Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nature ; 497(7449): 357-60, 2013 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-23676753

RESUMEN

Fluids trapped as inclusions within minerals can be billions of years old and preserve a record of the fluid chemistry and environment at the time of mineralization. Aqueous fluids that have had a similar residence time at mineral interfaces and in fractures (fracture fluids) have not been previously identified. Expulsion of fracture fluids from basement systems with low connectivity occurs through deformation and fracturing of the brittle crust. The fractal nature of this process must, at some scale, preserve pockets of interconnected fluid from the earliest crustal history. In one such system, 2.8 kilometres below the surface in a South African gold mine, extant chemoautotrophic microbes have been identified in fluids isolated from the photosphere on timescales of tens of millions of years. Deep fracture fluids with similar chemistry have been found in a mine in the Timmins, Ontario, area of the Canadian Precambrian Shield. Here we show that excesses of (124)Xe, (126)Xe and (128)Xe in the Timmins mine fluids can be linked to xenon isotope changes in the ancient atmosphere and used to calculate a minimum mean residence time for this fluid of about 1.5 billion years. Further evidence of an ancient fluid system is found in (129)Xe excesses that, owing to the absence of any identifiable mantle input, are probably sourced in sediments and extracted by fluid migration processes operating during or shortly after mineralization at around 2.64 billion years ago. We also provide closed-system radiogenic noble-gas ((4)He, (21)Ne, (40)Ar, (136)Xe) residence times. Together, the different noble gases show that ancient pockets of water can survive the crustal fracturing process and remain in the crust for billions of years.


Asunto(s)
Gases Nobles/análisis , Agua/análisis , Agua/química , Argón/análisis , Argón/química , Atmósfera/química , Canadá , Sedimentos Geológicos/química , Helio/análisis , Helio/química , Historia Antigua , Vida , Minería , Neón/análisis , Neón/química , Gases Nobles/química , Ontario , Xenón/análisis , Xenón/química
2.
Environ Sci Technol ; 50(14): 7353-63, 2016 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-27333443

RESUMEN

The sources of reduced carbon driving the microbially mediated release of arsenic to shallow groundwater in Bangladesh remain poorly understood. Using radiocarbon analysis of phospholipid fatty acids (PLFAs) and potential carbon pools, the abundance and carbon sources of the active, sediment-associated, in situ bacterial communities inhabiting shallow aquifers (<30 m) at two sites in Araihazar, Bangladesh, were investigated. At both sites, sedimentary organic carbon (SOC) Δ(14)C signatures of -631 ± 54‰ (n = 12) were significantly depleted relative to dissolved inorganic carbon (DIC) of +24 ± 30‰ and dissolved organic carbon (DOC) of -230 ± 100‰. Sediment-associated PLFA Δ(14)C signatures (n = 10) at Site F (-167‰ to +20‰) and Site B (-163‰ to +21‰) were highly consistent and indicated utilization of carbon sources younger than the SOC, likely from the DOC pool. Sediment-associated PLFA Δ(14)C signatures were consistent with previously determined Δ(14)C signatures of microbial DNA sampled from groundwater at Site F indicating that the carbon source for these two components of the subsurface microbial community is consistent and is temporally stable over the two years between studies. These results demonstrate that the utilization of relatively young carbon sources by the subsurface microbial community occurs at sites with varying hydrology. Further they indicate that these young carbon sources drive the metabolism of the more abundant sediment-associated microbial communities that are presumably more capable of Fe reduction and associated release of As. This implies that an introduction of younger carbon to as of yet unaffected sediments (such as those comprising the deeper Pleistocene aquifer) could stimulate microbial communities and result in arsenic release.


Asunto(s)
Arsénico , Carbono , Bangladesh , Sedimentos Geológicos/microbiología , Agua Subterránea/microbiología , Fosfolípidos , Contaminantes Químicos del Agua
3.
Environ Sci Technol ; 47(10): 5066-73, 2013 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-23582045

RESUMEN

Trends in concentrations and radiocarbon content of pyrogenic PAHs and perylene were determined 20 years after a previous study by Mcveety and Hites (1988). Pyrogenic PAH fluxes to sediments were observed to continue to decrease over the period from 1980 to 2000 at this remote site in contrast to observations in more urban areas. Radiocarbon analysis of pyrogenic PAHs showed a 50% decrease in the proportion of pyrogenic PAH derived from fossil fuel combustion over the past 50 years, consistent with decreasing emissions from regional coal-fired power-generating plants. Fluxes of pyrogenic PAHs related to biomass burning were consistent over this same period and found to exceed fossil fuel sources in the most recent samples. Fluxes of biomass-derived pyrogenic PAHs were similar in magnitude to total pyrogenic PAH fluxes in early 1900, suggesting that these fluxes may represent wildfire inputs. Not only did perylene concentrations in these sediments increase with depth as previously observed but also concentrations from the same sedimentary layers analyzed 20 years previously showed large increases in perylene concentrations. Radiocarbon analysis of perylene indicated that 70-85% of perylene observed in the deeper sediments could be explained by production from total organic carbon.


Asunto(s)
Radioisótopos de Carbono/análisis , Sedimentos Geológicos/química , Perileno/química , Hidrocarburos Policíclicos Aromáticos/química , Michigan , Perileno/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Control de Calidad
4.
Environ Pollut ; 153(1): 60-70, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-17920174

RESUMEN

Variations in concentrations of polycyclic aromatic hydrocarbons (PAHs) and microbial community indicators were investigated in representative highly contaminated and less contaminated surface sediment sites of Hamilton Harbour. Inputs of PAH to the upper 3cm of sediments up to four times the average upper sediment concentrations were observed. Associated PAH fingerprint profiles indicated that the source was consistent with the PAH source to the industrial region of the harbour. Increased PAH loadings were associated with decreased bacterial populations as indicated by phospholipid fatty acid (PLFA) concentrations. However, relatively minor impacts on overall community composition were indicated. Porewater methane concentrations and isotopic data indicated a difference in the occurrence of methane oxidation between the two sites. This study confirms temporally limited transport of contaminants from highly impacted regions as a vector for contaminants within the harbour and the impact on microbial carbon cycling and bed stability.


Asunto(s)
Sedimentos Geológicos/química , Sedimentos Geológicos/microbiología , Residuos Industriales , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes Químicos del Agua/análisis , Biodegradación Ambiental , Canadá , Recuento de Colonia Microbiana , Monitoreo del Ambiente/métodos , Metano/análisis , Microbiología del Agua
5.
Geobiology ; 16(1): 62-79, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29076278

RESUMEN

Cryptoendolithic lichens and cyanobacteria living in porous sandstone in the high-elevation McMurdo Dry Valleys are purported to be among the slowest growing organisms on Earth with cycles of death and regrowth on the order of 103 -104  years. Here, organic biomarker and radiocarbon analysis were used to better constrain ages and carbon sources of cryptoendoliths in University Valley (UV; 1,800 m.a.s.l) and neighboring Farnell Valley (FV; 1,700 m.a.s.l). Δ14 C was measured for membrane component phospholipid fatty acids (PLFA) and glycolipid fatty acids, as well as for total organic carbon (TOC). PLFA concentrations indicated viable cells comprised a minor (<0.5%) component of TOC. TOC Δ14 C values ranged from -272‰ to -185‰ equivalent to calibrated ages of 1,100-2,550 years old. These ages may be the result of fractional preservation of biogenic carbon and/or sudden large-scale community death and extended period(s) of inactivity prior to slow recolonization and incorporation of 14 C-depleted fossil material. PLFA Δ14 C values were generally more modern than the corresponding TOC and varied widely between sites; the FV PLFA Δ14 C value (+40‰) was consistent with modern atmospheric CO2 , while UV values ranged from -199‰ to -79‰ (calibrated ages of 1,665-610 years). The observed variability in PLFA Δ14 C depletions is hypothesized to reflect variations in the extent of fixation of modern atmospheric CO2 and the preservation and recycling of older organic carbon by the community in various stages of sandstone recolonization. PLFA profiles and microbial community compositions as determined by molecular genetic characterizations and microscopy differed between the two valleys (e.g., predominance of biomarker 18:2 [>50%] in FV compared to UV), representing microbial communities that may reflect distinct stages of sandstone recolonization and/or environmental conditions. It is thus proposed that Dry Valley cryptoendolithic microbial communities are faster growing than previously estimated.


Asunto(s)
Ciclo del Carbono , Cianobacterias/metabolismo , Glucolípidos/metabolismo , Líquenes/metabolismo , Fosfolípidos/metabolismo , Regiones Antárticas , Radioisótopos de Carbono/análisis , Cianobacterias/química , Cianobacterias/citología , Ácidos Grasos/análisis , Glucolípidos/análisis , Líquenes/química , Líquenes/citología , Fosfolípidos/análisis
6.
FEMS Microbiol Ecol ; 94(7)2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29767724

RESUMEN

The concentrations of electron donors and acceptors in the terrestrial subsurface biosphere fluctuate due to migration and mixing of subsurface fluids, but the mechanisms and rates at which microbial communities respond to these changes are largely unknown. Subsurface microbial communities exhibit long cellular turnover times and are often considered relatively static-generating just enough ATP for cellular maintenance. Here, we investigated how subsurface populations of CH4 oxidizers respond to changes in electron acceptor availability by monitoring the biological and geochemical composition in a 1339 m-below-land-surface (mbls) fluid-filled fracture over the course of both longer (2.5 year) and shorter (2-week) time scales. Using a combination of metagenomic, metatranscriptomic, and metaproteomic analyses, we observe that the CH4 oxidizers within the subsurface microbial community change in coordination with electron acceptor availability over time. We then validate these findings through a series of 13C-CH4 laboratory incubation experiments, highlighting a connection between composition of subsurface CH4 oxidizing communities and electron acceptor availability.


Asunto(s)
Archaea/metabolismo , Bacterias/metabolismo , Sedimentos Geológicos/microbiología , Metano/metabolismo , Microbiota/fisiología , Archaea/clasificación , Archaea/genética , Bacterias/clasificación , Bacterias/genética , Electrones , Metagenómica/métodos , Oxidación-Reducción , Proteómica/métodos , ARN Ribosómico 16S/genética
7.
Sci Total Environ ; 595: 63-71, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28388451

RESUMEN

Recent studies have demonstrated that the supply of relatively young organic carbon stimulates the release of arsenic to groundwater in Bangladesh. This study explores the potential role of human and livestock waste as a significant source of this carbon in a densely populated rural area with limited sanitation. Profiles of aquifer sediment samples were analyzed for phytosterols and coprostanol to assess the relative contributions of plant-derived and human/livestock waste-derived organic carbon at two well-characterized sites in Araihazar. Coprostanol concentrations increased with depth from non-detection (<10m at Site B and <23m at Site F) to maxima of 1.3 and 0.5ng/g in aquifer sands recovered from 17m (Site B) and 26m (Site F), respectively. The commonly used sewage contamination index ([5ß-coprostanol]/([5α-cholestanol]+[5ß-coprostanol])) exceeds 0.7 between 12 and 19m at Site B and between 24 and 26m at Site F, indicating input of human/livestock waste to these depths. Urine/fecal input within the same depth range is supported by groundwater Cl/Br mass ratios >1000 compared to Cl/Br <500 at depths >50m. Installed tube wells in the area's study sites may act as a conduit for DOC and specifically human/livestock waste into the aquifer during flood events. The depth range of maximum input of human/livestock waste indicated by these independent markers coincides with the highest dissolved Fe (10-20mg/L) and As (200-400µg/L) concentrations in groundwater at both sites. The new findings suggest that the oxidation of human/livestock waste coupled to the reductive dissolution of iron-(oxy)-hydroxides and/or arsenate may enhance groundwater contamination with As.

8.
Nat Commun ; 7: 13252, 2016 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-27807346

RESUMEN

The discovery of hydrogen-rich waters preserved below the Earth's surface in Precambrian rocks worldwide expands our understanding of the habitability of the terrestrial subsurface. Many deep microbial ecosystems in these waters survive by coupling hydrogen oxidation to sulfate reduction. Hydrogen originates from water-rock reactions including serpentinization and radiolytic decomposition of water induced by decay of radioactive elements in the host rocks. The origin of dissolved sulfate, however, remains unknown. Here we report, from anoxic saline fracture waters ∼2.4 km below surface in the Canadian Shield, a sulfur mass-independent fractionation signal in dissolved sulfate. We demonstrate that this sulfate most likely originates from oxidation of sulfide minerals in the Archaean host rocks through the action of dissolved oxidants (for example, HO· and H2O2) themselves derived from radiolysis of water, thereby providing a coherent long-term mechanism capable of supplying both an essential electron donor (H2) and a complementary acceptor (sulfate) for the deep biosphere.

9.
Geobiology ; 13(4): 357-72, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25809931

RESUMEN

Modern microbialites in Pavilion Lake, BC, provide an analog for ancient non-stromatolitic microbialites that formed from in situ mineralization. Because Pavilion microbialites are mineralizing under the influence of microbial communities, they provide insights into how biological processes influence microbialite microfabrics and mesostructures. Hemispherical nodules and micrite-microbial crusts are two mesostructures within Pavilion microbialites that are directly associated with photosynthetic communities. Both filamentous cyanobacteria in hemispherical nodules and branching filamentous green algae in micrite-microbial crusts were associated with calcite precipitation at microbialite surfaces and with characteristic microfabrics in the lithified microbialite. Hemispherical nodules formed at microbialite surfaces when calcite precipitated around filamentous cyanobacteria with a radial growth habit. The radial filament pattern was preserved within the microbialite to varying degrees. Some subsurface nodules contained well-defined filaments, whereas others contained only dispersed organic inclusions. Variation in filament preservation is interpreted to reflect differences in timing and amount of carbonate precipitation relative to heterotrophic decay, with more defined filaments reflecting greater lithification prior to degradation than more diffuse filaments. Micrite-microbial crusts produce the second suite of microfabrics and form in association with filamentous green algae oriented perpendicular to the microbialite surface. Some crusts include calcified filaments, whereas others contained voids that reflect the filamentous community in shape, size, and distribution. Pavilion microbialites demonstrate that microfabric variation can reflect differences in lithification processes and microbial metabolisms as well as microbial community morphology and organization. Even when the morphology of individual filaments or cells is not well preserved, the microbial growth habit can be captured in mesoscale microbialite structures. These results suggest that when petrographic preservation is extremely good, ancient microbialite growth structures and microfabrics can be interpreted in the context of variation in community organization, community composition, and lithification history. Even in the absence of distinct microbial microfabrics, mesostructures can capture microbial community morphology.


Asunto(s)
Carbonatos/química , Chlorophyta/crecimiento & desarrollo , Cianobacterias/crecimiento & desarrollo , Sedimentos Geológicos/microbiología , Lagos/microbiología , Colombia Británica , Chlorophyta/ultraestructura , Cianobacterias/ultraestructura , Fósiles/anatomía & histología , Fósiles/microbiología , Microscopía Electrónica de Rastreo
10.
Chemosphere ; 49(6): 587-96, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12430646

RESUMEN

During reductive dechlorination of trichloroethene (TCE) by zero-valent iron, stable carbon isotopic values of residual TCE fractionate significantly and can be described by a Rayleigh model. This study investigated the effect of observed reaction rate, surface oxidation and iron type on isotopic fractionation of TCE during reductive dechlorination. Variation of observed reaction rate did not produce significant differences in isotopic fractionation in degradation experiments. However, a small influence on isotopic fractionation was observed for experiments using acid-cleaned electrolytic iron versus experiments using autoclaved electrolytic iron, acid-cleaned Peerless cast iron or autoclaved Peerless cast iron. A consistent isotopic enrichment factor of epsilon = -16.7/1000 was determined for all experiments using cast iron, and for the experiments with autoclaved electrolytic iron. Column experiments using 100% cast iron and a 28% cast iron/72% aquifer matrix mixture also resulted in an enrichment factor of -16.9/1000. The consistency in enrichment factors between batch and column systems suggests that isotopic trends observed in batch systems may be extrapolated to flowing systems such as field sites. The fact that significant isotopic fractionation was observed in all experiments implies that isotopic analysis can provide a direct qualitative indication of whether or not reductive dechlorination of TCE by Fe0 is occurring. This evidence may be useful in answering questions which arise at field sites, such as determining whether TCE observed down-gradient of an iron wall remediation scheme is the result of incomplete degradation within the wall, or of the dissolved TCE plume by passing the wall.


Asunto(s)
Isótopos de Carbono/química , Fraccionamiento Químico/métodos , Hierro/química , Tricloroetileno/química , Isótopos de Carbono/análisis , Fraccionamiento Químico/instrumentación , Cinética , Modelos Químicos , Oxidación-Reducción , Reproducibilidad de los Resultados , Solventes/química , Propiedades de Superficie , Agua/química
11.
Geobiology ; 12(3): 250-64, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24636451

RESUMEN

Pavilion Lake in British Columbia, Canada, is home to modern-day microbialites that are actively growing at multiple depths within the lake. While microbialite morphology changes with depth and previous isotopic investigations suggested a biological role in the formation of these carbonate structures, little is known about their microbial communities. Microbialite samples acquired through the Pavilion Lake Research Project (PLRP) were first investigated for phototrophic populations using Cyanobacteria-specific primers and 16S rRNA gene cloning. These data were expounded on by high-throughput tagged sequencing analyses of the general bacteria population. These molecular analyses show that the microbial communities of Pavilion Lake microbialites are diverse compared to non-lithifying microbial mats also found in the lake. Phototrophs and heterotrophs were detected, including species from the recently described Chloroacidobacteria genus, a photoheterotroph that has not been previously observed in microbialite systems. Phototrophs were shown as the most influential contributors to community differences above and below 25 meters, and corresponding shifts in heterotrophic populations were observed at this interface as well. The isotopic composition of carbonate also mirrored this shift in community states. Comparisons to previous studies indicated this population shift may be a consequence of changes in lake chemistry at this depth. Microbial community composition did not correlate with changing microbialite morphology with depth, suggesting something other than community changes may be a key to observed variations in microbialite structure.


Asunto(s)
Archaea/fisiología , Fenómenos Fisiológicos Bacterianos , Biota , Sedimentos Geológicos/microbiología , Lagos/microbiología , Archaea/clasificación , Archaea/genética , Archaea/aislamiento & purificación , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Colombia Británica , Carbonatos/metabolismo , Código de Barras del ADN Taxonómico , Datos de Secuencia Molecular , Filogenia , Reacción en Cadena de la Polimerasa , ARN Ribosómico 16S/genética , Análisis de Secuencia de ARN
12.
Geobiology ; 11(5): 437-56, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23941467

RESUMEN

Photosynthetic activity in carbonate-rich benthic microbial mats located in saline, alkaline lakes on the Cariboo Plateau, B.C. resulted in pCO2 below equilibrium and δ(13) CDIC values up to +6.0‰ above predicted carbon dioxide (CO2 ) equilibrium values, representing a biosignature of photosynthesis. Mat-associated δ(13) Ccarb values ranged from ~4 to 8‰ within any individual lake, with observations of both enrichments (up to 3.8‰) and depletions (up to 11.6‰) relative to the concurrent dissolved inorganic carbon (DIC). Seasonal and annual variations in δ(13) C values reflected the balance between photosynthetic (13) C-enrichment and heterotrophic inputs of (13) C-depleted DIC. Mat microelectrode profiles identified oxic zones where δ(13) Ccarb was within 0.2‰ of surface DIC overlying anoxic zones associated with sulphate reduction where δ(13) Ccarb was depleted by up to 5‰ relative to surface DIC reflecting inputs of (13) C-depleted DIC. δ(13) C values of sulphate reducing bacteria biomarker phospholipid fatty acids (PLFA) were depleted relative to the bulk organic matter by ~4‰, consistent with heterotrophic synthesis, while the majority of PLFA had larger offsets consistent with autotrophy. Mean δ(13) Corg values ranged from -18.7 ± 0.1 to -25.3 ± 1.0‰ with mean Δ(13) Cinorg-org values ranging from 21.1 to 24.2‰, consistent with non-CO2 -limited photosynthesis, suggesting that Precambrian δ(13) Corg values of ~-26‰ do not necessitate higher atmospheric CO2 concentrations. Rather, it is likely that the high DIC and carbonate content of these systems provide a non-limiting carbon source allowing for expression of large photosynthetic offsets, in contrast to the smaller offsets observed in saline, organic-rich and hot spring microbial mats.


Asunto(s)
Biopelículas , Carbonatos/metabolismo , Cianobacterias/fisiología , Lagos/química , Lagos/microbiología , Biomarcadores/metabolismo , Colombia Británica , Isótopos de Carbono/metabolismo , Ácidos Grasos/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiología , Fosfolípidos/metabolismo , Salinidad , Estaciones del Año
13.
Anal Chem ; 72(22): 5669-72, 2000 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-11101247

RESUMEN

To accurately interpret isotopic data obtained for volatile organic compounds (VOCs) dissolved in groundwater systems, the isotopic effects of subsurface processes must be understood. Previous work has demonstrated that volatilization and dissolution of BTEX and chlorinated ethene compounds are not significantly isotopically fractionating. This study characterized the carbon isotopic effects of equilibrium sorption of perchloroethylene, trichloroethylene, benzene, and toluene to both graphite and activated carbon directly in batch experiments over a range of 10-90% sorption. Results demonstrate that, over this range, equilibrium sorption of these VOCs to graphite and activated carbon does not result in significant carbon isotopic fractionation within the +/-0.5% accuracy and reproducibility associated with compound-specific isotope analysis. This implies that the isotopic values of dissolved VOCs will not be significantly affected by equilibrium sorption in the subsurface. Therefore, isotopic analysis has potential to be used in the field to differentiate between mass losses due to isotopically fractionating processes such as biodegradation versus mass loss due to nondegradative processes.

14.
Environ Sci Technol ; 35(5): 901-7, 2001 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-11351533

RESUMEN

Stable carbon isotopic analysis has the potential to assess biodegradation of chlorinated ethenes. Significant isotopic shifts, which can be described by Rayleigh enrichment factors, have been observed for the biodegradation of trichloroethlyene (TCE), cis-dichloroethylene (cDCE), and vinyl chloride (VC). However, until this time, no systematic investigation of isotopic fractionation during perchloroethylene (PCE) degradation has been undertaken. In addition, there has been no comparison of isotopic fractionation by different microbial consortia, nor has there been a comparison of isotopic fractionation by consortia generated from the same source, but growing under different conditions. This study characterized carbon isotopic fractionation during reductive dechlorination of the chlorinated ethenes, PCE in particular, for microbial consortia from two different sources growing under different environmental conditions in order to assess the extent to which different microbial consortia result in different fractionation factors. Rayleigh enrichment factors of -13.8@1000, -20.4@1000, and -22.4@1000 were observed for TCE, cDCE, and VC, respectively, for dechlorination by the KB-1 consortium. In contrast, isotopic fractionation during reductive dechlorination of perchloroethylene (PCE) could not always be approximated by a Rayleigh model. Dechlorination by one consortium followed Rayleigh behavior (epsilon = -5.2), while a systematic change in the enrichment factor was observed over the course of PCE degradation by two other consortia. Comparison of all reported enrichment factors for reductive dechlorination of the chlorinated ethenes shows significant variation between experiments. Despite this variability, these results demonstrate that carbon isotopic analysis can provide qualitative evidence of the occurrence and relative extent of microbial reductive dechlorination of the chlorinated ethenes.


Asunto(s)
Isótopos de Carbono/química , Carcinógenos/farmacocinética , Dicloroetilenos/farmacocinética , Solventes/farmacocinética , Tricloroetileno/farmacocinética , Cloruro de Vinilo/farmacocinética , Biodegradación Ambiental , Cloro/química , Monitoreo del Ambiente , Microbiología del Suelo
15.
Environ Sci Technol ; 35(2): 261-9, 2001 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-11347596

RESUMEN

Area 6 at Dover Air Force Base (Dover, DE) has been the location of an in-depth study by the RTDF (Remediation Technologies Development Forum Bioremediation of Chlorinated Solvents Action Team) to evaluate the effectiveness of natural attenuation of chlorinated ethene contamination in groundwater. Compound-specific stable carbon isotope measurements for dissolved PCE and TCE in wells distributed throughout the anaerobic portion of the plume confirm that stable carbon isotope values are isotopically enriched in 13C consistent with the effects of intrinsic biodegradation. During anaerobic microbial reductive dechlorination of chlorinated hydrocarbons, the light (12C) versus heavy isotope (13C) bonds are preferentially degraded, resulting in isotopic enrichment of the residual contaminant in 13C. To our knowledge, this study is the first to provide definitive evidence for reductive dechlorination of chlorinated hydrocarbons at a field site based on the delta13C values of the primary contaminants spilled at the site, PCE and TCE. For TCE, downgradient wells show delta13C values as enriched as -18.0/1000 as compared to delta13C values for TCE in the source zone of -25.0 to -26.0/1000. The most enriched delta13C value on the site was observed at well 236, which also contains the highest concentrations of cis-DCE, VC, and ethene, the daughter products of reductive dechlorination. Stable carbon isotope signatures are used to quantify the relative extent of biodegradation between zones of the contaminant plume. On the basis of this approach, it is estimated that TCE in downgradient well 236 is more than 40% biodegraded relative to TCE in the proposed source area.


Asunto(s)
Isótopos de Carbono/análisis , Tetracloroetileno/química , Tricloroetileno/química , Biodegradación Ambiental , Delaware
16.
Nature ; 416(6880): 522-4, 2002 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-11932741

RESUMEN

Natural hydrocarbons are largely formed by the thermal decomposition of organic matter (thermogenesis) or by microbial processes (bacteriogenesis). But the discovery of methane at an East Pacific Rise hydrothermal vent and in other crustal fluids supports the occurrence of an abiogenic source of hydrocarbons. These abiogenic hydrocarbons are generally formed by the reduction of carbon dioxide, a process which is thought to occur during magma cooling and-more commonly-in hydrothermal systems during water-rock interactions, for example involving Fischer-Tropsch reactions and the serpentinization of ultramafic rocks. Suggestions that abiogenic hydrocarbons make a significant contribution to economic hydrocarbon reservoirs have been difficult to resolve, in part owing to uncertainty in the carbon isotopic signatures for abiogenic versus thermogenic hydrocarbons. Here, using carbon and hydrogen isotope analyses of abiogenic methane and higher hydrocarbons in crystalline rocks of the Canadian shield, we show a clear distinction between abiogenic and thermogenic hydrocarbons. The progressive isotopic trends for the series of C1-C4 alkanes indicate that hydrocarbon formation occurs by way of polymerization of methane precursors. Given that these trends are not observed in the isotopic signatures of economic gas reservoirs, we can now rule out the presence of a globally significant abiogenic source of hydrocarbons.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA