RESUMEN
Venous thromboembolism (VTE) is a significant contributor to morbidity and mortality, with large disparities in incidence rates between Black and White Americans. Polygenic risk scores (PRSs) limited to variants discovered in genome-wide association studies in European-ancestry samples can identify European-ancestry individuals at high risk of VTE. However, there is limited evidence on whether high-dimensional PRS constructed using more sophisticated methods and more diverse training data can enhance the predictive ability and their utility across diverse populations. We developed PRSs for VTE using summary statistics from the International Network against Venous Thrombosis (INVENT) consortium genome-wide association studies meta-analyses of European- (71 771 cases and 1 059 740 controls) and African-ancestry samples (7482 cases and 129 975 controls). We used LDpred2 and PRS-CSx to construct ancestry-specific and multi-ancestry PRSs and evaluated their performance in an independent European- (6781 cases and 103 016 controls) and African-ancestry sample (1385 cases and 12 569 controls). Multi-ancestry PRSs with weights tuned in European-ancestry samples slightly outperformed ancestry-specific PRSs in European-ancestry test samples (e.g. the area under the receiver operating curve [AUC] was 0.609 for PRS-CSx_combinedEUR and 0.608 for PRS-CSxEUR [P = 0.00029]). Multi-ancestry PRSs with weights tuned in African-ancestry samples also outperformed ancestry-specific PRSs in African-ancestry test samples (PRS-CSxAFR: AUC = 0.58, PRS-CSx_combined AFR: AUC = 0.59), although this difference was not statistically significant (P = 0.34). The highest fifth percentile of the best-performing PRS was associated with 1.9-fold and 1.68-fold increased risk for VTE among European- and African-ancestry subjects, respectively, relative to those in the middle stratum. These findings suggest that the multi-ancestry PRS might be used to improve performance across diverse populations to identify individuals at highest risk for VTE.
Asunto(s)
Puntuación de Riesgo Genético , Tromboembolia Venosa , Femenino , Humanos , Masculino , Negro o Afroamericano/genética , Estudios de Casos y Controles , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Tromboembolia Venosa/genética , Tromboembolia Venosa/epidemiología , Blanco/genéticaRESUMEN
ABSTRACT: Over the past 2 decades, there has been a significant increase in the utilization of long-term mechanical circulatory support (MCS) for the treatment of cardiac failure. Left ventricular assist devices (LVADs) and total artificial hearts (TAHs) have been developed in parallel to serve as bridge-to-transplant and destination therapy solutions. Despite the distinct hemodynamic characteristics introduced by LVADs and TAHs, a comparative evaluation of these devices regarding potential complications in supported patients, has not been undertaken. Such a study could provide valuable insights into the complications associated with these devices. Although MCS has shown substantial clinical benefits, significant complications related to hemocompatibility persist, including thrombosis, recurrent bleeding, and cerebrovascular accidents. This review focuses on the current understanding of hemostasis, specifically thrombotic and bleeding complications, and explores the influence of different shear stress regimens in long-term MCS. Furthermore, the role of endothelial cells in protecting against hemocompatibility-related complications of MCS is discussed. We also compared the diverse mechanisms contributing to the occurrence of hemocompatibility-related complications in currently used LVADs and TAHs. By applying the existing knowledge, we present, for the first time, a comprehensive comparison between long-term MCS options.
Asunto(s)
Insuficiencia Cardíaca , Corazón Artificial , Corazón Auxiliar , Trombosis , Humanos , Corazón Auxiliar/efectos adversos , Células Endoteliales , Corazón Artificial/efectos adversos , Insuficiencia Cardíaca/terapia , Insuficiencia Cardíaca/complicaciones , Hemorragia/complicaciones , Trombosis/etiologíaRESUMEN
BACKGROUND: Long COVID, also known as post-acute sequelae of COVID-19 (PASC), is characterized by persistent clinical symptoms following COVID-19. OBJECTIVE: To correlate biomarkers of endothelial dysfunction with persistent clinical symptoms and pulmonary function defects at distance from COVID-19. METHODS: Consecutive patients with long COVID-19 suspicion were enrolled. A panel of endothelial biomarkers was measured in each patient during clinical evaluation and pulmonary function test (PFT). RESULTS: The study included 137 PASC patients, mostly male (68%), with a median age of 55 years. A total of 194 PFTs were performed between months 3 and 24 after an episode of SARS-CoV-2 infection. We compared biomarkers evaluated in PASC patients with 20 healthy volunteers (HVs) and acute hospitalized COVID-19 patients (n = 88). The study found that angiogenesis-related biomarkers and von Willebrand factor (VWF) levels were increased in PASC patients compared to HVs without increased inflammatory or platelet activation markers. Moreover, VEGF-A and VWF were associated with persistent lung CT scan lesions and impaired diffusing capacity of the lungs for carbon monoxide (DLCO) measurement. By employing a Cox proportional hazards model adjusted for age, sex, and body mass index, we further confirmed the accuracy of VEGF-A and VWF. Following adjustment, VEGF-A emerged as the most significant predictive factor associated with persistent lung CT scan lesions and impaired DLCO measurement. CONCLUSION: VEGF-A is a relevant predictive factor for DLCO impairment and radiological sequelae in PASC. Beyond being a biomarker, we hypothesize that the persistence of angiogenic disorders may contribute to long COVID symptoms.
Asunto(s)
COVID-19 , Síndrome Post Agudo de COVID-19 , Humanos , Masculino , Persona de Mediana Edad , Femenino , Factor A de Crecimiento Endotelial Vascular , Factor de von Willebrand , COVID-19/diagnóstico por imagen , SARS-CoV-2 , Progresión de la Enfermedad , BiomarcadoresRESUMEN
PURPOSE: Major bleedings have been described with cefazolin. The objective was to determine the frequency of bleeding events in cefazolin-treated patients and to identify risk factors for these complications. METHODS: Monocenter prospective observational study of all consecutive cefazolin-treated patients. Patients benefited from a daily clinical assessment of bleedings and a twice-a-week blood sampling including hemostasis. Bleedings were classified according to the International Society on Thrombosis and Hemostasis classification: major, clinically relevant non-major bleedings (CRNMB) and minor bleedings. RESULTS: From September 2019 to July 2020, 120 patients were included, with a mean age of 59.4 (± 20.7) years; 70% of them (84/120) were men. At least 1 CRNMB or major bleeding were observed in 10% of the patients (12/120). Compared to patients with no or minor bleeding, patients with CRNMB or major bleeding were, upon start of cefazolin, more frequently hospitalized in an intensive care unit (7/12, 58.3%, vs. 12/108, 11.1%, P < 0.001, respectively) and receiving vitamin K antagonists (4/12, 33.3%, vs. 8/108, 7.4%, P = 0.019, respectively). After multivariate analysis, patients receiving vitamin K antagonists the day prior bleeding and/or treated for endocarditis were factors associated with an increased risk of CRNMB or major bleeding (odd ratio 1.36, confidence interval 95%, 1.06-1.76, P = 0.020 and 1.30, 1.06-1.61, P = 0.015, respectively). CONCLUSIONS: Bleeding events associated with cefazolin treatment are frequent. Close clinical monitoring should be performed for patients treated for endocarditis and/or receiving vitamin K antagonists. Hemostasis work-up could be restricted to these patients.
Asunto(s)
Cefazolina , Endocarditis , Masculino , Humanos , Persona de Mediana Edad , Femenino , Cefazolina/efectos adversos , Estudios Prospectivos , Hemorragia/inducido químicamente , Hemorragia/epidemiología , Hemorragia/tratamiento farmacológico , Factores de Riesgo , Vitamina K , Endocarditis/tratamiento farmacológicoRESUMEN
BACKGROUND: Carmat bioprosthetic total artificial heart (Aeson; A-TAH) is a pulsatile and autoregulated device. The aim of this study is to evaluate level of hemolysis potential acquired von Willebrand syndrome after A-TAH implantation. METHODS: We examined the presence of hemolysis and acquired von Willebrand syndrome in adult patients receiving A-TAH support (n=10) during their whole clinical follow-up in comparison with control subjects and adult patients receiving Heartmate II or Heartmate III support. We also performed a fluid structure interaction model coupled with computational fluid dynamics simulation to evaluate the A-TAH resulting shear stress and its distribution in the blood volume. RESULTS: The cumulative duration of A-TAH support was 2087 days. A-TAH implantation did not affect plasma free hemoglobin over time, and there was no association between plasma free hemoglobin and cardiac output or beat rate. For VWF (von Willebrand factor) evaluation, A-TAH implantation did not modify multimers profile of VWF in contrast to Heartmate II and Heartmate III. Furthermore, fluid structure interaction coupled with computational fluid dynamics showed a gradually increase of blood damage according to increase of cardiac output (P<0.01), however, the blood volume fraction that endured significant shear stresses was always inferior to 0.03% of the volume for both ventricles in all regimens tested. An inverse association between cardiac output, beat rate, and high-molecular weight multimers ratio was found. CONCLUSIONS: We demonstrated that A-TAH does not cause hemolysis or AWVS. However, relationship between HMWM and cardiac output depending flow confirms relevance of VWF as a biological sensor of blood flow, even in normal range.
Asunto(s)
Corazón Artificial , Enfermedades de von Willebrand , Adulto , Corazón Artificial/efectos adversos , Hemoglobinas , Hemólisis , Humanos , Factor de von WillebrandRESUMEN
BACKGROUND: Severe coronavirus disease 2019 (COVID-19) is characterized by impaired type I interferon activity and a state of hyperinflammation leading to acute respiratory distress syndrome. The complement system has recently emerged as a key player in triggering and maintaining the inflammatory state, but the role of this molecular cascade in severe COVID-19 is still poorly characterized. OBJECTIVE: We aimed at assessing the contribution of complement pathways at both the protein and transcriptomic levels. METHODS: To this end, we systematically assessed the RNA levels of 28 complement genes in the circulating whole blood of patients with COVID-19 and healthy controls, including genes of the alternative pathway, for which data remain scarce. RESULTS: We found differential expression of genes involved in the complement system, yet with various expression patterns: whereas patients displaying moderate disease had elevated expression of classical pathway genes, severe disease was associated with increased lectin and alternative pathway activation, which correlated with inflammation and coagulopathy markers. Additionally, properdin, a pivotal positive regulator of the alternative pathway, showed high RNA expression but was found at low protein concentrations in patients with a severe and critical disease, suggesting its deposition at the sites of complement activation. Notably, low properdin levels were significantly associated with the use of mechanical ventilation (area under the curve = 0.82; P = .002). CONCLUSION: This study sheds light on the role of the alternative pathway in severe COVID-19 and provides additional rationale for the testing of drugs inhibiting the alternative pathway of the complement system.
Asunto(s)
COVID-19/inmunología , Activación de Complemento/genética , Vía Alternativa del Complemento/genética , Proteínas del Sistema Complemento/genética , Coagulación Intravascular Diseminada/inmunología , SARS-CoV-2/patogenicidad , COVID-19/genética , COVID-19/terapia , COVID-19/virología , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/inmunología , Enfermedades Cardiovasculares/terapia , Enfermedades Cardiovasculares/virología , Estudios de Casos y Controles , Comorbilidad , Proteínas del Sistema Complemento/inmunología , Diabetes Mellitus/genética , Diabetes Mellitus/inmunología , Diabetes Mellitus/terapia , Diabetes Mellitus/virología , Coagulación Intravascular Diseminada/genética , Coagulación Intravascular Diseminada/terapia , Coagulación Intravascular Diseminada/virología , Femenino , Regulación de la Expresión Génica , Humanos , Hipertensión/genética , Hipertensión/inmunología , Hipertensión/terapia , Hipertensión/virología , Lectinas/genética , Lectinas/inmunología , Masculino , Persona de Mediana Edad , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/virología , Properdina/genética , Properdina/inmunología , Respiración Artificial , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Índice de Severidad de la EnfermedadRESUMEN
BACKGROUND: Approximately 15-30% of hospitalized coronavirus disease 2019 (COVID-19) patients develop acute respiratory distress syndrome, systemic tissue injury, and/or multi-organ failure leading to death in around 45% of cases. There is a clear need for biomarkers that quantify tissue injury, predict clinical outcomes, and guide the clinical management of hospitalized COVID-19 patients. METHODS: We herein report the quantification by droplet-based digital polymerase chain reaction (ddPCR) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNAemia and the plasmatic release of a ubiquitous human intracellular marker, the ribonuclease P (RNase P) in order to evaluate tissue injury and cell lysis in the plasma of 139 COVID-19 hospitalized patients at admission. RESULTS: We confirmed that SARS-CoV-2 RNAemia was associated with clinical severity of COVID-19 patients. In addition, we showed that plasmatic RNase P RNAemia at admission was also highly correlated with disease severity (Pâ <â .001) and invasive mechanical ventilation status (Pâ <â .001) but not with pulmonary severity. Altogether, these results indicate a consequent cell lysis process in severe and critical patients but not systematically due to lung cell death. Finally, the plasmatic RNase P RNA value was also significantly associated with overall survival. CONCLUSIONS: Viral and ubiquitous blood biomarkers monitored by ddPCR could be useful for the clinical monitoring and the management of hospitalized COVID-19 patients. Moreover, these results could pave the way for new and more personalized circulating biomarkers in COVID-19, and more generally in infectious diseases, specific from each patient organ injury profile.
Asunto(s)
COVID-19 , Biomarcadores , COVID-19/diagnóstico , Humanos , Pronóstico , ARN , Ribonucleasa P , SARS-CoV-2RESUMEN
Chronic obstructive pulmonary disease (COPD) patients have an increased risk of cardiovascular disease. Muscle biopsies have revealed that the muscle vasculature in COPD patients was characterized by a capillary rarefaction with reduced pericyte coverage. Thus, an imbalance of the plasma Angiopoietin-1 / Angiopoietin-2 (Ang2/Ang1) ratio could constitute a non-invasive marker of the muscle vascular impairment. In 14 COPD patients (65.5±5.1-year-old) and 7 HC (63.3±5.8-year-old), plasma samples were obtained at 3 time-points: before, after 5 weeks (W5), and after 10 weeks (W10) of exercise training. COPD patients showed a muscle capillary rarefaction at baseline with a reduced capillary coverage at W5 and W10. The plasma Ang2/Ang1 ratio was significantly higher in COPD patients vs. HC during the training (Group: p=0.01). The plasma Ang2/Ang1 ratio was inversely correlated with the pericyte coverage index regardless of the time period W0 (r=-0.51; p=0.02), W5 (r=-0.48; p=0.04), and W10 (r=-0.61; p<0.01). Last, in ECFC/MSC co-cultures exposed to the W10 serum from COPD patients and HC, the plasma Ang2/Ang1 at W10 were inversely correlated with calponin staining (r=-0.64. p=0.01 and r= 0.71. p<0.01, Fig. 1B), in line with a role of this plasma Ang2/Ang1 in the MSC differentiation into pericytes. Altogether, plasma Ang2/Ang1 ratio could constitute a potential marker of the vascular impairment in COPD patients.
Asunto(s)
Angiopoyetina 1 , Angiopoyetina 2 , Rarefacción Microvascular , Enfermedad Pulmonar Obstructiva Crónica , Anciano , Angiopoyetina 1/sangre , Angiopoyetina 2/sangre , Biomarcadores/sangre , Humanos , Persona de Mediana Edad , Enfermedad Pulmonar Obstructiva Crónica/diagnósticoRESUMEN
OBJECTIVE: The study's aim was to analyze the capacity of human valve interstitial cells (VICs) to participate in aortic valve angiogenesis. Approach and Results: VICs were isolated from human aortic valves obtained after surgery for calcific aortic valve disease and from normal aortic valves unsuitable for grafting (control VICs). We examined VIC in vitro and in vivo potential to differentiate in endothelial and perivascular lineages. VIC paracrine effect was also examined on human endothelial colony-forming cells. A pathological VIC (VICp) mesenchymal-like phenotype was confirmed by CD90+/CD73+/CD44+ expression and multipotent-like differentiation ability. When VICp were cocultured with endothelial colony-forming cells, they formed microvessels by differentiating into perivascular cells both in vivo and in vitro. VICp and control VIC conditioned media were compared using serial ELISA regarding quantification of endothelial and angiogenic factors. Higher expression of VEGF (vascular endothelial growth factor)-A was observed at the protein level in VICp-conditioned media and confirmed at the mRNA level in VICp compared with control VIC. Conditioned media from VICp induced in vitro a significant increase in endothelial colony-forming cell proliferation, migration, and sprouting compared with conditioned media from control VIC. These effects were inhibited by blocking VEGF-A with blocking antibody or siRNA approach, confirming VICp involvement in angiogenesis by a VEGF-A dependent mechanism. CONCLUSIONS: We provide here the first proof of an angiogenic potential of human VICs isolated from patients with calcific aortic valve disease. These results point to a novel function of VICp in valve vascularization during calcific aortic valve disease, with a perivascular differentiation ability and a VEGF-A paracrine effect. Targeting perivascular differentiation and VEGF-A to slow calcific aortic valve disease progression warrants further investigation.
Asunto(s)
Estenosis de la Válvula Aórtica/metabolismo , Válvula Aórtica/metabolismo , Válvula Aórtica/patología , Calcinosis/metabolismo , Diferenciación Celular , Linaje de la Célula , Células Progenitoras Endoteliales/metabolismo , Neovascularización Patológica , Factor A de Crecimiento Endotelial Vascular/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Estenosis de la Válvula Aórtica/patología , Calcinosis/patología , Estudios de Casos y Controles , Células Cultivadas , Técnicas de Cocultivo , Células Progenitoras Endoteliales/patología , Células Progenitoras Endoteliales/trasplante , Femenino , Humanos , Masculino , Ratones Desnudos , Persona de Mediana Edad , Osteogénesis , Comunicación Paracrina , Fenotipo , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/genéticaRESUMEN
BACKGROUND: Microthrombosis is a hallmark of COVID-19. We previously described von willebrand factor (VWF) and their high molecular weight multimers (HMWMs) as potential trigger of microthrombosis. OBJECTIVES: Investigate VWF activity with collagen-binding assay and ADAMTS13 in COVID-19. METHODS AND RESULTS: Our study enrolled 77 hospitalized COVID-19 patients including 37 suffering from a non-critical form and 40 with critical form. Plasma levels of VWF collagen-binding ability (VWF:CB) and ADAMTS13 activity (ADAMTS13:Act) were measured in the first 48 hours following admission. VWF:CB was increased in critical (631% IQR [460-704]) patients compared to non-critical patients (259% [235-330], p < 0.005). VWF:CB was significantly associated (r = 0.564, p < 0.001) with HMWMs. Moreover, median ADAMTS13:Act was lower in critical (64.8 IU/dL IQR 50.0-77.7) than non-critical patients (85.0 IU/dL IQR 75.8-94.7, p < 0.001), even if no patients displayed majors deficits. VWF:Ag-to-ADAMTS13:Act ratio was highly associated with VWF:CB (r = 0.916, p < 0.001). Moreover, VWF:CB level was highly predictive of COVID-19 in-hospital mortality as shown by the ROC curve analysis (AUC = 0.92, p < 0.0001) in which we identified a VWF:CB cut-off of 446% as providing the best predictor sensitivity-specificity balance. We confirmed this cut-off thanks to a Kaplan-Meier estimator analysis (log-rank p < 0.001) and a Cox-proportional Hazard model (HR = 49.1, 95% CI 1.81-1328.2, p = 0.021) adjusted on, BMI, C-reactive protein, and D-dimer levels. CONCLUSION: VWF:CB levels could summarize both VWF increased levels and hyper-reactivity subsequent to ADAMTS13 overflow and, therefore, be a valuable and easy to perform clinical biomarker of microthrombosis and COVID-19 severity.
Asunto(s)
Proteína ADAMTS13/sangre , COVID-19/sangre , COVID-19/mortalidad , Pandemias , SARS-CoV-2 , Factor de von Willebrand/metabolismo , Anciano , Biomarcadores/sangre , Colágeno/metabolismo , Estudios Transversales , Femenino , Mortalidad Hospitalaria , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Paris/epidemiología , Modelos de Riesgos Proporcionales , Unión Proteica , Índice de Severidad de la EnfermedadRESUMEN
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is presenting as a systemic disease associated with vascular inflammation and endothelial injury. Severe forms of SARS-CoV-2 infection induce acute respiratory distress syndrome (ARDS) and there is still an ongoing debate on whether COVID-19 ARDS and its perfusion defect differs from ARDS induced by other causes. Beside pro-inflammatory cytokines (such as interleukin-1 ß [IL-1ß] or IL-6), several main pathological phenomena have been seen because of endothelial cell (EC) dysfunction: hypercoagulation reflected by fibrin degradation products called D-dimers, micro- and macrothrombosis and pathological angiogenesis. Direct endothelial infection by SARS-CoV-2 is not likely to occur and ACE-2 expression by EC is a matter of debate. Indeed, endothelial damage reported in severely ill patients with COVID-19 could be more likely secondary to infection of neighboring cells and/or a consequence of inflammation. Endotheliopathy could give rise to hypercoagulation by alteration in the levels of different factors such as von Willebrand factor. Other than thrombotic events, pathological angiogenesis is among the recent findings. Overexpression of different proangiogenic factors such as vascular endothelial growth factor (VEGF), basic fibroblast growth factor (FGF-2) or placental growth factors (PlGF) have been found in plasma or lung biopsies of COVID-19 patients. Finally, SARS-CoV-2 infection induces an emergency myelopoiesis associated to deregulated immunity and mobilization of endothelial progenitor cells, leading to features of acquired hematological malignancies or cardiovascular disease, which are discussed in this review. Altogether, this review will try to elucidate the pathophysiology of thrombotic complications, pathological angiogenesis and EC dysfunction, allowing better insight in new targets and antithrombotic protocols to better address vascular system dysfunction. Since treating SARS-CoV-2 infection and its potential long-term effects involves targeting the vascular compartment and/or mobilization of immature immune cells, we propose to define COVID-19 and its complications as a systemic vascular acquired hemopathy.
Asunto(s)
COVID-19/metabolismo , Mielopoyesis , Neovascularización Patológica/metabolismo , Síndrome de Dificultad Respiratoria/metabolismo , SARS-CoV-2/metabolismo , Trombosis/metabolismo , COVID-19/patología , COVID-19/terapia , Células Endoteliales/metabolismo , Células Endoteliales/patología , Células Endoteliales/virología , Productos de Degradación de Fibrina-Fibrinógeno/metabolismo , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Humanos , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Proteínas de la Membrana/metabolismo , Neovascularización Patológica/patología , Neovascularización Patológica/terapia , Neovascularización Patológica/virología , Síndrome de Dificultad Respiratoria/patología , Síndrome de Dificultad Respiratoria/terapia , Síndrome de Dificultad Respiratoria/virología , Trombosis/patología , Trombosis/terapia , Trombosis/virología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor de von Willebrand/metabolismoRESUMEN
BACKGROUND: Coronavirus disease 2019 (COVID-19) is a respiratory disease associated with endotheliitis and microthrombosis. OBJECTIVES: To correlate endothelial dysfunction to in-hospital mortality in a bi-centric cohort of COVID-19 adult patients. METHODS: Consecutive ambulatory and hospitalized patients with laboratory-confirmed COVID-19 were enrolled. A panel of endothelial biomarkers and von Willebrand factor (VWF) multimers were measured in each patient ≤ 48 h following admission. RESULTS: Study enrolled 208 COVID-19 patients of whom 23 were mild outpatients and 189 patients hospitalized after admission. Most of endothelial biomarkers tested were found increased in the 89 critical patients transferred to intensive care unit. However, only von Willebrand factor antigen (VWF:Ag) scaled according to clinical severity, with levels significantly higher in critical patients (median 507%, IQR 428-596) compared to non-critical patients (288%, 230-350, p < 0.0001) or COVID-19 outpatients (144%, 133-198, p = 0.007). Moreover, VWF high molecular weight multimers (HMWM) were significantly higher in critical patients (median ratio 1.18, IQR 0.86-1.09) compared to non-critical patients (0.96, 1.04-1.39, p < 0.001). Among all endothelial biomarkers measured, ROC curve analysis identified a VWF:Ag cut-off of 423% as the best predictor for in-hospital mortality. The accuracy of VWF:Ag was further confirmed in a Kaplan-Meier estimator analysis and a Cox proportional Hazard model adjusted on age, BMI, C-reactive protein and D-dimer levels. CONCLUSION: VWF:Ag is a relevant predictive factor for in-hospital mortality in COVID-19 patients. More than a biomarker, we hypothesize that VWF, including excess of HMWM forms, drives microthrombosis in COVID-19.
Asunto(s)
COVID-19/sangre , COVID-19/mortalidad , Pandemias , SARS-CoV-2 , Factor de von Willebrand/metabolismo , Adulto , Anciano , Biomarcadores/sangre , Biomarcadores/química , COVID-19/fisiopatología , Estudios Transversales , Endotelio Vascular/fisiopatología , Femenino , Mortalidad Hospitalaria , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Peso Molecular , Paris/epidemiología , Modelos de Riesgos Proporcionales , Multimerización de Proteína , Índice de Severidad de la Enfermedad , Trombosis/sangre , Trombosis/etiología , Factor de von Willebrand/químicaRESUMEN
TRIAL REGISTRATION: NCT04420468. OBJECTIVES: Severe acute respiratory syndrome coronavirus 2-related multisystem inflammatory syndrome in children is frequently associated with shock; endothelial involvement may be one of the underlying mechanisms. We sought to describe endothelial dysfunction during multisystem inflammatory syndrome in children with shock and then assess the relationship between the degree of endothelial involvement and the severity of shock. DESIGN: Observational study. SETTING: A PICU in a tertiary hospital. PATIENTS: Patients aged under 18 (n = 28) with severe acute respiratory syndrome coronavirus 2-related multisystem inflammatory syndrome in children and shock, according to the Centers for Disease Control and Prevention criteria. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Correlations between endothelial marker levels and shock severity were assessed using Spearman coefficient. The median (interquartile range) age was 9 years (7.5-11.2 yr). Sixteen children presented with cardiogenic and distributive shock, 10 presented with cardiogenic shock only, and two presented with distributive shock only. The median left ventricular ejection fraction, troponin level, and lactate level were, respectively, 40% (35-45%), 261 ng/mL (131-390 ng/mL), and 3.2 mmol/L (2-4.2 mmol/L). Twenty-five children received inotropes and/or vasopressors; the median Vasoactive and Inotropic Score was 8 (5-28). Plasma levels of angiopoietin-2 (6,426 pg/mL [2,814-11,836 pg/mL]), sE-selectin (130,405 pg/mL [92,987-192,499 pg/mL]), von Willebrand factor antigen (344% [288-378%]), and the angiopoietin-2/angiopoietin-1 ratio (1.111 [0.472-1.524]) were elevated and significantly correlated with the Vasoactive and Inotropic Score (r = 0.45, p = 0.016; r = 0.53, p = 0.04; r = 0.46, p = 0.013; and r = 0.46, p = 0.012, respectively). CONCLUSIONS: Endothelial dysfunction is associated with severe acute respiratory syndrome coronavirus 2-related multisystem inflammatory syndrome in children with shock and may constitute one of the underlying mechanisms.
Asunto(s)
COVID-19/complicaciones , Choque/patología , Síndrome de Respuesta Inflamatoria Sistémica/patología , Corticoesteroides/uso terapéutico , Angiopoyetina 2/sangre , Biomarcadores , Proteína C-Reactiva/análisis , COVID-19/patología , Cardiotónicos/uso terapéutico , Niño , Femenino , Humanos , Inmunoglobulinas/uso terapéutico , Unidades de Cuidado Intensivo Pediátrico , Interleucina-6/sangre , Ácido Láctico/sangre , Masculino , Respiración Artificial , Estudios Retrospectivos , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Choque Cardiogénico/patología , Síndrome de Respuesta Inflamatoria Sistémica/tratamiento farmacológico , Troponina/sangre , Vasoconstrictores/uso terapéutico , Función Ventricular Izquierda , Tratamiento Farmacológico de COVID-19RESUMEN
Endoglin (Eng) is an endothelial cell (EC) transmembrane glycoprotein involved in adhesion and angiogenesis. Eng mutations result in vessel abnormalities as observed in hereditary hemorrhagic telangiectasia of type 1. The role of Eng was investigated in endothelial functions and permeability under inflammatory conditions, focusing on the actin dynamic signaling pathway. Endothelial Colony-Forming Cells (ECFC) from human cord blood and mouse lung/aortic EC (MLEC, MAEC) from Eng+/+ and Eng+/- mice were used. ECFC silenced for Eng with Eng-siRNA and ctr-siRNA were used to test tubulogenesis and permeability +/- TNFα and +/- LIM kinase inhibitors (LIMKi). In silico modeling of TNFα-Eng interactions was carried out from PDB IDs 5HZW and 5HZV. Calcium ions (Ca2+) flux was studied by Oregon Green 488 in epifluorescence microscopy. Levels of cofilin phosphorylation and tubulin post-translational modifications were evaluated by Western blot. F-actin and actin-tubulin distribution/co-localization were evaluated in cells by confocal microscopy. Eng silencing in ECFCs resulted in a decrease of cell sprouting by 50 ± 15% (p < 0.05) and an increase in pseudo-tube width (41 ± 4.5%; p < 0.001) compared to control. Upon TNFα stimulation, ECFC Eng-siRNA displayed a significant higher permeability compared to ctr-siRNA (p < 0.01), which is associated to a higher Ca2+ mobilization (p < 0.01). Computational analysis suggested that Eng mitigated TNFα activity. F-actin polymerization was significantly increased in ECFC Eng-siRNA, MAEC+/-, and MLEC+/- compared to controls (p < 0.001, p < 0.01, and p < 0.01, respectively) as well as actin/tubulin distribution (p < 0.01). Furthermore, the inactive form of cofilin (P-cofilin at Ser3) was significantly decreased by 36.7 ± 4.8% in ECFC Eng-siRNA compared to ctr-siRNA (p < 0.001). Interestingly, LIMKi reproduced the absence of Eng on TNFα-induced ECFC-increased permeability. Our data suggest that Eng plays a critical role in the homeostasis regulation of endothelial cells under inflammatory conditions (TNFα), and loss of Eng influences ECFC-related permeability through the LIMK/cofilin/actin rearrangement-signaling pathway.
Asunto(s)
Factores Despolimerizantes de la Actina/metabolismo , Permeabilidad de la Membrana Celular , Endoglina/metabolismo , Células Endoteliales/patología , Inflamación/patología , Quinasas Lim/metabolismo , Neovascularización Patológica/patología , Factores Despolimerizantes de la Actina/genética , Animales , Endoglina/genética , Células Endoteliales/metabolismo , Inflamación/genética , Inflamación/metabolismo , Quinasas Lim/genética , Ratones , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismoRESUMEN
After the onset of ischemia, cardiac or skeletal muscle undergoes a continuum of molecular, cellular, and extracellular responses that determine the function and the remodeling of the ischemic tissue. Hypoxia-related pathways, immunoinflammatory balance, circulating or local vascular progenitor cells, as well as changes in hemodynamical forces within vascular wall trigger all the processes regulating vascular homeostasis, including vasculogenesis, angiogenesis, arteriogenesis, and collateral growth, which act in concert to establish a functional vascular network in ischemic zones. In patients with ischemic diseases, most of the cellular (mainly those involving bone marrow-derived cells and local stem/progenitor cells) and molecular mechanisms involved in the activation of vessel growth and vascular remodeling are markedly impaired by the deleterious microenvironment characterized by fibrosis, inflammation, hypoperfusion, and inhibition of endogenous angiogenic and regenerative programs. Furthermore, cardiovascular risk factors, including diabetes, hypercholesterolemia, hypertension, diabetes, and aging, constitute a deleterious macroenvironment that participates to the abrogation of postischemic revascularization and tissue regeneration observed in these patient populations. Thus stimulation of vessel growth and/or remodeling has emerged as a new therapeutic option in patients with ischemic diseases. Many strategies of therapeutic revascularization, based on the administration of growth factors or stem/progenitor cells from diverse sources, have been proposed and are currently tested in patients with peripheral arterial disease or cardiac diseases. This review provides an overview from our current knowledge regarding molecular and cellular mechanisms involved in postischemic revascularization, as well as advances in the clinical application of such strategies of therapeutic revascularization.
Asunto(s)
Enfermedades Cardiovasculares/terapia , Isquemia/fisiopatología , Neovascularización Fisiológica/fisiología , Células Madre/fisiología , Animales , Enfermedades Cardiovasculares/fisiopatología , Modelos Animales de Enfermedad , Hemodinámica/fisiología , Humanos , Hipoxia/fisiopatología , Inflamación/fisiopatologíaRESUMEN
INTRODUCTION: Although thioredoxin-interacting protein (TXNIP) is involved in a variety of biological functions, the contribution of endothelial TXNIP has not been well-defined in regards to endothelial and vascular function or in post-ischemic revascularisation. We postulated that inhibition of endothelial TXNIP with siRNA or in a Cre-LoxP system could be involved in protection from high fat, high protein, low carbohydrate (HFHPLC) diet-induced oxidative stress and endothelial dysfunction, leading to vascular damage and impaired revascularisation in vivo. METHODS AND RESULTS: To investigate the role of endothelial TXNIP, the TXNIP gene was deleted in endothelial cells using anti-TXNIP siRNA treatment or the Cre-LoxP system. Murine models were fed a HFHPLC diet, known to induce metabolic disorders. Endothelial TXNIP targeting resulted in protection against metabolic disorder-related endothelial oxidative stress and endothelial dysfunction. This protective effect mitigates media cell loss induced by metabolic disorders and hampered metabolic disorder-related vascular dysfunction assessed by aortic reactivity and distensibility. In aortic ring cultures, metabolic disorders impaired vessel sprouting and this alteration was alleviated by deletion of endothelial TXNIP. When subjected to ischemia, mice fed a HFHPLC diet exhibited defective post-ischemic angiogenesis and impaired blood flow recovery in hind limb ischemia. However, reducing endothelial TXNIP rescued metabolic disorder-related impairment of ischemia-induced revascularisation. CONCLUSION: Collectively, these results show that targeting endothelial TXNIP in metabolic disorders is essential to maintaining endothelial function, vascular function and improving ischemia-induced revascularisation, making TXNIP a potential therapeutic target for therapy of vascular complications related to metabolic disorders.
Asunto(s)
Proteínas Portadoras/genética , Células Endoteliales/fisiología , Isquemia , Enfermedades Metabólicas/fisiopatología , Neovascularización Fisiológica/genética , Tiorredoxinas/genética , Animales , Células Cultivadas , Citoprotección/genética , Miembro Posterior/irrigación sanguínea , Isquemia/genética , Isquemia/metabolismo , Isquemia/fisiopatología , Isquemia/prevención & control , Masculino , Enfermedades Metabólicas/complicaciones , Enfermedades Metabólicas/genética , Enfermedades Metabólicas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Estrés Oxidativo/fisiologíaRESUMEN
BACKGROUND: Coronavirus disease-2019 (COVID-19), a respiratory disease has been associated with ischemic complications, coagulation disorders, and an endotheliitis. OBJECTIVES: To explore endothelial damage and activation-related biomarkers in COVID-19 patients with criteria of hospitalization for referral to intensive care unit (ICU) and/or respiratory worsening. METHODS: Analysis of endothelial and angiogenic soluble markers in plasma from patients at admission. RESULTS: Study enrolled 40 consecutive COVID-19 patients admitted to emergency department that fulfilled criteria for hospitalization. Half of them were admitted in conventional wards without any ICU transfer during hospitalization; whereas the 20 others were directly transferred to ICU. Patients transferred in ICU were more likely to have lymphopenia, decreased SpO2 and increased D-dimer, CRP and creatinine levels. In those patients, soluble E-selectin and angiopoietin-2 were significantly increased (p value at 0.009 and 0.003, respectively). Increase in SELE gene expression (gene coding for E-selectin protein) was confirmed in an independent cohort of 32 patients using a whole blood gene expression profile analysis. In plasma, we found a strong association between angiopoetin-2 and CRP, creatinine and D-dimers (with p value at 0.001, 0.001 and 0.003, respectively). ROC curve analysis identified an Angiopoietin-2 cut-off of 5000 pg/mL as the best predictor for ICU outcome (Se = 80.1%, Sp = 70%, PPV = 72.7%, NPV = 77%), further confirmed in multivariate analysis after adjustment for creatinine, CRP or D-dimers. CONCLUSION: Angiopoietin-2 is a relevant predictive factor for ICU direct admission in COVID-19 patients. This result showing an endothelial activation reinforces the hypothesis of a COVID-19-associated microvascular dysfunction.
Asunto(s)
Angiopoyetina 2/sangre , Infecciones por Coronavirus/sangre , Infecciones por Coronavirus/terapia , Endotelio Vascular/metabolismo , Unidades de Cuidados Intensivos , Neumonía Viral/sangre , Neumonía Viral/terapia , Anciano , Betacoronavirus , Biomarcadores/sangre , COVID-19 , Cuidados Críticos/métodos , Selectina E/sangre , Femenino , Perfilación de la Expresión Génica , Hospitalización , Humanos , Masculino , Persona de Mediana Edad , Pandemias , Admisión del Paciente , Estudios Prospectivos , Respiración Artificial , SARS-CoV-2RESUMEN
Improvements in skeletal muscle endurance and oxygen uptake are blunted in patients with chronic obstructive pulmonary disease (COPD), possibly because of a limitation in the muscle capillary oxygen supply. Pericytes are critical for capillary blood flow adaptation during angiogenesis but may be impaired by COPD systemic effects, which are mediated by circulating factors. This study compared the pericyte coverage of muscle capillaries in response to 10 wk of exercise training in patients with COPD and sedentary healthy subjects (SHS). Fourteen patients with COPD were compared with seven matched SHS. SHS trained at moderate intensity corresponding to an individualized moderate-intensity patient with COPD trained at the same relative (%VÌo2: COPD-RI) or absolute (mL·min-1·kg-1: COPD-AI) intensity as SHS. Capillary-to-fiber ratio (C/F) and NG2+ pericyte coverage were assessed from vastus lateralis muscle biopsies, before and after 5 and 10 wk of training. We also tested in vitro the effect of COPD and SHS serum on pericyte morphology and mesenchymal stem cell (MSC) differentiation into pericytes. SHS showed greater improvement in aerobic capacity (VÌo2VT) than both patients with COPD-RI and patients with COPD-AI (Group × Time: P = 0.004). Despite a preserved increase in the C/F ratio, NG2+ pericyte coverage did not increase in patients with COPD in response to training, contrary to SHS (Group × Time: P = 0.011). Conversely to SHS serum, COPD serum altered pericyte morphology (P < 0.001) and drastically reduced MSC differentiation into pericytes (P < 0.001). Both functional capacities and pericyte coverage responses to exercise training are blunted in patients with COPD. We also provide direct evidence of the deleterious effect of COPD circulating factors on pericyte morphology and differentiation.NEW & NOTEWORTHY This work confirms the previously reported impairment in the functional response to exercise training of patients with COPD compared with SHS. Moreover, it shows for the first time that pericyte coverage of the skeletal capillaries is drastically reduced in patients with COPD compared with SHS during training-induced angiogenesis. Finally, it provides experimental evidence that circulating factors are involved in the impaired pericyte coverage of patients with COPD.
Asunto(s)
Terapia por Ejercicio/métodos , Músculo Esquelético/irrigación sanguínea , Neovascularización Fisiológica , Pericitos/patología , Enfermedad Pulmonar Obstructiva Crónica/patología , Anciano , Capilares/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Músculo Esquelético/fisiología , Pericitos/metabolismo , Pericitos/fisiología , Enfermedad Pulmonar Obstructiva Crónica/terapiaRESUMEN
Catheter ablation has gained a prominent role in the management of atrial fibrillation (AF), with recent data providing positive evidence on hard outcomes, including hospitalization and mortality. Ablation, however, exposes the patient to a rather unique situation, combining risks for both major bleeding and thromboembolic events. In this setting, the critical importance of rigorous anticoagulation during the procedure has been underlined, and the latest international guidelines now recommend performing AF catheter ablation with uninterrupted non-vitamin K antagonist oral anticoagulants (NOACs) and concomitant administration of unfractionated heparin adjusted to achieve and maintain a target activated clotting time of ≥300 seconds. Whereas observational studies and randomized controlled trials support the safety and efficacy of uninterrupted NOAC strategy for AF catheter ablation, recent experiences have questioned this point, showing a greater unfractionated heparin requirement in NOAC-treated patients compared with vitamin K antagonists-treated patients to achieve the target activated clotting time. Important gaps in evidence regarding optimal intraprocedural anticoagulation management need to be acknowledged. A thorough appreciation of the physiology of anticoagulation during AF catheter ablation and the relevant differences between vitamin K antagonists and NOACs is required, while also understanding the limitations of activated clotting time measurement with regard to accurate intraprocedural anticogulation monitoring. This review aims to provide a critical look at this relatively ignored aspect of AF catheter ablation, especially pitfalls in NOAC monitoring, and to identify gaps in knowledge that need to be addressed in the near future.