Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 223
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(18): e2314224121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38648482

RESUMEN

Making healthy dietary choices is essential for keeping weight within a normal range. Yet many people struggle with dietary self-control despite good intentions. What distinguishes neural processing in those who succeed or fail to implement healthy eating goals? Does this vary by weight status? To examine these questions, we utilized an analytical framework of gradients that characterize systematic spatial patterns of large-scale neural activity, which have the advantage of considering the entire suite of processes subserving self-control and potential regulatory tactics at the whole-brain level. Using an established laboratory food task capturing brain responses in natural and regulatory conditions (N = 123), we demonstrate that regulatory changes of dietary brain states in the gradient space predict individual differences in dietary success. Better regulators required smaller shifts in brain states to achieve larger goal-consistent changes in dietary behaviors, pointing toward efficient network organization. This pattern was most pronounced in individuals with lower weight status (low-BMI, body mass index) but absent in high-BMI individuals. Consistent with prior work, regulatory goals increased activity in frontoparietal brain circuits. However, this shift in brain states alone did not predict variance in dietary success. Instead, regulatory success emerged from combined changes along multiple gradients, showcasing the interplay of different large-scale brain networks subserving dietary control and possible regulatory strategies. Our results provide insights into how the brain might solve the problem of dietary control: Dietary success may be easier for people who adopt modes of large-scale brain activation that do not require significant reconfigurations across contexts and goals.


Asunto(s)
Índice de Masa Corporal , Humanos , Masculino , Femenino , Adulto , Adulto Joven , Conducta Alimentaria/fisiología , Imagen por Resonancia Magnética , Encéfalo/fisiología , Autocontrol , Corteza Cerebral/fisiología , Dieta
2.
Nat Rev Neurosci ; 22(8): 503-513, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34226715

RESUMEN

The default mode network (DMN) is a set of widely distributed brain regions in the parietal, temporal and frontal cortex. These regions often show reductions in activity during attention-demanding tasks but increase their activity across multiple forms of complex cognition, many of which are linked to memory or abstract thought. Within the cortex, the DMN has been shown to be located in regions furthest away from those contributing to sensory and motor systems. Here, we consider how our knowledge of the topographic characteristics of the DMN can be leveraged to better understand how this network contributes to cognition and behaviour.


Asunto(s)
Encéfalo/fisiología , Cognición/fisiología , Red en Modo Predeterminado/fisiología , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Red en Modo Predeterminado/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética
3.
J Neurosci ; 44(20)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38589231

RESUMEN

The default mode network (DMN) typically deactivates to external tasks, yet supports semantic cognition. It comprises medial temporal (MT), core, and frontotemporal (FT) subsystems, but its functional organization is unclear: the requirement for perceptual coupling versus decoupling, input modality (visual/verbal), type of information (social/spatial), and control demands all potentially affect its recruitment. We examined the effect of these factors on activation and deactivation of DMN subsystems during semantic cognition, across four task-based human functional magnetic resonance imaging (fMRI) datasets, and localized these responses in whole-brain state space defined by gradients of intrinsic connectivity. FT showed activation consistent with a central role across domains, tasks, and modalities, although it was most responsive to abstract, verbal tasks; this subsystem uniquely showed more "tuned" states characterized by increases in both activation and deactivation when semantic retrieval demands were higher. MT also activated to both perceptually coupled (scenes) and decoupled (autobiographical memory) tasks and showed stronger responses to picture associations, consistent with a role in scene construction. Core DMN consistently showed deactivation, especially to externally oriented tasks. These diverse contributions of DMN subsystems to semantic cognition were related to their location on intrinsic connectivity gradients: activation was closer to the sensory-motor cortex than deactivation, particularly for FT and MT, while activation for core DMN was distant from both visual cortex and cognitive control. These results reveal distinctive yet complementary DMN responses: MT and FT support different memory-based representations that are accessed externally and internally, while deactivation in core DMN is associated with demanding, external semantic tasks.


Asunto(s)
Cognición , Red en Modo Predeterminado , Imagen por Resonancia Magnética , Semántica , Humanos , Masculino , Femenino , Adulto , Cognición/fisiología , Red en Modo Predeterminado/fisiología , Red en Modo Predeterminado/diagnóstico por imagen , Adulto Joven , Red Nerviosa/fisiología , Red Nerviosa/diagnóstico por imagen , Mapeo Encefálico/métodos , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen
4.
J Neurosci ; 44(22)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38527807

RESUMEN

Adaptive behavior relies both on specific rules that vary across situations and stable long-term knowledge gained from experience. The frontoparietal control network (FPCN) is implicated in the brain's ability to balance these different influences on action. Here, we investigate how the topographical organization of the cortex supports behavioral flexibility within the FPCN. Functional properties of this network might reflect its juxtaposition between the dorsal attention network (DAN) and the default mode network (DMN), two large-scale systems implicated in top-down attention and memory-guided cognition, respectively. Our study tests whether subnetworks of FPCN are topographically proximal to the DAN and the DMN, respectively, and how these topographical differences relate to functional differences: the proximity of each subnetwork is anticipated to play a pivotal role in generating distinct cognitive modes relevant to working memory and long-term memory. We show that FPCN subsystems share multiple anatomical and functional similarities with their neighboring systems (DAN and DMN) and that this topographical architecture supports distinct interaction patterns that give rise to different patterns of functional behavior. The FPCN acts as a unified system when long-term knowledge supports behavior but becomes segregated into discrete subsystems with different patterns of interaction when long-term memory is less relevant. In this way, our study suggests that the topographical organization of the FPCN and the connections it forms with distant regions of cortex are important influences on how this system supports flexible behavior.


Asunto(s)
Encéfalo , Red Nerviosa , Humanos , Masculino , Femenino , Adulto , Red Nerviosa/fisiología , Red Nerviosa/diagnóstico por imagen , Encéfalo/fisiología , Imagen por Resonancia Magnética , Atención/fisiología , Adulto Joven , Red en Modo Predeterminado/fisiología , Red en Modo Predeterminado/diagnóstico por imagen , Memoria a Largo Plazo/fisiología , Mapeo Encefálico/métodos , Lóbulo Parietal/fisiología , Memoria a Corto Plazo/fisiología
5.
Proc Natl Acad Sci U S A ; 119(27): e2116673119, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35776541

RESUMEN

Adolescence is a time of profound changes in the physical wiring and function of the brain. Here, we analyzed structural and functional brain network development in an accelerated longitudinal cohort spanning 14 to 25 y (n = 199). Core to our work was an advanced in vivo model of cortical wiring incorporating MRI features of corticocortical proximity, microstructural similarity, and white matter tractography. Longitudinal analyses assessing age-related changes in cortical wiring identified a continued differentiation of multiple corticocortical structural networks in youth. We then assessed structure-function coupling using resting-state functional MRI measures in the same participants both via cross-sectional analysis at baseline and by studying longitudinal change between baseline and follow-up scans. At baseline, regions with more similar structural wiring were more likely to be functionally coupled. Moreover, correlating longitudinal structural wiring changes with longitudinal functional connectivity reconfigurations, we found that increased structural differentiation, particularly between sensory/unimodal and default mode networks, was reflected by reduced functional interactions. These findings provide insights into adolescent development of human brain structure and function, illustrating how structural wiring interacts with the maturation of macroscale functional hierarchies.


Asunto(s)
Desarrollo del Adolescente , Encéfalo , Conectoma , Adolescente , Encéfalo/fisiología , Encéfalo/ultraestructura , Estudios Transversales , Humanos , Imagen por Resonancia Magnética , Red Nerviosa/fisiología , Red Nerviosa/ultraestructura
6.
Proc Natl Acad Sci U S A ; 119(52): e2209960119, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36538479

RESUMEN

Sensorimotor learning is a dynamic, systems-level process that involves the combined action of multiple neural systems distributed across the brain. Although much is known about the specialized cortical systems that support specific components of action (such as reaching), we know less about how cortical systems function in a coordinated manner to facilitate adaptive behavior. To address this gap, our study measured human brain activity using functional MRI (fMRI) while participants performed a classic sensorimotor adaptation task and used a manifold learning approach to describe how behavioral changes during adaptation relate to changes in the landscape of cortical activity. During early adaptation, areas in the parietal and premotor cortices exhibited significant contraction along the cortical manifold, which was associated with their increased covariance with regions in the higher-order association cortex, including both the default mode and fronto-parietal networks. By contrast, during Late adaptation, when visuomotor errors had been largely reduced, a significant expansion of the visual cortex along the cortical manifold was associated with its reduced covariance with the association cortex and its increased intraconnectivity. Lastly, individuals who learned more rapidly exhibited greater covariance between regions in the sensorimotor and association cortices during early adaptation. These findings are consistent with a view that sensorimotor adaptation depends on changes in the integration and segregation of neural activity across more specialized regions of the unimodal cortex with regions in the association cortex implicated in higher-order processes. More generally, they lend support to an emerging line of evidence implicating regions of the default mode network (DMN) in task-based performance.


Asunto(s)
Mapeo Encefálico , Corteza Motora , Humanos , Encéfalo , Corteza Motora/diagnóstico por imagen , Imagen por Resonancia Magnética , Aprendizaje
7.
Hum Brain Mapp ; 45(2): e26607, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38339897

RESUMEN

Language comprehension involves multiple hierarchical processing stages across time, space, and levels of representation. When processing a word, the sensory input is transformed into increasingly abstract representations that need to be integrated with the linguistic context. Thus, language comprehension involves both input-driven as well as context-dependent processes. While neuroimaging research has traditionally focused on mapping individual brain regions to the distinct underlying processes, recent studies indicate that whole-brain distributed patterns of cortical activation might be highly relevant for cognitive functions, including language. One such pattern, based on resting-state connectivity, is the 'principal cortical gradient', which dissociates sensory from heteromodal brain regions. The present study investigated the extent to which this gradient provides an organizational principle underlying language function, using a multimodal neuroimaging dataset of functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) recordings from 102 participants during sentence reading. We found that the brain response to individual representations of a word (word length, orthographic distance, and word frequency), which reflect visual; orthographic; and lexical properties, gradually increases towards the sensory end of the gradient. Although these properties showed opposite effect directions in fMRI and MEG, their association with the sensory end of the gradient was consistent across both neuroimaging modalities. In contrast, MEG revealed that properties reflecting a word's relation to its linguistic context (semantic similarity and position within the sentence) involve the heteromodal end of the gradient to a stronger extent. This dissociation between individual word and contextual properties was stable across earlier and later time windows during word presentation, indicating interactive processing of word representations and linguistic context at opposing ends of the principal gradient. To conclude, our findings indicate that the principal gradient underlies the organization of a range of linguistic representations while supporting a gradual distinction between context-independent and context-dependent representations. Furthermore, the gradient reveals convergent patterns across neuroimaging modalities (similar location along the gradient) in the presence of divergent responses (opposite effect directions).


Asunto(s)
Encéfalo , Comprensión , Humanos , Comprensión/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Lingüística , Lenguaje , Semántica , Imagen por Resonancia Magnética/métodos , Mapeo Encefálico/métodos , Lectura
8.
Hum Brain Mapp ; 45(7): e26703, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38716714

RESUMEN

The default mode network (DMN) lies towards the heteromodal end of the principal gradient of intrinsic connectivity, maximally separated from the sensory-motor cortex. It supports memory-based cognition, including the capacity to retrieve conceptual and evaluative information from sensory inputs, and to generate meaningful states internally; however, the functional organisation of DMN that can support these distinct modes of retrieval remains unclear. We used fMRI to examine whether activation within subsystems of DMN differed as a function of retrieval demands, or the type of association to be retrieved, or both. In a picture association task, participants retrieved semantic associations that were either contextual or emotional in nature. Participants were asked to avoid generating episodic associations. In the generate phase, these associations were retrieved from a novel picture, while in the switch phase, participants retrieved a new association for the same image. Semantic context and emotion trials were associated with dissociable DMN subnetworks, indicating that a key dimension of DMN organisation relates to the type of association being accessed. The frontotemporal and medial temporal DMN showed a preference for emotional and semantic contextual associations, respectively. Relative to the generate phase, the switch phase recruited clusters closer to the heteromodal apex of the principal gradient-a cortical hierarchy separating unimodal and heteromodal regions. There were no differences in this effect between association types. Instead, memory switching was associated with a distinct subnetwork associated with controlled internal cognition. These findings delineate distinct patterns of DMN recruitment for different kinds of associations yet common responses across tasks that reflect retrieval demands.


Asunto(s)
Red en Modo Predeterminado , Emociones , Imagen por Resonancia Magnética , Recuerdo Mental , Semántica , Humanos , Masculino , Femenino , Adulto , Adulto Joven , Emociones/fisiología , Red en Modo Predeterminado/fisiología , Red en Modo Predeterminado/diagnóstico por imagen , Recuerdo Mental/fisiología , Corteza Cerebral/fisiología , Corteza Cerebral/diagnóstico por imagen , Red Nerviosa/fisiología , Red Nerviosa/diagnóstico por imagen , Mapeo Encefálico , Reconocimiento Visual de Modelos/fisiología
9.
PLoS Comput Biol ; 19(10): e1011571, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37844124

RESUMEN

The definition of a brain state remains elusive, with varying interpretations across different sub-fields of neuroscience-from the level of wakefulness in anaesthesia, to activity of individual neurons, voltage in EEG, and blood flow in fMRI. This lack of consensus presents a significant challenge to the development of accurate models of neural dynamics. However, at the foundation of dynamical systems theory lies a definition of what constitutes the 'state' of a system-i.e., a specification of the system's future. Here, we propose to adopt this definition to establish brain states in neuroimaging timeseries by applying Dynamic Causal Modelling (DCM) to low-dimensional embedding of resting and task condition fMRI data. We find that ~90% of subjects in resting conditions are better described by first-order models, whereas ~55% of subjects in task conditions are better described by second-order models. Our work calls into question the status quo of using first-order equations almost exclusively within computational neuroscience and provides a new way of establishing brain states, as well as their associated phase space representations, in neuroimaging datasets.


Asunto(s)
Mapeo Encefálico , Encéfalo , Humanos , Encéfalo/fisiología , Mapeo Encefálico/métodos , Imagen por Resonancia Magnética/métodos , Neuroimagen , Modelos Teóricos
10.
Brain ; 146(9): 3923-3937, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37082950

RESUMEN

Temporal lobe epilepsy (TLE), one of the most common pharmaco-resistant epilepsies, is associated with pathology of paralimbic brain regions, particularly in the mesiotemporal lobe. Cognitive dysfunction in TLE is frequent, and particularly affects episodic memory. Crucially, these difficulties challenge the quality of life of patients, sometimes more than seizures, underscoring the need to assess neural processes of cognitive dysfunction in TLE to improve patient management. Our work harnessed a novel conceptual and analytical approach to assess spatial gradients of microstructural differentiation between cortical areas based on high-resolution MRI analysis. Gradients track region-to-region variations in intracortical lamination and myeloarchitecture, serving as a system-level measure of structural and functional reorganization. Comparing cortex-wide microstructural gradients between 21 patients and 35 healthy controls, we observed a reorganization of this gradient in TLE driven by reduced microstructural differentiation between paralimbic cortices and the remaining cortex with marked abnormalities in ipsilateral temporopolar and dorsolateral prefrontal regions. Findings were replicated in an independent cohort. Using an independent post-mortem dataset, we observed that in vivo findings reflected topographical variations in cortical cytoarchitecture. We indeed found that macroscale changes in microstructural differentiation in TLE reflected increased similarity of paralimbic and primary sensory/motor regions. Disease-related transcriptomics could furthermore show specificity of our findings to TLE over other common epilepsy syndromes. Finally, microstructural dedifferentiation was associated with cognitive network reorganization seen during an episodic memory functional MRI paradigm and correlated with interindividual differences in task accuracy. Collectively, our findings showing a pattern of reduced microarchitectural differentiation between paralimbic regions and the remaining cortex provide a structurally-grounded explanation for large-scale functional network reorganization and cognitive dysfunction characteristic of TLE.


Asunto(s)
Epilepsia del Lóbulo Temporal , Humanos , Epilepsia del Lóbulo Temporal/patología , Calidad de Vida , Encéfalo/patología , Imagen por Resonancia Magnética , Mapeo Encefálico
11.
Epilepsy Behav ; 155: 109722, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38643660

RESUMEN

OBJECTIVE: Temporal lobe epilepsy (TLE) is typically associated with pathology of the hippocampus, a key structure involved in relational memory, including episodic, semantic, and spatial memory processes. While it is widely accepted that TLE-associated hippocampal alterations underlie memory deficits, it remains unclear whether impairments relate to a specific cognitive domain or multiple ones. METHODS: We administered a recently validated task paradigm to evaluate episodic, semantic, and spatial memory in 24 pharmacoresistant TLE patients and 50 age- and sex-matched healthy controls. We carried out two-way analyses of variance to identify memory deficits in individuals with TLE relative to controls across different relational memory domains, and used partial least squares correlation to identify factors contributing to variations in relational memory performance across both cohorts. RESULTS: Compared to controls, TLE patients showed marked impairments in episodic and spatial memory, with mixed findings in semantic memory. Even when additionally controlling for age, sex, and overall cognitive function, between-group differences persisted along episodic and spatial domains. Moreover, age, diagnostic group, and hippocampal volume were all associated with relational memory behavioral phenotypes. SIGNIFICANCE: Our behavioral findings show graded deficits across relational memory domains in people with TLE, which provides further insights into the complex pattern of cognitive impairment in the condition.


Asunto(s)
Epilepsia del Lóbulo Temporal , Trastornos de la Memoria , Memoria Episódica , Humanos , Epilepsia del Lóbulo Temporal/psicología , Epilepsia del Lóbulo Temporal/complicaciones , Masculino , Femenino , Adulto , Trastornos de la Memoria/etiología , Persona de Mediana Edad , Pruebas Neuropsicológicas , Hipocampo/patología , Adulto Joven , Memoria Espacial/fisiología , Semántica
12.
Cereb Cortex ; 33(9): 5135-5147, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36222614

RESUMEN

Although memory is known to play a key role in creativity, previous studies have not isolated the critical component processes and networks. We asked participants to generate links between words that ranged from strongly related to completely unrelated in long-term memory, delineating the neurocognitive processes that underpin more unusual versus stereotypical patterns of retrieval. More creative responses to strongly associated word-pairs were associated with greater engagement of episodic memory: in highly familiar situations, semantic, and episodic stores converge on the same information enabling participants to form a personal link between items. This pattern of retrieval was associated with greater engagement of core default mode network (DMN). In contrast, more creative responses to weakly associated word-pairs were associated with the controlled retrieval of less dominant semantic information and greater recruitment of the semantic control network, which overlaps with the dorsomedial subsystem of DMN. Although both controlled semantic and episodic patterns of retrieval are associated with activation within DMN, these processes show little overlap in activation. These findings demonstrate that controlled aspects of semantic cognition play an important role in verbal creativity.


Asunto(s)
Memoria Episódica , Semántica , Humanos , Cognición/fisiología , Creatividad , Memoria a Largo Plazo , Imagen por Resonancia Magnética , Mapeo Encefálico , Encéfalo/fisiología
13.
Cereb Cortex ; 33(8): 4305-4318, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36066439

RESUMEN

Auditory language comprehension recruits cortical regions that are both close to sensory-motor landmarks (supporting auditory and motor features) and far from these landmarks (supporting word meaning). We investigated whether the responsiveness of these regions in task-based functional MRI is related to individual differences in their physical distance to primary sensorimotor landmarks. Parcels in the auditory network, that were equally responsive across story and math tasks, showed stronger activation in individuals who had less distance between these parcels and transverse temporal sulcus, in line with the predictions of the "tethering hypothesis," which suggests that greater proximity to input regions might increase the fidelity of sensory processing. Conversely, language and default mode parcels, which were more active for the story task, showed positive correlations between individual differences in activation and sensory-motor distance from primary sensory-motor landmarks, consistent with the view that physical separation from sensory-motor inputs supports aspects of cognition that draw on semantic memory. These results demonstrate that distance from sensorimotor regions provides an organizing principle of functional differentiation within the cortex. The relationship between activation and geodesic distance to sensory-motor landmarks is in opposite directions for cortical regions that are proximal to the heteromodal (DMN and language network) and unimodal ends of the principal gradient of intrinsic connectivity.


Asunto(s)
Mapeo Encefálico , Encéfalo , Humanos , Encéfalo/fisiología , Mapeo Encefálico/métodos , Distanciamiento Físico , Imagen por Resonancia Magnética/métodos , Lenguaje
14.
Cereb Cortex ; 33(5): 1782-1798, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-35596951

RESUMEN

BACKGROUND: Higher-order cognition is hypothesized to be implemented via distributed cortical networks that are linked via long-range connections. However, it is unknown how computational advantages of long-range connections reflect cortical microstructure and microcircuitry. METHODS: We investigated this question by (i) profiling long-range cortical connectivity using resting-state functional magnetic resonance imaging (MRI) and cortico-cortical geodesic distance mapping, (ii) assessing how long-range connections reflect local brain microarchitecture, and (iii) examining the microarchitectural similarity of regions connected through long-range connections. RESULTS: Analysis of 2 independent datasets indicated that sensory/motor areas had more clustered short-range connections, while transmodal association systems hosted distributed, long-range connections. Meta-analytical decoding suggested that this topographical difference mirrored shifts in cognitive function, from perception/action towards emotional/social processing. Analysis of myelin-sensitive in vivo MRI as well as postmortem histology and transcriptomics datasets established that gradients in functional connectivity distance are paralleled by those present in cortical microarchitecture. Notably, long-range connections were found to link spatially remote regions of association cortex with an unexpectedly similar microarchitecture. CONCLUSIONS: By mapping covarying topographies of long-range functional connections and cortical microcircuits, the current work provides insights into structure-function relations in human neocortex.


Asunto(s)
Conectoma , Neocórtex , Humanos , Imagen por Resonancia Magnética/métodos , Mapeo Encefálico/métodos , Cognición , Emociones , Vías Nerviosas , Conectoma/métodos
15.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34599096

RESUMEN

The COVID-19 pandemic led to lockdowns in countries across the world, changing the lives of billions of people. The United Kingdom's first national lockdown, for example, restricted people's ability to socialize and work. The current study examined how changes to socializing and working during this lockdown impacted ongoing thought patterns in daily life. We compared the prevalence of thought patterns between two independent real-world, experience-sampling cohorts, collected before and during lockdown. In both samples, young (18 to 35 y) and older (55+ y) participants completed experience-sampling measures five times daily for 7 d. Dimension reduction was applied to these data to identify common "patterns of thought." Linear mixed modeling compared the prevalence of each thought pattern 1) before and during lockdown, 2) in different age groups, and 3) across different social and activity contexts. During lockdown, when people were alone, social thinking was reduced, but on the rare occasions when social interactions were possible, we observed a greater increase in social thinking than prelockdown. Furthermore, lockdown was associated with a reduction in future-directed problem solving, but this thought pattern was reinstated when individuals engaged in work. Therefore, our study suggests that the lockdown led to significant changes in ongoing thought patterns in daily life and that these changes were associated with changes to our daily routine that occurred during lockdown.


Asunto(s)
COVID-19/prevención & control , SARS-CoV-2 , Aislamiento Social , Pensamiento , Adolescente , Adulto , Afecto , Anciano , Anciano de 80 o más Años , COVID-19/psicología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Solución de Problemas , Cognición Social , Reino Unido/epidemiología , Adulto Joven
16.
Neuroimage ; 272: 120059, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37001835

RESUMEN

Low-dimensional representations are increasingly used to study meaningful organizational principles within the human brain. Most notably, the sensorimotor-association axis consistently explains the most variance in the human connectome as its so-called principal gradient, suggesting that it represents a fundamental organizational principle. While recent work indicates these low dimensional representations are relatively robust, they are limited by modeling only certain aspects of the functional connectivity structure. To date, the majority of studies have restricted these approaches to the strongest connections in the brain, treating weaker or negative connections as noise despite evidence of meaningful structure among them. The present work examines connectivity gradients of the human connectome across a full range of connectivity strengths and explores the implications for outcomes of individual differences, identifying potential dependencies on thresholds and opportunities to improve prediction tasks. Interestingly, the sensorimotor-association axis emerged as the principal gradient of the human connectome across the entire range of connectivity levels. Moreover, the principal gradient of connections at intermediate strengths encoded individual differences, better followed individual-specific anatomical features, and was also more predictive of intelligence. Taken together, our results add to evidence of the sensorimotor-association axis as a fundamental principle of the brain's functional organization, since it is evident even in the connectivity structure of more lenient connectivity thresholds. These more loosely coupled connections further appear to contain valuable and potentially important information that could be used to improve our understanding of individual differences, diagnosis, and the prediction of treatment outcomes.


Asunto(s)
Conectoma , Humanos , Conectoma/métodos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Individualidad , Inteligencia , Red Nerviosa/diagnóstico por imagen
17.
PLoS Biol ; 18(11): e3000979, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33253185

RESUMEN

The vast net of fibres within and underneath the cortex is optimised to support the convergence of different levels of brain organisation. Here, we propose a novel coordinate system of the human cortex based on an advanced model of its connectivity. Our approach is inspired by seminal, but so far largely neglected models of cortico-cortical wiring established by postmortem anatomical studies and capitalises on cutting-edge in vivo neuroimaging and machine learning. The new model expands the currently prevailing diffusion magnetic resonance imaging (MRI) tractography approach by incorporation of additional features of cortical microstructure and cortico-cortical proximity. Studying several datasets and different parcellation schemes, we could show that our coordinate system robustly recapitulates established sensory-limbic and anterior-posterior dimensions of brain organisation. A series of validation experiments showed that the new wiring space reflects cortical microcircuit features (including pyramidal neuron depth and glial expression) and allowed for competitive simulations of functional connectivity and dynamics based on resting-state functional magnetic resonance imaging (rs-fMRI) and human intracranial electroencephalography (EEG) coherence. Our results advance our understanding of how cell-specific neurobiological gradients produce a hierarchical cortical wiring scheme that is concordant with increasing functional sophistication of human brain organisation. Our evaluations demonstrate the cortical wiring space bridges across scales of neural organisation and can be easily translated to single individuals.


Asunto(s)
Encéfalo/anatomía & histología , Encéfalo/fisiología , Conectoma/métodos , Adulto , Encéfalo/diagnóstico por imagen , Corteza Cerebral/anatomía & histología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/fisiología , Imagen de Difusión por Resonancia Magnética , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/patología , Epilepsia Refractaria/fisiopatología , Electrocorticografía , Epilepsias Parciales/diagnóstico por imagen , Epilepsias Parciales/patología , Epilepsias Parciales/fisiopatología , Femenino , Neuroimagen Funcional , Humanos , Aprendizaje Automático , Masculino , Modelos Anatómicos , Modelos Neurológicos , Red Nerviosa/anatomía & histología , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiología , Adulto Joven
18.
Cereb Cortex ; 32(18): 3959-3974, 2022 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-35088083

RESUMEN

Working memory (WM) allows goal-relevant information to be encoded and maintained in mind, even when the contents of WM are incongruent with the immediate environment. While regions of heteromodal cortex are important for WM, the neural mechanisms that relate to individual differences in the encoding and maintenance of goal-relevant information remain unclear. Here, we used behavioral correlates of two large-scale heteromodal networks at rest, the default mode (DMN) and frontoparietal (FPN) networks, to understand their contributions to distinct features of WM. We assessed each individual's ability to resist distracting information during the encoding and maintenance phases of a visuospatial WM task. Individuals with stronger connectivity of DMN with medial visual and retrosplenial cortex were less affected by encoding distraction. Conversely, weaker connectivity of both DMN and FPN with visual regions was associated with better WM performance when target information was no longer in the environment and distractors were presented in the maintenance phase. Our study suggests that stronger coupling between heteromodal cortex and visual-spatial regions supports WM encoding by reducing the influence of concurrently presented distractors, while weaker visual coupling is associated with better maintenance of goal-relevant information because it relates to the capacity to ignore task-irrelevant changes in the environment.


Asunto(s)
Individualidad , Memoria a Corto Plazo , Corteza Cerebral/diagnóstico por imagen , Cognición , Humanos , Imagen por Resonancia Magnética
19.
Cereb Cortex ; 33(1): 152-166, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-35196710

RESUMEN

How concepts are coded in the brain is a core issue in cognitive neuroscience. Studies have focused on how individual concepts are processed, but the way in which conceptual representation changes to suit the context is unclear. We parametrically manipulated the association strength between words, presented in pairs one word at a time using a slow event-related fMRI design. We combined representational similarity analysis and computational linguistics to probe the neurocomputational content of these trials. Individual word meaning was maintained in supramarginal gyrus (associated with verbal short-term memory) when items were judged to be unrelated, but not when a linking context was retrieved. Context-dependent meaning was instead represented in left lateral prefrontal gyrus (associated with controlled retrieval), angular gyrus, and ventral temporal lobe (regions associated with integrative aspects of memory). Analyses of informational connectivity, examining the similarity of activation patterns across trials between sites, showed that control network regions had more similar multivariate responses across trials when association strength was weak, reflecting a common controlled retrieval state when the task required more unusual associations. These findings indicate that semantic control and representational sites amplify contextually relevant meanings in trials judged to be related.


Asunto(s)
Mapeo Encefálico , Semántica , Lóbulo Temporal/fisiología , Encéfalo/diagnóstico por imagen , Lóbulo Parietal , Imagen por Resonancia Magnética
20.
Conscious Cogn ; 114: 103530, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37619452

RESUMEN

Health and well-being are impacted by our thoughts and the things we do. In the laboratory, studies suggest specific task contexts impact thought processes. More broadly, this suggests the people we are with, the places we are in, and the activities we perform may influence our thought patterns. In our study, participants completed experience sampling surveys for five days in daily life. Principal component analysis decomposed this data to identify common "patterns of thought," and linear mixed modelling related these patterns to the participants' activities. Our study replicated the influence of socializing on patterns of thought and established that this is part of a broader set of relationships linking activities to how thoughts are organized in daily life. Our study suggests sampling thinking in the real world may help map thoughts to activities, and these "thought-activity" mappings could be useful to researchers and health care professionals interested in health and well-being.


Asunto(s)
Evaluación Ecológica Momentánea , Procesos Mentales , Humanos , Análisis de Componente Principal , Conducta Social
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA