Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cancer Res Commun ; 2(10): 1197-1213, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36860703

RESUMEN

Lung adenocarcinoma (LUAD) is the major subtype in lung cancer, and cigarette smoking is essentially linked to its pathogenesis. We show that downregulation of Filamin A interacting protein 1-like (FILIP1L) is a driver of LUAD progression. Cigarette smoking causes its downregulation by promoter methylation in LUAD. Loss of FILIP1L increases xenograft growth, and, in lung-specific knockout mice, induces lung adenoma formation and mucin secretion. In syngeneic allograft tumors, reduction of FILIP1L and subsequent increase in its binding partner, prefoldin 1 (PFDN1) increases mucin secretion, proliferation, inflammation, and fibrosis. Importantly, from the RNA-sequencing analysis of these tumors, reduction of FILIP1L is associated with upregulated Wnt/ß-catenin signaling, which has been implicated in proliferation of cancer cells as well as inflammation and fibrosis within the tumor microenvironment. Overall, these findings suggest that down-regulation of FILIP1L is clinically relevant in LUAD, and warrant further efforts to evaluate pharmacologic regimens that either directly or indirectly restore FILIP1L-mediated gene regulation for the treatment of these neoplasms. Significance: This study identifies FILIP1L as a tumor suppressor in LUADs and demonstrates that downregulation of FILIP1L is a clinically relevant event in the pathogenesis and clinical course of these neoplasms.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Animales , Ratones , Humanos , Regulación hacia Abajo/genética , Mucinas , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Adenocarcinoma del Pulmón/genética , Neoplasias Pulmonares/genética , Inflamación/genética , Fibrosis , Fumar , Microambiente Tumoral , Péptidos y Proteínas de Señalización Intracelular
2.
Endocr Relat Cancer ; 28(2): 135-149, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33410766

RESUMEN

The B7 family, and their receptors, the CD28 family, are major immune checkpoints that regulate T-cell activation and function. In the present study, we explore the role of two B7 immune-checkpoints: HERV-H LTR-Associating Protein 2 (HHLA2) and B7 Family Member, H4 (B7x), in the progression of gastrointestinal and pancreatic neuroendocrine tumors (GINETs and PNETs). We demonstrated that both HHLA2 and B7x were expressed to a high degree in human GINETs and PNETs. We determined that the expression of B7x and HHLA2 correlates with higher grade and higher incidence of nodal and distant spread. Furthermore, we confirmed that HIF-1α overexpression is associated with the upregulation of B7x both in our in vivo (animal model) and in vitro (cell culture) models. When grown in vitro, islet tumor ß-cells lack B7x expression, unless cultured under hypoxic conditions, which results in both hypoxia-inducible factor 1 subunit alpha (HIF-1α) and B7x upregulation. In vivo, we demonstrated that Men1/B7x double knockout (KO) mice (with loss of B7x expression) exhibited decreased islet ß-cell proliferation and tumor transformation accompanied by increased T-cell infiltration compared with Men1 single knockout mice. We have also shown that systemic administration of a B7x mAb to our Men1 KO mice with PNETs promotes an antitumor response mediated by increased T-cell infiltration. These findings suggest that B7x may be a critical mediator of tumor immunity in the tumor microenvironment of NETs. Therefore, targeting B7x offers an attractive strategy for the immunotherapy of patients suffering from NETs.


Asunto(s)
Tumores Neuroendocrinos , Inhibidor 1 de la Activación de Células T con Dominio V-Set , Animales , Humanos , Inmunoglobulinas , Inmunoterapia , Ratones , Ratones Noqueados , Tumores Neuroendocrinos/tratamiento farmacológico , Tumores Neuroendocrinos/genética , Proteínas Proto-Oncogénicas , Linfocitos T , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA