaly, hypotonia, gastroesophageal reflux, overweight/obesity, and autism. While developmental disabilities are commonly seen in all individuals with SRRM2 variants, the degree of developmental delay and intellectual disability is variable. Our data suggest that SRRM2-related neurodevelopmental disorder can be identified in 0.3% of individuals with developmental disabilities receiving exome sequencing.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Humanos , Niño , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/patología , Estudios Retrospectivos , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/genética , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Hospitales , Proteínas de Unión al ARN
6.
Am J Hum Genet ; 104(3): 530-541, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30827496

RESUMEN

Acetylation of the lysine residues in histones and other DNA-binding proteins plays a major role in regulation of eukaryotic gene expression. This process is controlled by histone acetyltransferases (HATs/KATs) found in multiprotein complexes that are recruited to chromatin by the scaffolding subunit transformation/transcription domain-associated protein (TRRAP). TRRAP is evolutionarily conserved and is among the top five genes intolerant to missense variation. Through an international collaboration, 17 distinct de novo or apparently de novo variants were identified in TRRAP in 24 individuals. A strong genotype-phenotype correlation was observed with two distinct clinical spectra. The first is a complex, multi-systemic syndrome associated with various malformations of the brain, heart, kidneys, and genitourinary system and characterized by a wide range of intellectual functioning; a number of affected individuals have intellectual disability (ID) and markedly impaired basic life functions. Individuals with this phenotype had missense variants clustering around the c.3127G>A p.(Ala1043Thr) variant identified in five individuals. The second spectrum manifested with autism spectrum disorder (ASD) and/or ID and epilepsy. Facial dysmorphism was seen in both groups and included upslanted palpebral fissures, epicanthus, telecanthus, a wide nasal bridge and ridge, a broad and smooth philtrum, and a thin upper lip. RNA sequencing analysis of skin fibroblasts derived from affected individuals skin fibroblasts showed significant changes in the expression of several genes implicated in neuronal function and ion transport. Thus, we describe here the clinical spectrum associated with TRRAP pathogenic missense variants, and we suggest a genotype-phenotype correlation useful for clinical evaluation of the pathogenicity of the variants.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Trastorno Autístico/etiología , Discapacidad Intelectual/etiología , Mutación Missense , Proteínas Nucleares/genética , Adolescente , Adulto , Secuencia de Aminoácidos , Trastorno Autístico/metabolismo , Trastorno Autístico/patología , Niño , Preescolar , Femenino , Estudios de Asociación Genética , Humanos , Lactante , Discapacidad Intelectual/metabolismo , Discapacidad Intelectual/patología , Masculino , Pronóstico , Homología de Secuencia , Síndrome , Adulto Joven
7.
Am J Hum Genet ; 102(5): 995-1007, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29656858

RESUMEN

Developmental and epileptic encephalopathies (DEEs) represent a large clinical and genetic heterogeneous group of neurodevelopmental diseases. The identification of pathogenic genetic variants in DEEs remains crucial for deciphering this complex group and for accurately caring for affected individuals (clinical diagnosis, genetic counseling, impacting medical, precision therapy, clinical trials, etc.). Whole-exome sequencing and intensive data sharing identified a recurrent de novo PACS2 heterozygous missense variant in 14 unrelated individuals. Their phenotype was characterized by epilepsy, global developmental delay with or without autism, common cerebellar dysgenesis, and facial dysmorphism. Mixed focal and generalized epilepsy occurred in the neonatal period, controlled with difficulty in the first year, but many improved in early childhood. PACS2 is an important PACS1 paralog and encodes a multifunctional sorting protein involved in nuclear gene expression and pathway traffic regulation. Both proteins harbor cargo(furin)-binding regions (FBRs) that bind cargo proteins, sorting adaptors, and cellular kinase. Compared to the defined PACS1 recurrent variant series, individuals with PACS2 variant have more consistently neonatal/early-infantile-onset epilepsy that can be challenging to control. Cerebellar abnormalities may be similar but PACS2 individuals exhibit a pattern of clear dysgenesis ranging from mild to severe. Functional studies demonstrated that the PACS2 recurrent variant reduces the ability of the predicted autoregulatory domain to modulate the interaction between the PACS2 FBR and client proteins, which may disturb cellular function. These findings support the causality of this recurrent de novo PACS2 heterozygous missense in DEEs with facial dysmorphim and cerebellar dysgenesis.


Asunto(s)
Enfermedades Cerebelosas/genética , Epilepsia Generalizada/genética , Facies , Mutación Missense/genética , Proteínas de Transporte Vesicular/genética , Edad de Inicio , Preescolar , Femenino , Heterocigoto , Humanos , Lactante , Recién Nacido , Masculino , Fenotipo
8.
Am J Med Genet A ; 185(12): 3675-3682, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34272929

RESUMEN

Pathogenic variation in the X-linked gene FLNA causes a wide range of human developmental phenotypes. Loss-of-function is usually male embryonic-lethal, and most commonly results in a neuronal migration disorder in affected females. Gain-of-function variants cause a spectrum of skeletal dysplasias that present with variable additional, often distinctive, soft-tissue anomalies in males and females. Here we present two, unrelated, male individuals with novel, intronic variants in FLNA that are predicted to be pathogenic. Their phenotypes are reminiscent of the gain-of-function spectrum without the skeletal manifestations. Most strikingly, they manifest urethral anomalies, cardiac malformations, and keloid scarring, all commonly encountered features of frontometaphyseal dysplasia. Both variants prevent inclusion of exon 40 into the FLNA transcript, predicting the in-frame deletion of 42 amino acids, however the abundance of FLNA protein was equivalent to that observed in healthy individuals. Loss of these 42 amino acids removes sites that mediate key FLNA functions, including binding of some ligands and phosphorylation. This phenotype further expands the spectrum of the FLNA filaminopathies.


Asunto(s)
Filaminas/genética , Frente/anomalías , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Predisposición Genética a la Enfermedad , Osteocondrodisplasias/genética , Niño , Cicatriz/complicaciones , Cicatriz/genética , Cicatriz/fisiopatología , Exones/genética , Frente/fisiopatología , Genes Ligados a X , Enfermedades Genéticas Ligadas al Cromosoma X/fisiopatología , Variación Genética/genética , Humanos , Lactante , Queloide/complicaciones , Queloide/genética , Queloide/fisiopatología , Mutación con Pérdida de Función/genética , Masculino , Mutación/genética , Osteocondrodisplasias/fisiopatología , Linaje , Fenotipo , Fosforilación/genética , Uretra/anomalías , Uretra/fisiopatología
9.
Am J Med Genet A ; 185(9): 2766-2775, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34160123

RESUMEN

Retinoic acid exposures as well as defects in the retinoic acid-degrading enzyme CYP26B1 have teratogenic effects on both limb and craniofacial skeleton. An initial report of four individuals described a syndrome of fetal and infantile lethality with craniosynostosis and skeletal anomalies caused by homozygous pathogenic missense variants in CYP26B1. In contrast, a 22-year-old female was reported with a homozygous missense pathogenic variant in CYP26B1 with complex multisuture craniosynostosis and intellectual disability, suggesting that in some cases, biallelic pathogenic variants of CYP26B1 may be compatible with life. Here we describe four additional living individuals from two families with compound heterozygous pathogenic missense variants in CYP26B1. Structural assessment of these additional missense variants places them further from the catalytic site and supports a model consistent with milder nonlethal disease. In addition to previously reported findings of multisuture craniosynostosis, conductive hearing loss, joint contractures, long slender fingers, camptodactly, broad fingertips, and developmental delay/intellectual disability, skeletal imaging in our cases also revealed gracile long bones, gracile ribs, radioulnar synostosis, and carpal and/or tarsal fusions. These individuals broaden the phenotypic range of biallelic pathogenic variants in CYPB26B1 and most significantly clarify that mortality can range from perinatal lethality to survival into adulthood.


Asunto(s)
Anomalías Múltiples/patología , Homocigoto , Mutación Missense , Radio (Anatomía)/anomalías , Ácido Retinoico 4-Hidroxilasa/genética , Sinostosis/patología , Cúbito/anomalías , Anomalías Múltiples/genética , Niño , Familia , Femenino , Humanos , Lactante , Masculino , Fenotipo , Radio (Anatomía)/patología , Sinostosis/genética , Cúbito/patología
10.
Am J Hum Genet ; 101(1): 139-148, 2017 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-28686853

RESUMEN

We report 15 individuals with de novo pathogenic variants in WDR26. Eleven of the individuals carry loss-of-function mutations, and four harbor missense substitutions. These 15 individuals comprise ten females and five males, and all have intellectual disability with delayed speech, a history of febrile and/or non-febrile seizures, and a wide-based, spastic, and/or stiff-legged gait. These subjects share a set of common facial features that include a prominent maxilla and upper lip that readily reveal the upper gingiva, widely spaced teeth, and a broad nasal tip. Together, these features comprise a recognizable facial phenotype. We compared these features with those of chromosome 1q41q42 microdeletion syndrome, which typically contains WDR26, and noted that clinical features are consistent between the two subsets, suggesting that haploinsufficiency of WDR26 contributes to the pathology of 1q41q42 microdeletion syndrome. Consistent with this, WDR26 loss-of-function single-nucleotide mutations identified in these subjects lead to nonsense-mediated decay with subsequent reduction of RNA expression and protein levels. We derived a structural model of WDR26 and note that missense variants identified in these individuals localize to highly conserved residues of this WD-40-repeat-containing protein. Given that WDR26 mutations have been identified in ∼1 in 2,000 of subjects in our clinical cohorts and that WDR26 might be poorly annotated in exome variant-interpretation pipelines, we would anticipate that this disorder could be more common than currently appreciated.


Asunto(s)
Facies , Marcha/genética , Haploinsuficiencia/genética , Discapacidad Intelectual/genética , Proteínas/genética , Convulsiones/genética , Proteínas Adaptadoras Transductoras de Señales , Secuencia de Aminoácidos , Secuencia de Bases , Preescolar , Deleción Cromosómica , Femenino , Crecimiento y Desarrollo/genética , Humanos , Discapacidad Intelectual/complicaciones , Masculino , Mutación/genética , Proteínas/química , Estabilidad del ARN/genética , Convulsiones/complicaciones , Síndrome
11.
Am J Hum Genet ; 100(2): 343-351, 2017 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-28132692

RESUMEN

Whole-exome sequencing (WES) has increasingly enabled new pathogenic gene variant identification for undiagnosed neurodevelopmental disorders and provided insights into both gene function and disease biology. Here, we describe seven children with a neurodevelopmental disorder characterized by microcephaly, profound developmental delays and/or intellectual disability, cataracts, severe epilepsy including infantile spasms, irritability, failure to thrive, and stereotypic hand movements. Brain imaging in these individuals reveals delay in myelination and cerebral atrophy. We observe an identical recurrent de novo heterozygous c.892C>T (p.Arg298Trp) variant in the nucleus accumbens associated 1 (NACC1) gene in seven affected individuals. One of the seven individuals is mosaic for this variant. NACC1 encodes a transcriptional repressor implicated in gene expression and has not previously been associated with germline disorders. The probability of finding the same missense NACC1 variant by chance in 7 out of 17,228 individuals who underwent WES for diagnoses of neurodevelopmental phenotypes is extremely small and achieves genome-wide significance (p = 1.25 × 10-14). Selective constraint against missense variants in NACC1 makes this excess of an identical missense variant in all seven individuals more remarkable. Our findings are consistent with a germline recurrent mutational hotspot associated with an allele-specific neurodevelopmental phenotype in NACC1.


Asunto(s)
Catarata/genética , Variación Genética , Discapacidad Intelectual/genética , Proteínas de Neoplasias/genética , Proteínas Represoras/genética , Espasmos Infantiles/genética , Alelos , Secuencia de Aminoácidos , Encéfalo/diagnóstico por imagen , Catarata/diagnóstico por imagen , Niño , Preescolar , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Lactante , Discapacidad Intelectual/diagnóstico por imagen , Imagen por Resonancia Magnética , Masculino , Microcefalia/genética , Mutación Missense , Linaje , Fenotipo , Espasmos Infantiles/diagnóstico por imagen
12.
Genet Med ; 22(2): 389-397, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31388190

RESUMEN

PURPOSE: Sifrim-Hitz-Weiss syndrome (SIHIWES) is a recently described multisystemic neurodevelopmental disorder caused by de novo variants inCHD4. In this study, we investigated the clinical spectrum of the disorder, genotype-phenotype correlations, and the effect of different missense variants on CHD4 function. METHODS: We collected clinical and molecular data from 32 individuals with mostly de novo variants in CHD4, identified through next-generation sequencing. We performed adenosine triphosphate (ATP) hydrolysis and nucleosome remodeling assays on variants from five different CHD4 domains. RESULTS: The majority of participants had global developmental delay, mild to moderate intellectual disability, brain anomalies, congenital heart defects, and dysmorphic features. Macrocephaly was a frequent but not universal finding. Additional common abnormalities included hypogonadism in males, skeletal and limb anomalies, hearing impairment, and ophthalmic abnormalities. The majority of variants were nontruncating and affected the SNF2-like region of the protein. We did not identify genotype-phenotype correlations based on the type or location of variants. Alterations in ATP hydrolysis and chromatin remodeling activities were observed in variants from different domains. CONCLUSION: The CHD4-related syndrome is a multisystemic neurodevelopmental disorder. Missense substitutions in different protein domains alter CHD4 function in a variant-specific manner, but result in a similar phenotype in humans.


Asunto(s)
Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Trastornos del Neurodesarrollo/genética , Anomalías Múltiples/genética , Adolescente , Adulto , Niño , Preescolar , Ensamble y Desensamble de Cromatina/genética , Discapacidades del Desarrollo/genética , Femenino , Estudios de Asociación Genética , Genotipo , Pérdida Auditiva/genética , Cardiopatías Congénitas/genética , Humanos , Lactante , Recién Nacido , Discapacidad Intelectual/genética , Masculino , Megalencefalia/genética , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Anomalías Musculoesqueléticas/genética , Mutación Missense/genética , Fenotipo , Síndrome , Factores de Transcripción/genética
14.
Am J Med Genet A ; 182(6): 1454-1459, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32198970

RESUMEN

Congenital heart defects (CHD) are the most common birth defect and are both clinically and genetically heterogeneous. Truncus arteriosus (TA), characterized by a single arterial vessel arising from both ventricles giving rise to the coronary, pulmonary and systemic arteries, is rare and only responsible for 1% of all CHD. Two consanguineous families with TA were previously identified to have homozygous nonsense variants within the gene NKX2-6. NKX2-6 is a known downstream target of TBX1, an important transcriptional regulator implicated in the cardiac phenotype of 22q11.2 microdeletion syndrome. Herein, we report two siblings with TA presumably caused by compound heterozygous NKX2-6 variants without a history of consanguinity. Two in-house cohorts with conotruncal defects (CTD) were sequenced for variants in NKX2-6 and no additional cases of biallelic NKX2-6 variants were identified. The similar phenotype of these cases, and the clustering of variants that likely result in a truncated protein that disrupts the homeobox domain, suggest that biallelic loss of function for NKX2-6 is a rare genetic etiology for TA in particular, and possibly other types of CHD.


Asunto(s)
Cardiopatías Congénitas/genética , Proteínas de Homeodominio/genética , Proteínas de Dominio T Box/genética , Tronco Arterial/fisiopatología , Alelos , Arterias/anomalías , Arterias/crecimiento & desarrollo , Niño , Preescolar , Codón sin Sentido/genética , Anomalías Congénitas/genética , Anomalías Congénitas/fisiopatología , Consanguinidad , Femenino , Cardiopatías Congénitas/complicaciones , Cardiopatías Congénitas/fisiopatología , Humanos , Lactante , Masculino , Linaje , Fenotipo , Dominios Proteicos/genética , Tronco Arterial/metabolismo
15.
Int J Mol Sci ; 21(17)2020 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-32878331

RESUMEN

The CACNA1G gene encodes the low-voltage-activated Cav3.1 channel, which is expressed in various areas of the CNS, including the cerebellum. We studied two missense CACNA1G variants, p.L208P and p.L909F, and evaluated the relationships between the severity of Cav3.1 dysfunction and the clinical phenotype. The presentation was of a developmental and epileptic encephalopathy without evident cerebellar atrophy. Both patients exhibited axial hypotonia, developmental delay, and severe to profound cognitive impairment. The patient with the L909F mutation had initially refractory seizures and cerebellar ataxia, whereas the L208P patient had seizures only transiently but was overall more severely affected. In transfected mammalian cells, we determined the biophysical characteristics of L208P and L909F variants, relative to the wild-type channel and a previously reported gain-of-function Cav3.1 variant. The L208P mutation shifted the activation and inactivation curves to the hyperpolarized direction, slowed the kinetics of inactivation and deactivation, and reduced the availability of Ca2+ current during repetitive stimuli. The L909F mutation impacted channel function less severely, resulting in a hyperpolarizing shift of the activation curve and slower deactivation. These data suggest that L909F results in gain-of-function, whereas L208P exhibits mixed gain-of-function and loss-of-function effects due to opposing changes in the biophysical properties. Our study expands the clinical spectrum associated with CACNA1G mutations, corroborating further the causal association with distinct complex phenotypes.


Asunto(s)
Canales de Calcio Tipo T/genética , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/patología , Mutación Missense , Espasmos Infantiles/genética , Espasmos Infantiles/patología , Femenino , Humanos , Masculino , Fenotipo
16.
Am J Med Genet A ; 179(4): 542-551, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30719864

RESUMEN

Sotos syndrome is an overgrowth syndrome characterized by distinctive facial features and intellectual disability caused by haploinsufficiency of the NSD1 gene. Genotype-phenotype correlations have been observed, with major anomalies seen more frequently in patients with 5q35 deletions than those with point mutations in NSD1. Though endocrine features have rarely been described, transient hyperinsulinemic hypoglycemia (HI) of the neonatal period has been reported as an uncommon presentation of Sotos syndrome. Eight cases of 5q35 deletions and one patient with an intragenic NSD1 mutation with transient HI have been reported. Here, we describe seven individuals with HI caused by NSD1 gene mutations with three having persistent hyperinsulinemic hypoglycemia. These patients with persistent HI and Sotos syndrome caused by NSD1 mutations, further dispel the hypothesis that HI is due to the deletion of other genes in the deleted 5q35 region. These patients emphasize that NSD1 haploinsufficiency is sufficient to cause HI, and suggest that Sotos syndrome should be considered in patients presenting with neonatal HI. Lastly, these patients help extend the phenotypic spectrum of Sotos syndrome to include HI as a significant feature.


Asunto(s)
Hiperinsulinismo Congénito/patología , Discapacidades del Desarrollo/patología , Trastornos del Crecimiento/patología , N-Metiltransferasa de Histona-Lisina/genética , Mutación , Síndrome de Sotos/patología , Adulto , Hiperinsulinismo Congénito/genética , Discapacidades del Desarrollo/genética , Femenino , Trastornos del Crecimiento/genética , Humanos , Lactante , Recién Nacido , Masculino , Fenotipo , Pronóstico , Síndrome de Sotos/genética
19.
Mol Syndromol ; 14(4): 303-309, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37589028

RESUMEN

Background: Pallister-Killian syndrome (PKS) is typically recognized by its features that include developmental delay, seizures, sparse temporal hair, and facial dysmorphisms. PKS is most frequently caused by mosaic supernumerary isochromosome 12p. Case Presentation: Here, we report a patient with PKS who was subsequently diagnosed with Burkitt lymphoma. Following the successful treatment of lymphoma, this patient demonstrated very mild intellectual disability despite the diagnosis of PKS, which is usually associated with severe developmental delay. Discussion: This is the first reported patient with PKS and a hematologic malignancy. Although there is no significant reported association of tetrasomy 12p with cancer, the co-occurrence of two rare findings in this patient suggests a potential relationship. The localization of AICDA, a gene for which overexpression has been implicated in promoting t(8;14) noted in our patient's lymphoma, raises a potential mechanism of pathogenesis. In addition, this case indicates that children with PKS can demonstrate near-normal cognitive development.

20.
J Mol Diagn ; 24(3): 274-286, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35065284

RESUMEN

Clinical exome sequencing (CES) aids in the diagnosis of rare genetic disorders. Herein, we report the molecular diagnostic yield and spectrum of genetic alterations contributing to disease in 700 pediatric cases analyzed at the Children's Hospital of Philadelphia. The overall diagnostic yield was 23%, with three cases having more than one molecular diagnosis and 2.6% having secondary/additional findings. A candidate gene finding was reported in another 8.4% of cases. The clinical indications with the highest diagnostic yield were neurodevelopmental disorders (including seizures), whereas immune- and oncology-related indications were negatively associated with molecular diagnosis. The rapid expansion of knowledge regarding the genome's role in human disease necessitates reanalysis of CES samples. To capture these new discoveries, a subset of cases (n = 240) underwent reanalysis, with an increase in diagnostic yield. We describe our experience reporting CES results in a pediatric setting, including reporting of secondary findings, reporting newly discovered genetic conditions, and revisiting negative test results. Finally, we highlight the challenges associated with implementing critical updates to the CES workflow. Although these updates are necessary, they demand an investment of time and resources from the laboratory. In summary, these data demonstrate the clinical utility of exome sequencing and reanalysis, while highlighting the critical considerations for continuous improvement of a CES test in a clinical laboratory.


Asunto(s)
Exoma , Patología Molecular , Niño , Exoma/genética , Humanos , Mutación , Enfermedades Raras/genética , Estudios Retrospectivos , Secuenciación del Exoma/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA