RESUMEN
We demonstrate a dual-material integrated photonic thermometer, fabricated by high accuracy micro-transfer printing. A freestanding diamond micro-disk resonator is printed in close proximity to a gallium nitride on a sapphire racetrack resonator, and respective loaded Q factors of 9.1 × 104 and 2.9 × 104 are measured. We show that by using two independent wide-bandgap materials, tracking the thermally induced shifts in multiple resonances, and using optimized curve fitting tools the measurement error can be reduced to 9.2 mK. Finally, for the GaN, in a continuous acquisition measurement we record an improvement in minimum Allan variance, occurring at an averaging time four times greater than a comparative silicon device, indicating better performance over longer time scales.
RESUMEN
Polyaluminum cations, such as the MAl12 Keggin, undergo atomic substitutions at the heteroatom site (M), where nanoclusters with M = Al3+, Ga3+, and Ge4+ have been experimentally studied. The identity of the heteroatom M has been shown to influence the structural and electronic properties of the nanocluster and the kinetics of ligand exchange reactions. To date, only three ε-analogs have been identified, and there is a need for a predictive model to guide experiment to the discovery of new MAl12 species. Here, we present a density functional theory (DFT) and thermodynamics approach to predicting favorable heteroatom substitution reactions, alongside structural analyses on hypothetical ε-MAl12 nanocluster models. We delineate trends in energetics and geometry based on heteroatom cation properties, finding that Al3+-O bond lengths are related to heteroatom cation size, charge, and speciation. Our analyses also enable us to identify potentially isolable new ε-MAl12 species, such as FeAl12 7+. Based upon these results, we evaluated the Al3+/Zn2+/Cr3+ system and determined that substitution of Cr3+ is unfavorable in the heteroatom site but is preferred for Zn2+, in agreement with the experimental structures. Complimentary experimental studies resulted in the isolation of Cr3+-substituted δ-Keggin species where Cr3+ substitution occurs only in the octahedral positions. The isolated structures Na[AlO4Al9.6Cr2.4(OH)24(H2O)12](2,6-NDS)4(H2O)22 (δ-CrnAl13-n-1) and Na[AlO4Al9.5Cr2.5(OH)24(H2O)12](2,7-NDS)4(H2O)18.5 (δ-CrnAl13-n-2) are the first pieces of evidence of mixed Al3+/Cr3+ Keggin-type nanoclusters that prefer substitution at the octahedral sites. The δ-CrnAl13-n-2 structure also exhibits a unique placement of the bound Na+ cation, which may indicate that Cr3+ substitution can alter the surface reactivity of Keggin-type species.
RESUMEN
Keggin-type polyaluminum cations belong to a unique class of compounds with their large positive charge, hydroxo bridges, and divergent isomerization/oligomerization. Previous reports indicated that oligomerization of this species can only occur through one isomer (δ), but herein we report the isolation of largest Keggin-type cluster that occurs through self-condensation of four ϵ-isomers ϵ-GeAl12 8+ to form [Ge4 O16 Al48 (OH)108 (H2 O)24 ]20+ cluster (Ge4 Al48 ). The cluster was crystallized and structurally characterized by single-crystal X-ray diffraction (SCXRD) and the elemental composition was confirmed by ICP-MS and SEM-EDS. Additional dynamic light scattering experiments confirms the presence of the Ge4 Al48 in thermally aged solutions. DFT calculations reveal that a single atom Ge substitution in tetrahedral site of ϵ-isomer is the key for the formation of Ge4 Al48 because it activates deprotonation at key surface sites that control the self-condensation process.
RESUMEN
Obesity is associated with an increased risk of severe Coronavirus Disease 2019 (COVID-19) infection and mortality. COVID-19 vaccines reduce the risk of serious COVID-19 outcomes; however, their effectiveness in people with obesity is incompletely understood. We studied the relationship among body mass index (BMI), hospitalization and mortality due to COVID-19 among 3.6 million people in Scotland using the Early Pandemic Evaluation and Enhanced Surveillance of COVID-19 (EAVE II) surveillance platform. We found that vaccinated individuals with severe obesity (BMI > 40 kg/m2) were 76% more likely to experience hospitalization or death from COVID-19 (adjusted rate ratio of 1.76 (95% confidence interval (CI), 1.60-1.94). We also conducted a prospective longitudinal study of a cohort of 28 individuals with severe obesity compared to 41 control individuals with normal BMI (BMI 18.5-24.9 kg/m2). We found that 55% of individuals with severe obesity had unquantifiable titers of neutralizing antibody against authentic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus compared to 12% of individuals with normal BMI (P = 0.0003) 6 months after their second vaccine dose. Furthermore, we observed that, for individuals with severe obesity, at any given anti-spike and anti-receptor-binding domain (RBD) antibody level, neutralizing capacity was lower than that of individuals with a normal BMI. Neutralizing capacity was restored by a third dose of vaccine but again declined more rapidly in people with severe obesity. We demonstrate that waning of COVID-19 vaccine-induced humoral immunity is accelerated in individuals with severe obesity. As obesity is associated with increased hospitalization and mortality from breakthrough infections, our findings have implications for vaccine prioritization policies.