Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 172(5): 952-965.e18, 2018 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-29474921

RESUMEN

Viruses that are typically benign sometimes invade the brainstem in otherwise healthy children. We report bi-allelic DBR1 mutations in unrelated patients from different ethnicities, each of whom had brainstem infection due to herpes simplex virus 1 (HSV1), influenza virus, or norovirus. DBR1 encodes the only known RNA lariat debranching enzyme. We show that DBR1 expression is ubiquitous, but strongest in the spinal cord and brainstem. We also show that all DBR1 mutant alleles are severely hypomorphic, in terms of expression and function. The fibroblasts of DBR1-mutated patients contain higher RNA lariat levels than control cells, this difference becoming even more marked during HSV1 infection. Finally, we show that the patients' fibroblasts are highly susceptible to HSV1. RNA lariat accumulation and viral susceptibility are rescued by wild-type DBR1. Autosomal recessive, partial DBR1 deficiency underlies viral infection of the brainstem in humans through the disruption of tissue-specific and cell-intrinsic immunity to viruses.


Asunto(s)
Encefalopatías Metabólicas Innatas/genética , Tronco Encefálico/metabolismo , Tronco Encefálico/virología , ARN/química , ARN/metabolismo , Alelos , Secuencia de Aminoácidos , Animales , Encefalopatías Metabólicas Innatas/patología , Tronco Encefálico/patología , Encefalitis Viral/genética , Escherichia coli/metabolismo , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Fibroblastos/virología , Herpesvirus Humano 1 , Humanos , Interferones/metabolismo , Intrones/genética , Masculino , Ratones , Proteínas Mutantes/metabolismo , Mutación/genética , Sistemas de Lectura Abierta/genética , Linaje , ARN Nucleotidiltransferasas/química , ARN Nucleotidiltransferasas/deficiencia , ARN Nucleotidiltransferasas/genética , Receptor Toll-Like 3/metabolismo , Replicación Viral
2.
Nature ; 599(7886): 662-666, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34789877

RESUMEN

Neurotropic alphaherpesviruses initiate infection in exposed mucosal tissues and, unlike most viruses, spread rapidly to sensory and autonomic nerves where life-long latency is established1. Recurrent infections arise sporadically from the peripheral nervous system throughout the life of the host, and invasion of the central nervous system may occur, with severe outcomes2. These viruses directly recruit cellular motors for transport along microtubules in nerve axons, but how the motors are manipulated to deliver the virus to neuronal nuclei is not understood. Here, using herpes simplex virus type I and pseudorabies virus as model alphaherpesviruses, we show that a cellular kinesin motor is captured by virions in epithelial cells, carried between cells, and subsequently used in neurons to traffic to nuclei. Viruses assembled in the absence of kinesin are not neuroinvasive. The findings explain a critical component of the alphaherpesvirus neuroinvasive mechanism and demonstrate that these viruses assimilate a cellular protein as an essential proviral structural component. This principle of viral assimilation may prove relevant to other virus families and offers new strategies to combat infection.


Asunto(s)
Herpesvirus Humano 1/metabolismo , Herpesvirus Suido 1/metabolismo , Cinesinas/metabolismo , Movimiento , Virión/metabolismo , Ensamble de Virus , Animales , Transporte Biológico , Cápside/metabolismo , Línea Celular , Núcleo Celular/virología , Chlorocebus aethiops , Células Epiteliales/metabolismo , Células Epiteliales/virología , Humanos , Neuronas/metabolismo , Neuronas/virología , Conejos , Porcinos
3.
Proc Natl Acad Sci U S A ; 121(19): e2401341121, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38696466

RESUMEN

Neurotropic alphaherpesviruses, including herpes simplex virus type 1 (HSV-1), recruit microtubule motor proteins to invade cells. The incoming viral particle traffics to nuclei in a two-step process. First, the particle uses the dynein-dynactin motor to sustain transport to the centrosome. In neurons, this step is responsible for long-distance retrograde axonal transport and is an important component of the neuroinvasive property shared by these viruses. Second, a kinesin-dependent mechanism redirects the particle from the centrosome to the nucleus. We have reported that the kinesin motor used during the second step of invasion is assimilated into nascent virions during the previous round of infection. Here, we report that the HSV-1 pUL37 tegument protein suppresses the assimilated kinesin-1 motor during retrograde axonal transport. Region 2 (R2) of pUL37 was required for suppression and functioned independently of the autoinhibitory mechanism native to kinesin-1. Furthermore, the motor domain and proximal coiled coil of kinesin-1 were sufficient for HSV-1 assimilation, pUL37 suppression, and nuclear trafficking. pUL37 localized to the centrosome, the site of assimilated kinesin-1 activation during infection, when expressed in cells in the absence of other viral proteins; however, pUL37 did not suppress kinesin-1 in this context. These results indicate that the pUL37 tegument protein spatially and temporally regulates kinesin-1 via the amino-terminal motor region in the context of the incoming viral particle.


Asunto(s)
Herpesvirus Humano 1 , Cinesinas , Proteínas Estructurales Virales , Cinesinas/metabolismo , Herpesvirus Humano 1/fisiología , Herpesvirus Humano 1/metabolismo , Humanos , Animales , Transporte Axonal/fisiología , Chlorocebus aethiops , Centrosoma/metabolismo , Neuronas/metabolismo , Neuronas/virología , Células Vero , Núcleo Celular/metabolismo , Núcleo Celular/virología
4.
J Virol ; 98(9): e0124024, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39087765

RESUMEN

Science is humanity's best insurance against threats from nature, but it is a fragile enterprise that must be nourished and protected. The preponderance of scientific evidence indicates a natural origin for SARS-CoV-2. Yet, the theory that SARS-CoV-2 was engineered in and escaped from a lab dominates media attention, even in the absence of strong evidence. We discuss how the resulting anti-science movement puts the research community, scientific research, and pandemic preparedness at risk.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/virología , COVID-19/transmisión , Pandemias , Animales
5.
J Virol ; 96(9): e0148621, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35420461

RESUMEN

Following exposure and replication at mucosal surfaces, most alphaherpesviruses invade the peripheral nervous system by retrograde axonal transport and establish lifelong latent infections in the peripheral ganglia. Reactivation of ganglionic infections is followed by anterograde axonal transport of virions back to body surfaces where viral replication results in disease that can range from moderate to severe in presentation. In the case of bovine herpesvirus 1 (BoHV-1), replication in the epithelial mucosa presents as infectious bovine rhinotracheitis (IBR), a respiratory disease of significant economic impact. In this study, we provide a live-cell analysis of BoHV-1 retrograde axonal transport relative to the model alphaherpesvirus pathogen pseudorabies virus (PRV) and demonstrate that this critical neuroinvasive step is conserved between the two viruses. In addition, we report that the BoHV-1 pUL37 tegument protein supports processive retrograde motion in infected axons and invasion of the calf peripheral nervous system. IMPORTANCE A molecular and cellular understanding of the retrograde axonal transport process that underlies the neuroinvasive properties of the alphaherpesviruses is established from studies of herpes simplex virus and pseudorabies virus. The degree to which this phenotype is conserved in other related viruses has largely not been examined. We provide a time-lapse analysis of the retrograde axonal transport kinetics of bovine herpesvirus 1 and demonstrate that mutation of the pUL37 region 2 effector affords a strategy to produce live-attenuated vaccines for enhanced protection of cattle.


Asunto(s)
Transporte Axonal , Herpesvirus Bovino 1 , Células Receptoras Sensoriales , Proteínas Virales , Animales , Axones , Bovinos , Herpesvirus Bovino 1/genética , Herpesvirus Bovino 1/patogenicidad , Células Receptoras Sensoriales/virología , Proteínas Virales/genética
6.
Curr Issues Mol Biol ; 41: 171-220, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32807747

RESUMEN

Herpesviruses virions are large and complex structures that deliver their genetic content to nuclei upon entering cells. This property is not unusual as many other viruses including the adenoviruses, orthomyxoviruses, papillomaviruses, polyomaviruses, and retroviruses, do likewise. However, the means by which viruses in the alphaherpesvirinae subfamily accomplish this fundamental stage of the infectious cycle is tied to their defining ability to efficiently invade the nervous system. Fusion of the viral envelope with a cell membrane results in the deposition of the capsid, along with an assortment of tegument proteins, into the cytosol. Establishment of infection requires that the capsid traverse the cytosol, dock at a nuclear pore, and inject its genome into the nucleoplasm. Accumulating evidence indicates that the capsid is not the effector of this delivery process, but is instead shepherded by tegument proteins that remain capsid bound. At the same time, tegument proteins that are released from the capsid upon entry act to increase the susceptibility of the cell to the ensuing infection. Mucosal epithelial cells and neurons are both susceptible to alphaherpesvirus infection and, together, provide the niche to which these viruses have adapted. Although much has been revealed about the functions of de novo expressed tegument proteins during the late stages of assembly and egress, this review will specifically address the roles of tegument proteins brought into the cell with the incoming virion, and our current understanding of alphaherpesvirus genome delivery to nuclei.


Asunto(s)
Alphaherpesvirinae/genética , Alphaherpesvirinae/patogenicidad , Citoplasma/virología , Genoma Viral/genética , Infecciones por Herpesviridae/virología , Animales , Proteínas de la Cápside/genética , Núcleo Celular/virología , Humanos , Virión/genética , Ensamble de Virus/genética , Internalización del Virus
7.
Proc Natl Acad Sci U S A ; 115(37): E8775-E8782, 2018 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-30154162

RESUMEN

Herpes simplex virus type 1 (HSV-1) encephalitis (HSE) is the most common sporadic viral encephalitis in Western countries. Some HSE children carry inborn errors of the Toll-like receptor 3 (TLR3)-dependent IFN-α/ß- and -λ-inducing pathway. Induced pluripotent stem cell (iPSC)-derived cortical neurons with TLR3 pathway mutations are highly susceptible to HSV-1, due to impairment of cell-intrinsic TLR3-IFN immunity. In contrast, the contribution of cell-intrinsic immunity of human trigeminal ganglion (TG) neurons remains unclear. Here, we describe efficient in vitro derivation and purification of TG neurons from human iPSCs via a cranial placode intermediate. The resulting TG neurons are of sensory identity and exhibit robust responses to heat (capsaicin), cold (icilin), and inflammatory pain (ATP). Unlike control cortical neurons, both control and TLR3-deficient TG neurons were highly susceptible to HSV-1. However, pretreatment of control TG neurons with poly(I:C) induced the cells into an anti-HSV-1 state. Moreover, both control and TLR3-deficient TG neurons developed resistance to HSV-1 following pretreatment with IFN-ß but not IFN-λ. These data indicate that TG neurons are vulnerable to HSV-1 because they require preemptive stimulation of the TLR3 or IFN-α/ß receptors to induce antiviral immunity, whereas cortical neurons possess a TLR3-dependent constitutive resistance that is sufficient to block incoming HSV-1 in the absence of prior antiviral signals. The lack of constitutive resistance in TG neurons in vitro is consistent with their exploitation as a latent virus reservoir in vivo. Our results incriminate deficiencies in the constitutive TLR3-dependent response of cortical neurons in the pathogenesis of HSE.


Asunto(s)
Inmunidad/inmunología , Células Madre Pluripotentes Inducidas/metabolismo , Neuronas/metabolismo , Receptor Toll-Like 3/metabolismo , Antivirales/farmacología , Diferenciación Celular/genética , Células Cultivadas , Corteza Cerebral/citología , Niño , Herpesvirus Humano 1/inmunología , Herpesvirus Humano 1/fisiología , Humanos , Inmunidad/genética , Células Madre Pluripotentes Inducidas/citología , Interferón beta/farmacología , Mutación , Neuronas/efectos de los fármacos , Neuronas/virología , Poli I-C/farmacología , Receptor Toll-Like 3/genética , Ganglio del Trigémino/citología
8.
J Virol ; 93(22)2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31462572

RESUMEN

Upon replication in mucosal epithelia and transmission to nerve endings, capsids of herpes simplex virus 1 (HSV-1) travel retrogradely within axons to peripheral ganglia, where life-long latent infections are established. A capsid-bound tegument protein, pUL37, is an essential effector of retrograde axonal transport and also houses a deamidase activity that antagonizes innate immune signaling. In this report, we examined whether the deamidase of HSV-1 pUL37 contributes to the neuroinvasive retrograde axonal transport mechanism. We conclude that neuroinvasion is enhanced by the deamidase, but the critical contribution of pUL37 to retrograde axonal transport functions independently of this activity.IMPORTANCE Herpes simplex virus 1 invades the nervous system by entering nerve endings and sustaining long-distance retrograde axonal transport to reach neuronal nuclei in ganglia of the peripheral nervous system. The incoming viral particle carries a deamidase activity on its surface that antagonizes antiviral responses. We examined the contribution of the deamidase to the hallmark neuroinvasive property of this virus.


Asunto(s)
Proteínas de la Cápside/metabolismo , Proteínas Estructurales Virales/metabolismo , Animales , Transporte Axonal/fisiología , Axones/virología , Cápside/metabolismo , Línea Celular , Chlorocebus aethiops , Ganglios/metabolismo , Ganglios/virología , Herpes Simple/virología , Herpesvirus Humano 1/metabolismo , Humanos , Mucosa Intestinal , Neuronas/virología , Células Vero , Proteínas Estructurales Virales/genética , Virión/metabolismo
9.
J Virol ; 92(17)2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29899099

RESUMEN

Herpesvirus particles have a complex architecture consisting of an icosahedral capsid that is surrounded by a lipid envelope. Connecting these two components is a layer of tegument that consists of various amounts of 20 or more proteins. The arrangement of proteins within the tegument cannot easily be assessed and instead is inferred from tegument interactions identified in reductionist models. To better understand the tegument architecture, we have developed an approach to probe capsid-tegument interactions of extracellular viral particles by encoding tobacco etch virus (TEV) protease sites in viral structural proteins, along with distinct fluorescent tags in capsid and tegument components. In this study, TEV sites were engineered within the pUL36 large tegument protein, a critical structural element that is anchored directly on the capsid surface. Purified pseudorabies virus extracellular particles were permeabilized, and TEV protease was added to selectively cleave the exposed pUL36 backbone. Interactions with the capsid were assessed in situ by monitoring the fate of the fluorescent signals following cleavage. Although several regions of pUL36 are proposed to bind capsids, pUL36 was found stably anchored to the capsid exclusively at its carboxyl terminus. Two additional tegument proteins, pUL37 and pUS3, were tethered to the capsid via pUL36, whereas the pUL16, pUL47, pUL48, and pUL49 tegument proteins were not stably bound to the capsid.IMPORTANCE Neuroinvasive alphaherpesviruses produce diseases of clinical and economic significance in humans and veterinary animals but are predominantly associated with less serious recurrent disease. Like all viruses, herpesviruses assemble a metastable particle that selectively dismantles during initial infection. This process is made more complex by the presence of a tegument layer that resides between the capsid surface and envelope. Components of the tegument are essential for particle assembly and also serve as critical effectors that promote infection upon entry into cells. How this dynamic network of protein interactions is arranged within virions is largely unknown. We present a molecular approach to dissect the tegument, and with it we begin to tease apart the protein interactions that underlie this complex layer of the virion architecture.


Asunto(s)
Proteínas de la Cápside/metabolismo , Herpesvirus Suido 1/ultraestructura , Proteínas Estructurales Virales/metabolismo , Estructuras Virales , Animales , Línea Celular , Unión Proteica , Proteolisis , Porcinos , Proteínas Estructurales Virales/genética
10.
J Virol ; 92(18)2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-29976665

RESUMEN

The herpesvirus capsid assembles in the nucleus as an immature procapsid precursor built around viral scaffold proteins. The event that initiates procapsid maturation is unknown, but it is dependent upon activation of the VP24 internal protease. Scaffold cleavage triggers angularization of the shell and its decoration with the VP26 and pUL25 capsid-surface proteins. In both the procapsid and mature angularized capsid, the apical region of the major capsid protein (VP5) is surface exposed. We investigated whether the VP5 apical region contributes to intracellular transport dynamics following entry into primary sensory neurons and also tested the hypothesis that conserved negatively charged amino acids in the apical region contribute to VP26 acquisition. To our surprise, neither hypothesis proved true. Instead, mutation of glutamic acid residues in the apical region delayed viral propagation and induced focal capsid accumulations in nuclei. Examination of capsid morphogenesis based on epitope unmasking, capsid composition, and ultrastructural analysis indicated that these clusters consisted of procapsids. The results demonstrate that, in addition to established events that occur inside the capsid, the exterior capsid shell promotes capsid morphogenesis and maturation.IMPORTANCE Herpesviruses assemble capsids and encapsidate their genomes by a process that is unlike those of other mammalian viruses but is similar to those of some bacteriophage. Many important aspects of herpesvirus morphogenesis remain enigmatic, including how the capsid shell matures into a stable angularized configuration. Capsid maturation is triggered by activation of a protease that cleaves an internal protein scaffold. We report on the fortuitous discovery that a region of the major capsid protein that is exposed on the outer surface of the capsid also contributes to capsid maturation, demonstrating that the morphogenesis of the capsid shell from its procapsid precursor to the mature angularized form is dependent upon internal and external components of the megastructure.


Asunto(s)
Proteínas de la Cápside/genética , Cápside/metabolismo , Herpesvirus Humano 1/fisiología , Proteínas Virales/metabolismo , Animales , Proteínas de la Cápside/metabolismo , Chlorocebus aethiops , Epítopos/química , Epítopos/genética , Epítopos/metabolismo , Herpesvirus Humano 1/química , Mutación , Células Vero , Proteínas Virales/genética , Virión/metabolismo , Ensamble de Virus/fisiología
11.
PLoS Pathog ; 13(12): e1006741, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29216315

RESUMEN

A hallmark property of the neurotropic alpha-herpesvirinae is the dissemination of infection to sensory and autonomic ganglia of the peripheral nervous system following an initial exposure at mucosal surfaces. The peripheral ganglia serve as the latent virus reservoir and the source of recurrent infections such as cold sores (herpes simplex virus type I) and shingles (varicella zoster virus). However, the means by which these viruses routinely invade the nervous system is not fully understood. We report that an internal virion component, the pUL37 tegument protein, has a surface region that is an essential neuroinvasion effector. Mutation of this region rendered herpes simplex virus type 1 (HSV-1) and pseudorabies virus (PRV) incapable of spreading by retrograde axonal transport to peripheral ganglia both in culture and animals. By monitoring the axonal transport of individual viral particles by time-lapse fluorescence microscopy, the mutant viruses were determined to lack the characteristic sustained intracellular capsid motion along microtubules that normally traffics capsids to the neural soma. Consistent with the axonal transport deficit, the mutant viruses did not reach sites of latency in peripheral ganglia, and were avirulent. Despite this, viral propagation in peripheral tissues and in cultured epithelial cell lines remained robust. Selective elimination of retrograde delivery to the nervous system has long been sought after as a means to develop vaccines against these ubiquitous, and sometimes devastating viruses. In support of this potential, we find that HSV-1 and PRV mutated in the effector region of pUL37 evoked effective vaccination against subsequent nervous system challenges and encephalitic disease. These findings demonstrate that retrograde axonal transport of the herpesviruses occurs by a virus-directed mechanism that operates by coordinating opposing microtubule motors to favor sustained retrograde delivery of the virus to the peripheral ganglia. The ability to selectively eliminate the retrograde axonal transport mechanism from these viruses will be useful in trans-synaptic mapping studies of the mammalian nervous system, and affords a new vaccination paradigm for human and veterinary neurotropic herpesviruses.


Asunto(s)
Transporte Axonal/fisiología , Herpesvirus Humano 1/fisiología , Herpesvirus Humano 1/patogenicidad , Herpesvirus Suido 1/fisiología , Herpesvirus Suido 1/patogenicidad , Proteínas Estructurales Virales/fisiología , Secuencia de Aminoácidos , Animales , Transporte Axonal/genética , Axones/virología , Ganglios/virología , Genes Virales , Herpesvirus Humano 1/genética , Herpesvirus Suido 1/genética , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/fisiología , Humanos , Masculino , Ratones , Ratones Endogámicos DBA , Modelos Moleculares , Mutación , Neuronas/virología , Ratas , Ratas Long-Evans , Proteínas Estructurales Virales/química , Proteínas Estructurales Virales/genética , Vacunas Virales/genética , Virulencia/genética , Virulencia/fisiología , Liberación del Virus/genética , Liberación del Virus/fisiología
12.
J Exp Biol ; 222(Pt 16)2019 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-31350298

RESUMEN

Juvenile animals must survive in the same environment as adults despite smaller sizes, immature musculoskeletal tissues, general ecological naïveté and other limits of performance. Developmental changes in muscle leverage could constitute one mechanism to promote increased performance in juveniles despite ontogenetic limitations. We tested this hypothesis using a holistic dataset on growth and locomotor development in wild eastern cottontail rabbits (Sylvilagus floridanus) to examine ontogenetic changes in hindlimb muscle effective mechanical advantage (EMA). EMA is a dimensionless index of muscle leverage, equal to the quotient of average muscle lever length and the load arm length of the ground reaction force (GRF), effectively representing the magnitude of output force arising from a given muscle force. We found that EMA at the hip and ankle joints, as well as overall hindlimb EMA, significantly declined across ontogeny in S. floridanus, whereas EMA at the knee joint remained unchanged. Ontogenetic decreases in EMA were due to isometric scaling of muscle lever arm lengths alongside positive ontogenetic allometry of GRF load arm lengths - which in turn was primarily related to positive allometry of hindlimb segment lengths. Greater EMA limits the estimated volume of hindlimb extensor muscle that has to be activated in young rabbits, likely mitigating the energetic cost of locomotion and saving metabolic resources for other physiological functions, such as growth and tissue differentiation. An additional examination of limb growth allometry across a diverse sample of mammalian taxa suggests that ontogenetic decreases in limb joint EMA may be a common mammalian trend.


Asunto(s)
Lagomorpha/fisiología , Locomoción , Animales , Fenómenos Biomecánicos , Lagomorpha/crecimiento & desarrollo
13.
J Neurosci ; 37(15): 4128-4144, 2017 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-28283558

RESUMEN

The mesolimbic dopamine pathway receives inputs from numerous regions of the brain as part of a neural system that detects rewarding stimuli and coordinates a behavioral response. The capacity to simultaneously map and molecularly define the components of this complex multisynaptic circuit would thus advance our understanding of the determinants of motivated behavior. To accomplish this, we have constructed pseudorabies virus (PRV) strains in which viral propagation and fluorophore expression are activated only after exposure to Cre recombinase. Once activated in Cre-expressing neurons, the virus serially labels chains of presynaptic neurons. Dual injection of GFP and mCherry tracing viruses simultaneously illuminates nigrostriatal and mesolimbic circuitry and shows no overlap, demonstrating that PRV transmission is confined to synaptically connected neurons. To molecularly profile mesolimbic dopamine neurons and their presynaptic inputs, we injected Cre-conditional GFP virus into the NAc of (anti-GFP) nanobody-L10 transgenic mice and immunoprecipitated translating ribosomes from neurons infected after retrograde tracing. Analysis of purified RNA revealed an enrichment of transcripts expressed in neurons of the dorsal raphe nuclei and lateral hypothalamus that project to the mesolimbic dopamine circuit. These studies identify important inputs to the mesolimbic dopamine pathway and further show that PRV circuit-directed translating ribosome affinity purification can be broadly applied to identify molecularly defined neurons comprising complex, multisynaptic circuits.SIGNIFICANCE STATEMENT The mesolimbic dopamine circuit integrates signals from key brain regions to detect and respond to rewarding stimuli. To further define this complex multisynaptic circuit, we constructed a panel of Cre recombinase-activated pseudorabies viruses (PRVs) that enabled retrograde tracing of neural inputs that terminate on Cre-expressing neurons. Using these viruses and Retro-TRAP (translating ribosome affinity purification), a previously reported molecular profiling method, we developed a novel technique that provides anatomic as well as molecular information about the neural components of polysynaptic circuits. We refer to this new method as PRV-Circuit-TRAP (PRV circuit-directed TRAP). Using it, we have identified major projections to the mesolimbic dopamine circuit from the lateral hypothalamus and dorsal raphe nucleus and defined a discrete subset of transcripts expressed in these projecting neurons, which will allow further characterization of this important pathway. Moreover, the method we report is general and can be applied to the study of other neural circuits.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Integrasas/análisis , Mesencéfalo/química , Neuronas/química , Seudorrabia , Recompensa , Animales , Femenino , Integrasas/metabolismo , Masculino , Mesencéfalo/anatomía & histología , Mesencéfalo/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/metabolismo , Seudorrabia/metabolismo
14.
Proc Natl Acad Sci U S A ; 112(41): 12818-23, 2015 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-26407585

RESUMEN

Neuroinvasive herpesviruses display a remarkable propensity to enter the nervous system of healthy individuals in the absence of obvious trauma at the site of inoculation. We document a repurposing of cellular ubiquitin during infection to switch the virus between two invasive states. The states act sequentially to defeat consecutive host barriers of the peripheral nervous system and together promote the potent neuroinvasive phenotype. The first state directs virus access to nerve endings in peripheral tissue, whereas the second delivers virus particles within nerve fibers to the neural ganglia. Mutant viruses locked in either state remain competent to overcome the corresponding barrier but fail to invade the nervous system. The herpesvirus "ubiquitin switch" may explain the unusual ability of these viruses to routinely enter the nervous system and, as a consequence, their prevalence in human and veterinary hosts.


Asunto(s)
Herpes Simple/metabolismo , Herpesvirus Humano 1/metabolismo , Herpesvirus Humano 1/patogenicidad , Neuronas/metabolismo , Neuronas/virología , Ubiquitinación , Animales , Chlorocebus aethiops , Herpes Simple/genética , Herpesvirus Humano 1/genética , Humanos , Neuronas/patología , Células Vero
15.
J Virol ; 90(22): 10182-10192, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27581983

RESUMEN

A complete understanding of herpesvirus morphogenesis requires studies of capsid assembly dynamics in living cells. Although fluorescent tags fused to the VP26 and pUL25 capsid proteins are available, neither of these components is present on the initial capsid assembly, the procapsid. To make procapsids accessible to live-cell imaging, we made a series of recombinant pseudorabies viruses that encoded green fluorescent protein (GFP) fused in frame to the internal capsid scaffold and maturation protease. One recombinant, a GFP-VP24 fusion, maintained wild-type propagation kinetics in vitro and approximated wild-type virulence in vivo The fusion also proved to be well tolerated in herpes simplex virus. Viruses encoding GFP-VP24, along with a traditional capsid reporter fusion (pUL25/mCherry), demonstrated that GFP-VP24 was a reliable capsid marker and revealed that the protein remained capsid associated following entry into cells and upon nuclear docking. These dual-fluorescent viruses made possible the discrimination of procapsids during infection and monitoring of capsid shell maturation kinetics. The results demonstrate the feasibility of imaging herpesvirus procapsids and their morphogenesis in living cells and indicate that the encapsidation machinery does not substantially help coordinate capsid shell maturation. IMPORTANCE: The family Herpesviridae consists of human and veterinary pathogens that cause a wide range of diseases in their respective hosts. These viruses share structurally related icosahedral capsids that encase the double-stranded DNA (dsDNA) viral genome. The dynamics of capsid assembly and maturation have been inaccessible to examination in living cells. This study has overcome this technical hurdle and provides new insights into this fundamental stage of herpesvirus infection.


Asunto(s)
Proteínas de la Cápside/metabolismo , Cápside/metabolismo , Herpes Simple/metabolismo , Herpes Simple/virología , Herpesvirus Humano 1/metabolismo , Animales , Línea Celular , Chlorocebus aethiops , Genoma Viral/genética , Proteínas Fluorescentes Verdes/metabolismo , Herpesvirus Suido 1/metabolismo , Masculino , Ratones , Células Vero , Proteínas Virales/metabolismo , Ensamble de Virus/fisiología , Internalización del Virus
16.
Adv Anat Embryol Cell Biol ; 223: 171-193, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28528444

RESUMEN

All viruses produce infectious particles that possess some degree of stability in the extracellular environment yet disassemble upon cell contact and entry. For the alphaherpesviruses, which include many neuroinvasive viruses of mammals, these metastable virions consist of an icosahedral capsid surrounded by a protein matrix (referred to as the tegument) and a lipid envelope studded with glycoproteins. Whereas the capsid of these viruses is a rigid structure encasing the DNA genome, the tegument and envelope are dynamic assemblies that orchestrate a sequential series of events that ends with the delivery of the genome into the nucleus. These particles are adapted to infect two different polarized cell types in their hosts: epithelial cells and neurons of the peripheral nervous system. This review considers how the virion is assembled into a primed state and is targeted to infect these cell types such that the incoming particles can subsequently negotiate the diverse environments they encounter on their way from plasma membrane to nucleus and thereby achieve their remarkably robust neuroinvasive infectious cycle.


Asunto(s)
Alphaherpesvirinae/fisiología , Ensamble de Virus/fisiología , Animales , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Infecciones por Herpesviridae/patología , Infecciones por Herpesviridae/virología , Humanos , Virión/metabolismo
17.
BMC Biotechnol ; 16(1): 64, 2016 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-27580861

RESUMEN

BACKGROUND: Infectious clones are fundamental tools for the study of many viruses, allowing for efficient mutagenesis and reproducible production of genetically-defined strains. For the large dsDNA genomes of the herpesviridae, bacterial artificial chromosomes have become the cloning vector of choice due to their capacity to house full-length herpesvirus genomes as single contiguous inserts. Furthermore, while maintained as plasmids in Escherichia coli, the clones can be mutated using robust prokaryotic recombination systems. An important consideration in the design of these clones is the means by which the vector backbone is removed from the virus genome upon delivery into mammalian cells. A common approach to vector excision is to encode loxP sites flanking the vector sequences and rely on Cre recombinase expression from a transformed cell line. Here we examine the efficiency of vector removal using this method, and describe a "self-excising" infectious clone of HSV-1 strain F that offers enhancements in virus production and utility. RESULTS: Insertion of a fluorescent protein expression cassette into the vector backbone of the HSV-1 strain F clone, pYEbac102, demonstrated that 2 serial passages on cells expressing Cre recombinase was required to achieve > 95 % vector removal from the virus population, with 3 serial passages resulting in undetectable vector retention. This requirement was eliminated by replacing the reporter coding sequence with the CREin gene, which consists of a Cre coding sequence disrupted by a synthetic intron. This self-excising variant of the infectious clone produced virus that propagated with wild-type kinetics in culture and lacked vector attenuation in a mouse neurovirulence model. CONCLUSION: Conversion of a herpesvirus infectious clone into a self-excising variant enables rapid production of viruses lacking bacterial vector sequences, and removes the requirement to initially propagate viruses in cells that express Cre recombinase. The self-excising bacterial artificial chromosome described here allows for efficient production of the F strain of herpes simplex virus type 1.


Asunto(s)
Cromosomas Artificiales Bacterianos/genética , Clonación de Organismos/métodos , Mejoramiento Genético/métodos , VIH-1/genética , Carga Viral/genética , Animales , Integrasas/genética , Ratones , Recombinación Genética/genética , Virulencia/genética
18.
J Virol ; 89(15): 8088-91, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25995254

RESUMEN

Reactivation from latency results in transmission of neurotropic herpesviruses from the nervous system to body surfaces, referred to as anterograde axonal trafficking. The virus-encoded protein pUS9 promotes axonal dissemination by sorting virus particles into axons, but whether it is also an effector of fast axonal transport within axons is unknown. To determine the role of pUS9 in anterograde trafficking, we analyzed the axonal transport of pseudorabies virus in the presence and absence of pUS9.


Asunto(s)
Axones/virología , Herpesvirus Suido 1/metabolismo , Lipoproteínas/metabolismo , Fosfoproteínas/metabolismo , Seudorrabia/virología , Enfermedades de los Porcinos/virología , Proteínas Virales/metabolismo , Animales , Transporte Axonal , Herpesvirus Suido 1/genética , Péptidos y Proteínas de Señalización Intracelular , Lipoproteínas/genética , Fosfoproteínas/genética , Transporte de Proteínas , Porcinos , Proteínas Virales/genética
19.
J Virol ; 88(10): 5462-73, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24599989

RESUMEN

UNLABELLED: In cells infected with herpesviruses, two capsid-associated, or inner tegument, proteins, UL37 and UL36, control cytosolic trafficking of capsids by as yet poorly understood mechanisms. Here, we report the crystal structure of the N-terminal half of UL37 from pseudorabies virus, an alphaherpesvirus closely related to herpes simplex viruses and varicella-zoster virus. The structure--the first for any alphaherpesvirus inner tegument protein--reveals an elongated molecule of a complex architecture rich in helical bundles. To explore the function of the UL37 N terminus, we used the three-dimensional framework provided by the structure in combination with evolutionary trace analysis to pinpoint several surface-exposed regions of potential functional importance and test their importance using mutagenesis. This approach identified a novel functional region important for cell-cell spread. These results suggest a novel role for UL37 in intracellular virus trafficking that promotes spread of viral infection, a finding that expands the repertoire of UL37 functions. Supporting this, the N terminus of UL37 shares structural similarity with cellular multisubunit tethering complexes (MTCs), which control vesicular trafficking in eukaryotic cells by tethering transport vesicles to their destination membranes. Our results suggest that UL37 could be the first viral MTC mimic and provide a structural rationale for the importance of UL37 for viral trafficking. We propose that herpesviruses may have co-opted the MTC functionality of UL37 to bring capsids to cytoplasmic budding destinations and further on to cell junctions for spread to nearby cells. IMPORTANCE: To move within an infected cell, viruses encode genes for proteins that interact with host trafficking machinery. In cells infected with herpesviruses, two capsid-associated proteins control the cytosolic movement of capsids by as yet poorly understood mechanisms. Here, we report the crystal structure for the N-terminal half of one of these proteins, UL37. Structure-based mutagenesis revealed a novel function for UL37 in virus trafficking to cell junctions for cell-cell spread. The unexpected structural similarity to components of cellular multisubunit tethering complexes, which control vesicular traffic, suggests that UL37 could be the first viral MTC mimic and provides a structural basis for the importance of UL37 for virus trafficking.


Asunto(s)
Herpesvirus Suido 1/química , Herpesvirus Suido 1/fisiología , Proteínas Estructurales Virales/química , Proteínas Estructurales Virales/metabolismo , Liberación del Virus , Secuencia de Aminoácidos , Animales , Línea Celular , Cristalografía por Rayos X , Análisis Mutacional de ADN , Herpesvirus Suido 1/genética , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Conformación Proteica , Proteínas Estructurales Virales/genética
20.
mBio ; 15(8): e0144524, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-38953638

RESUMEN

Neurotropic alphaherpesviruses, including herpes simplex virus type 1 and pseudorabies virus, establish a lifelong presence within the peripheral nervous system of their mammalian hosts. Upon entering cells, two conserved tegument proteins, pUL36 and pUL37, traffic DNA-containing capsids to nuclei. These proteins support long-distance retrograde axonal transport and invasion of the nervous system in vivo. To better understand how pUL36 and pUL37 function, recombinant viral particles carrying BioID2 fused to these proteins were produced to biotinylate cellular proteins in their proximity (<10 nm) during infection. Eighty-six high-confidence host proteins were identified by mass spectrometry and subsequently targeted by CRISPR-Cas9 gene editing to assess their contributions to early infection. Proteins were identified that both supported and antagonized infection in immortalized human epithelial cells. The latter included zyxin, a protein that localizes to focal adhesions and regulates actin cytoskeletal dynamics. Zyxin knockout cells were hyper-permissive to infection and could be rescued with even modest expression of GFP-zyxin. These results provide a resource for studies of the virus-cell interface and identify zyxin as a novel deterrent to alphaherpesvirus infection.IMPORTANCENeuroinvasive alphaherpesviruses are highly prevalent with many members found across mammals [e.g., herpes simplex virus type 1 (HSV-1) in humans and pseudorabies virus in pigs]. HSV-1 causes a range of clinical manifestations from cold sores to blindness and encephalitis. There are no vaccines or curative therapies available for HSV-1. A fundamental feature of these viruses is their establishment of lifelong infection of the nervous system in their respective hosts. This outcome is possible due to a potent neuroinvasive property that is coordinated by two proteins: pUL36 and pUL37. In this study, we explore the cellular protein network in proximity to pUL36 and pUL37 during infection and examine the impact of knocking down the expression of these proteins upon infection.


Asunto(s)
Biotina , Humanos , Biotina/metabolismo , Zixina/metabolismo , Zixina/genética , Animales , Línea Celular , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/fisiología , Herpesvirus Suido 1/genética , Herpesvirus Suido 1/fisiología , Interacciones Huésped-Patógeno , Alphaherpesvirinae/genética , Alphaherpesvirinae/metabolismo , Sistemas CRISPR-Cas , Células Epiteliales/virología , Células Epiteliales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA