Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nature ; 533(7601): 86-9, 2016 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-27111511

RESUMEN

The evolution of novel cell types led to the emergence of new tissues and organs during the diversification of animals. The origin of the chondrocyte, the cell type that synthesizes cartilage matrix, was central to the evolution of the vertebrate endoskeleton. Cartilage-like tissues also exist outside the vertebrates, although their relationship to vertebrate cartilage is enigmatic. Here we show that protostome and deuterostome cartilage share structural and chemical properties, and that the mechanisms of cartilage development are extensively conserved--from induction of chondroprogenitor cells by Hedgehog and ß-catenin signalling, to chondrocyte differentiation and matrix synthesis by SoxE and SoxD regulation of clade A fibrillar collagen (ColA) genes--suggesting that the chondrogenic gene regulatory network evolved in the common ancestor of Bilateria. These results reveal deep homology of the genetic program for cartilage development in Bilateria and suggest that activation of this ancient core chondrogenic network underlies the parallel evolution of cartilage tissues in Ecdysozoa, Lophotrochozoa and Deuterostomia.


Asunto(s)
Condrogénesis/genética , Secuencia Conservada/genética , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica/genética , Invertebrados/embriología , Invertebrados/genética , Filogenia , Animales , Cartílago/anatomía & histología , Cartílago/embriología , Cartílago/metabolismo , Condrocitos/citología , Decapodiformes/citología , Decapodiformes/embriología , Decapodiformes/genética , Decapodiformes/metabolismo , Colágenos Fibrilares/genética , Redes Reguladoras de Genes , Proteínas Hedgehog/metabolismo , Invertebrados/citología , Invertebrados/metabolismo , Transducción de Señal , Células Madre/citología , Vertebrados/anatomía & histología , Vertebrados/genética , beta Catenina/metabolismo
2.
Dev Biol ; 459(2): 72-78, 2020 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-31881199

RESUMEN

In the sea urchin larva, most neurons lie within an ectodermal region called the ciliary band. Our understanding of the mechanisms of specification and patterning of these peripheral ciliary band neurons is incomplete. Here, we first examine the gene regulatory landscape from which this population of neural progenitors arise in the neuroectoderm. We show that ciliary band neural progenitors first appear in a bilaterally symmetric pattern on the lateral edges of chordin expression in the neuroectoderm. Later in development, these progenitors appear in a salt-and-pepper pattern in the ciliary band where they express soxC, and prox, which are markers of neural specification, and begin to express synaptotagminB, a marker of differentiated neurons. We show that the ciliary band expresses the acid sensing ion channel gene asicl, which suggests that ciliary band neurons control the larva's ability to discern touch sensitivity. Using a chemical inhibitor of MAPK signaling, we show that this signaling pathway is required for proper specification and patterning of ciliary band neurons. Using live imaging, we show that these neural progenitors undergo small distance migrations in the embryo. We then show that the normal swimming behavior of the larvae is compromised if the neurogenesis pathway is perturbed. The developmental sequence of ciliary band neurons is very similar to that of neural crest-derived sensory neurons in vertebrates and may provide insights into the evolution of sensory neurons in deuterostomes.


Asunto(s)
Tipificación del Cuerpo/genética , Ectodermo/crecimiento & desarrollo , Neurogénesis/genética , Neuronas/metabolismo , Erizos de Mar/embriología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Butadienos/farmacología , Regulación del Desarrollo de la Expresión Génica , Glicoproteínas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Larva/crecimiento & desarrollo , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Nitrilos/farmacología , Proteína Nodal/metabolismo , Factores de Transcripción SOXC/metabolismo , Transducción de Señal/genética , Sinaptotagminas/metabolismo
3.
Dev Biol ; 435(2): 138-149, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29331498

RESUMEN

Correct patterning of the nervous system is essential for an organism's survival and complex behavior. Embryologists have used the sea urchin as a model for decades, but our understanding of sea urchin nervous system patterning is incomplete. Previous histochemical studies identified multiple neurotransmitters in the pluteus larvae of several sea urchin species. However, little is known about how, where and when neural subtypes are differentially specified during development. Here, we examine the molecular mechanisms of neuronal subtype specification in 3 distinct neural subtypes in the Lytechinus variegatus larva. We show that these subtypes are specified through Delta/Notch signaling and identify a different transcription factor required for the development of each neural subtype. Our results show achaete-scute and neurogenin are proneural for the serotonergic neurons of the apical organ and cholinergic neurons of the ciliary band, respectively. We also show that orthopedia is not proneural but is necessary for the differentiation of the cholinergic/catecholaminergic postoral neurons. Interestingly, these transcription factors are used similarly during vertebrate neurogenesis. We believe this study is a starting point for building a neural gene regulatory network in the sea urchin and for finding conserved deuterostome neurogenic mechanisms.


Asunto(s)
Ectodermo/citología , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes/genética , Lytechinus/embriología , Proteínas del Tejido Nervioso/fisiología , Neurogénesis/fisiología , Neuronas/citología , Factores de Transcripción/fisiología , Region del Complejo Génico Achaete-Scute/fisiología , Animales , Péptidos y Proteínas de Señalización Intracelular/fisiología , Lytechinus/citología , Proteínas de la Membrana/fisiología , Morfolinos/farmacología , Neuronas/clasificación , ARN sin Sentido/farmacología , Receptores Notch/fisiología
4.
Evodevo ; 10: 2, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30792836

RESUMEN

BACKGROUND: The sea urchin is a basal deuterostome that is more closely related to vertebrates than many organisms traditionally used to study neurogenesis. This phylogenetic position means that the sea urchin can provide insights into the evolution of the nervous system by helping resolve which developmental processes are deuterostome innovations, which are innovations in other clades, and which are ancestral. However, the nervous system of echinoderms is one of the least understood of all major metazoan phyla. To gain insights into echinoderm neurogenesis, spatial and temporal gene expression data are essential. Then, functional data will enable the building of a detailed gene regulatory network for neurogenesis in the sea urchin that can be compared across metazoans to resolve questions about how nervous systems evolved. RESULTS: Here, we analyze spatiotemporal gene expression during sea urchin neurogenesis for genes that have been shown to be neurogenic in one or more species. We report the expression of 21 genes expressed in areas of neurogenesis in the sea urchin embryo from blastula stage (just before neural progenitors begin their specification sequence) through pluteus larval stage (when much of the nervous system has been patterned). Among those 21 gene expression patterns, we report expression of 11 transcription factors and 2 axon guidance genes, each expressed in discrete domains in the neuroectoderm or in the endoderm. Most of these genes are expressed in and around the ciliary band. Some including the transcription factors Lv-mbx, Lv-dmrt, Lv-islet, and Lv-atbf1, the nuclear protein Lv-prohibitin, and the guidance molecule Lv-semaa are expressed in the endoderm where they are presumably involved in neurogenesis in the gut. CONCLUSIONS: This study builds a foundation to study how neurons are specified and evolved by analyzing spatial and temporal gene expression during neurogenesis in a basal deuterostome. With these expression patterns, we will be able to understand what genes are required for neural development in the sea urchin. These data can be used as a starting point to (1) build a spatial gene regulatory network for sea urchin neurogenesis, (2) identify how subtypes of neurons are specified, (3) perform comparative studies with the sea urchin, protostome, and vertebrate organisms.

5.
Elife ; 82019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31210127

RESUMEN

Cephalopod mollusks evolved numerous anatomical novelties, including arms and tentacles, but little is known about the developmental mechanisms underlying cephalopod limb evolution. Here we show that all three axes of cuttlefish limbs are patterned by the same signaling networks that act in vertebrates and arthropods, although they evolved limbs independently. In cuttlefish limb buds, Hedgehog is expressed anteriorly. Posterior transplantation of Hedgehog-expressing cells induced mirror-image limb duplications. Bmp and Wnt signals, which establish dorsoventral polarity in vertebrate and arthropod limbs, are similarly polarized in cuttlefish. Inhibition of Bmp2/4 dorsally caused ectopic expression of Notum, which marks the ventral sucker field, and ectopic sucker development. Cuttlefish also show proximodistal regionalization of Hth, Exd, Dll, Dac, Sp8/9, and Wnt expression, which delineates arm and tentacle sucker fields. These results suggest that cephalopod limbs evolved by parallel activation of a genetic program for appendage development that was present in the bilaterian common ancestor.


Asunto(s)
Cefalópodos/genética , Extremidades/crecimiento & desarrollo , Proteínas Hedgehog/genética , Moluscos/genética , Animales , Cefalópodos/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas de Homeodominio/genética , Moluscos/crecimiento & desarrollo , Organogénesis/genética , Filogenia , Vertebrados/genética , Vertebrados/crecimiento & desarrollo
6.
Curr Biol ; 26(22): 2981-2991, 2016 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-27839971

RESUMEN

The blastema is a mass of progenitor cells that enables regeneration of amputated salamander limbs or fish fins. Methodology to label and track blastemal cell progeny has been deficient, restricting our understanding of appendage regeneration. Here, we created a system for clonal analysis and quantitative imaging of hundreds of blastemal cells and their respective progeny in living adult zebrafish undergoing fin regeneration. Amputation stimulates resident cells within a limited recruitment zone to reset proximodistal (PD) positional information and assemble the blastema. Within the newly formed blastema, the spatial coordinates of connective tissue progenitors are predictive of their ultimate contributions to regenerated skeletal structures, indicating early development of an approximate PD pre-pattern. Calcineurin regulates size recovery by controlling the average number of progeny divisions without disrupting this pre-pattern. Our longitudinal clonal analyses of regenerating zebrafish fins provide evidence that connective tissue progenitors are rapidly organized into a scalable blueprint of lost structures.


Asunto(s)
Aletas de Animales/fisiología , Regeneración , Pez Cebra/fisiología , Animales , Calcineurina/metabolismo , Femenino , Masculino , Células Madre , Proteínas de Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA