Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Gen Virol ; 96(Pt 5): 1127-1137, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25575707

RESUMEN

Infection with multiple genetically distinct strains of pathogen is common and can lead to positive (complementation) or negative (competitive) within-host interactions. These interactions can alter aspects of the disease process and help shape pathogen evolution. Infection of the host with multiple strains of cytomegalovirus (CMV) occurs frequently in humans and mice. Profound, NK-cell-mediated (apparent) competition has been identified in C57BL/6 mice, and prevented the replication and shedding of certain co-infecting CMV strains. However, the frequency of such strong competition has not been established. Other within-host interactions such as complementation or alternative forms of competition remain possible. Moreover, high rates of recombination in both human CMV and murine CMV (MCMV) suggest prolonged periods of viral co-replication, rather than strong competitive suppression. An established model was employed to investigate the different possible outcomes of multi-strain infection in other mouse strains. In this study, co-replication of up to four strains of MCMV in the spleen, liver and salivary glands was observed in both MCMV-susceptible and MCMV-resistant mice. In the absence of apparent competition, no other forms of competition were unmasked. In addition, no evidence of complementation between viral strains was observed. Importantly, co-replication of MCMV strains was apparent for up to 90 days in the salivary glands. These data indicated that competition was not the default outcome of multi-strain CMV infection. Prolonged, essentially neutral, co-replication may be the norm, allowing for multi-strain transmission and prolonged opportunities for recombination.


Asunto(s)
Coinfección/virología , Infecciones por Herpesviridae/virología , Muromegalovirus/crecimiento & desarrollo , Subfamilia A de Receptores Similares a Lectina de Células NK/inmunología , Glándulas Salivales/virología , Animales , Hígado/virología , Ratones Endogámicos BALB C , Ratones Endogámicos CBA , Subfamilia A de Receptores Similares a Lectina de Células NK/deficiencia , Bazo/virología
2.
PLoS Pathog ; 9(1): e1003111, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23300458

RESUMEN

It is becoming increasingly clear that many diseases are the result of infection from multiple genetically distinct strains of a pathogen. Such multi-strain infections have the capacity to alter both disease and pathogen dynamics. Infection with multiple strains of human cytomegalovirus (HCMV) is common and has been linked to enhanced disease. Suggestions that disease enhancement in multi-strain infected patients is due to complementation have been supported by trans-complementation studies in mice during co-infection of wild type and gene knockout strains of murine CMV (MCMV). Complementation between naturally circulating strains of CMV has, however, not been assessed. In addition, many models of multi-strain infection predict that co-infecting strains will compete with each other and that this competition may contribute to selective transmission of more virulent pathogen strains. To assess the outcome of multi-strain infection, C57BL/6 mice were infected with up to four naturally circulating strains of MCMV. In this study, profound within-host competition was observed between co-infecting strains of MCMV. This competition was MCMV strain specific and resulted in the complete exclusion of certain strains of MCMV from the salivary glands of multi-strain infected mice. Competition was dependent on Ly49H(+) natural killer (NK) cells as well as the expression of the ligand for Ly49H, the MCMV encoded product, m157. Strains of MCMV which expressed an m157 gene product capable of ligating Ly49H were outcompeted by strains of MCMV expressing variant m157 genes. Importantly, within-host competition prevented the shedding of the less virulent strains of MCMV, those recognized by Ly49H, into the saliva of multi-strain infected mice. These data demonstrate that NK cells have the strain specific recognition capacity required to meditate within-host competition between strains of MCMV. Furthermore, this within-host competition has the capacity to shape the dynamics of viral shedding and potentially select for the transmission of more virulent virus strains.


Asunto(s)
Infecciones por Citomegalovirus/inmunología , Infecciones por Citomegalovirus/virología , Citomegalovirus/inmunología , Células Asesinas Naturales/inmunología , Subfamilia A de Receptores Similares a Lectina de Células NK/inmunología , Animales , Anticuerpos Bloqueadores/inmunología , Anticuerpos Monoclonales/inmunología , Antígenos Virales/biosíntesis , Antígenos Virales/inmunología , Células Cultivadas , Citomegalovirus/clasificación , Citomegalovirus/patogenicidad , Células Asesinas Naturales/metabolismo , Activación de Linfocitos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Subfamilia A de Receptores Similares a Lectina de Células NK/metabolismo , Glándulas Salivales/virología , Proteínas Virales/inmunología
3.
Materials (Basel) ; 17(13)2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38998174

RESUMEN

Carbon nanomaterials-based electric double-layer capacitors (EDLCs) are reliable and appealing energy-storage systems offering high power density and long cycling stability. However, these energy storage devices are plagued with critical shortcomings, such as low specific capacitance, inefficient physical/chemical activation process, and self-discharge of electrode materials, hindering their future application. In this work, we use a self-activation process, an environmentally benign and low-cost process, to produce high-performance activated carbon (AC). Novel activated carbon from pecan shells (PS) was successfully synthesized through a single-step self-activation process, which combines the carbonization and activation processes. The as-synthesized pecan shell-derived activated carbon (PSAC) provides a high-porosity, low-resistance, and ordered pore structure with a specific pore volume of 0.744 cm3/g and BET surface area of 1554 m2/g. The supercapacitors fabricated from PSAC demonstrate a specific capacitance of 269 F/g at 2 A/g, excellent cycling stability over 15,000 cycles, and energy and power density of 37.4 Wh/kg and of 2.1 kW/kg, respectively. It is believed that the high-efficiency PSAC synthesized from the novel self-activation method could provide a practical route to environmentally friendly and easily scalable supercapacitors.

4.
Chemosphere ; 339: 139715, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37536539

RESUMEN

Phenoxyacetic acid herbicides are widely used in agriculture for controlling weeds. These organic compounds are persistent and recalcitrant, often contaminating water and soil. Therefore, we studied five pristine biochars (BCs), and southern yellow pine (SYP) based self-activated carbon (SAC) for the adsorptive removal of 2,4-Dichlorophenoxyacetic acid (2,4-D) herbicide. Among the tested adsorbents, SYP-SAC-15 demonstrated higher (>90%) 2,4-D removal from water. The SYP-SAC-15 was produced using a facile and green route where the biomass pyrolysis gases worked as activating agents creating a highly porous structure with a surface area of 1499.79 m2/g. Different adsorption kinetics and isotherm models were assessed for 2,4-D adsorption on SYP-SAC-15, where the data fitted best to pseudo-second order (R2 > 0.999) and Langmuir (R2 > 0.991) models, respectively. Consequently, the adsorption process was mainly dominated by the chemisorption mechanism with monolayer coverage of SYP-SAC-15 surface with 2,4-D molecules. At the optimum pH of 2, the maximum 2,4-D adsorption capacity of SYP-SAC-15 reached 471.70 mg/g. Furthermore, an increase in the water salinity demonstrated a positive influence on 2,4-D adsorption, whereas humic acid (HA) showed a negative impact on 2,4-D adsorption. The regeneration ability of SYP-SAC-15 showed excellent performance by retaining 71.09% adsorption capability at the seventh adsorption-desorption cycle. Based on the operating pH, surface area, spectroscopic data, kinetics, and isotherm modeling, the adsorption mechanism was speculated. The 2,4-D adsorption on SYP-SAC-15 was mainly governed by pore filling, electrostatic interactions, hydrogen bonding, hydrophobic and π-π interactions.


Asunto(s)
Herbicidas , Contaminantes Químicos del Agua , Herbicidas/química , Carbón Orgánico/química , Adsorción , Agua , Contaminantes Químicos del Agua/análisis , Concentración de Iones de Hidrógeno , Ácido 2,4-Diclorofenoxiacético/química , Cinética
5.
ACS Appl Mater Interfaces ; 13(1): 1662-1669, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33378152

RESUMEN

The objective of this study is to convert bamboo into a transparent material with great optical transmittance and good strength. Bamboo has a much faster regeneration rate than wood, but its high density and high extractive content make it challenging to produce transparent products. This study presents a simple and effective approach that could address this challenge. Pretreatment of bamboo with low concentration sodium hydroxide greatly improved the preparation efficiency of transparent bamboo. The transparent bamboo with a thickness of 1 mm and cellulose volume fraction of 22% made from the pretreated bamboo exhibited an improved total optical transmissivity up to 80%, which was 60% higher than that of untreated bamboo. Compared to transparent wood (TW), although the transmissivity of transparent bamboo was slightly lower, its mechanical strength was almost doubled. Besides, the developed transparent bamboo exhibited a low heat conductivity of 0.203 W m-1 K-1, being about 10% lower than that of TW (0.225 W m-1 K-1) and approximately 80% lower than that of common glass material (0.974 W m-1 K-1). The transparent bamboo would significantly enhance energy-saving performance, being a promising alternative to traditional glass.

6.
Pathogens ; 10(7)2021 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-34358016

RESUMEN

As the largest herpesviruses, the 230 kb genomes of cytomegaloviruses (CMVs) have increased our understanding of host immunity and viral escape mechanisms, although many of the annotated genes remain as yet uncharacterised. Here we identify the m15 locus of murine CMV (MCMV) as a viral modulator of natural killer (NK) cell immunity. We show that, rather than discrete transcripts from the m14, m15 and m16 genes as annotated, there are five 3'-coterminal transcripts expressed over this region, all utilising a consensus polyA tail at the end of the m16 gene. Functional inactivation of any one of these genes had no measurable impact on viral replication. However, disruption of all five transcripts led to significantly attenuated dissemination to, and replication in, the salivary glands of multiple strains of mice, but normal growth during acute infection. Disruption of the m15 locus was associated with heightened NK cell responses, including enhanced proliferation and IFNγ production. Depletion of NK cells, but not T cells, rescued salivary gland replication and viral shedding. These data demonstrate the identification of multiple transcripts expressed by a single locus which modulate, perhaps in a concerted fashion, the function of anti-viral NK cells.

7.
Arch Virol ; 154(1): 65-75, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19066712

RESUMEN

Previous analysis of the M73-to-m74/M75 intergenic region of murine cytomegalovirus (MCMV) identified a family of 3'-co-terminal spliced transcripts that includes M73 and M73.5. The current study investigated whether similar families of spliced genes also exist in the human CMV (HCMV) and rat CMV (RCMV) genomes. Northern blot, RT-PCR and RACE-PCR analysis of HCMV transcripts showed that while mRNAs from HCMV UL73 and a putative UL73.5 homologue were spliced and 3'-co-terminal, they were not 5'-co-terminal. In contrast, the spliced RCMV R73 and R73.5 transcripts were arranged in a similar manner to those in MCMV and found to be both 5' and 3'-co-terminal. In both the HCMV and RCMV genomes, additional non-coding spliced transcripts were found to originate from these regions. These results highlight that families of spliced transcripts coding for structural glycoproteins are likely to be a conserved feature of this region of betaherpesviral genomes.


Asunto(s)
Citomegalovirus/genética , ADN Recombinante/genética , Regulación Viral de la Expresión Génica , Muromegalovirus/genética , Proteínas Virales/genética , Animales , Northern Blotting , Células Cultivadas , ADN Intergénico/genética , Fibroblastos , Perfilación de la Expresión Génica , Humanos , Reacción en Cadena de la Polimerasa , Ratas , Ratas Wistar
8.
Materials (Basel) ; 12(9)2019 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-31060277

RESUMEN

The objective of this study was to investigate the hygroscopic characteristics of three typical bamboo engineering composites (Bamboo scrimber (BS), bamboo bundle/wood laminated veneer lumber (BLVL), and bamboo laminated timber (BLT)) as well as predict their performance changes and service life in hot humid environments. The composites were subjected to three treatment conditions (23 °C, 63 °C, and 100 °C) for this experiment. The hygroscopic thickness swelling model and Fick's second law were used to quantify the characterization and prediction of the water absorption, thickness swelling rate, and water absorption rate of BS, BLVL, and BLT. The results indicated that the order of the hygroscopic thickness swelling coefficient KSR and the diffusion coefficient D was BLT > BLVL > BS (at 23 °C and 63 °C). The optimal dimensional stability was displayed by BS, followed by BLVL and BLT. In addition to the hygroscopic properties, elastic modulus degradation was investigated. It was observed that the elastic modulus (MOR) degradation had a linear relationship with the aging temperature. After 152 h of the hydrothermal aging test (63 °C), the MOE of BS, BLVL, and BLT degraded by 44.33%, 53.89%, and 25.83%, respectively.

9.
Mater Sci Eng C Mater Biol Appl ; 98: 118-124, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30813002

RESUMEN

We report a plasma immersion ion implantation process for functionalizing polymer coated magnetic particles, converting them into a universal covalent binding platform for the simultaneous binding of multiple molecular agents without the need for specialised chemical linking groups. As an example, we demonstrate the improvement of wettability and the control of surface charge of polystyrene coated magnetic particles, enhancing biomolecule attachment density with strong covalent binding. We demonstrate the preparation of multifunctional magnetic particles where two or more types of molecule are co-immobilized. This enables a platform technology with simultaneous multiple covalent binding of molecules drawn from oligonucleotides, antibodies and enzymes suitable for targeted nanoparticle diagnostic and therapies.


Asunto(s)
Anticuerpos/química , Nanopartículas/química , Oligonucleótidos/química , Poliestirenos/química , Polímeros/química , Propiedades de Superficie , Humectabilidad
10.
Polymers (Basel) ; 9(11)2017 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-30965889

RESUMEN

The focus of this study was to observe the effect of nano calcium carbonate (CaCO3) modification methods on bamboo fiber (BF) used in BF-reinforced high-density polyethylene (HDPE) composites manufactured by extrusion molding. Two methods were used to introduce the nano CaCO3 into the BF for modification; the first was blending modification (BM) and the second was impregnation modification (IM). In order to determine the effects of the modification methods, the water absorption, surface free energy and interfacial properties of the unmodified composites were compared to those of the composites made from the two modification methods. The results revealed that the percentage increase in the weight of the composite treated by nano CaCO3 decreased and that of the IMBF/HDPE composite was the lowest over the seven months of time. The results obtained by the acid-base model according to the Lewis and Owens-Wendt- Rabel-Kaelble (OWRK) equations indicated that the surface energy of the composites was between 40 and 50 mJ/m². When compared to the control sample, the maximum storage modulus (E'max) of the BMBF/HDPE and IMBF/HDPE composites increased 1.43- and 1.53-fold, respectively. The values of the phase-to-phase interaction parameter B and the k value of the modified composites were higher than those of the unmodified composites, while the apparent activation energy Ea and interface parameter A were lower in the modified composites. It can be concluded that nano CaCO3 had an effect on the interfacial properties of BF-reinforced HDPE composites, and the interface bonding between IMBF and HDPE was greatest among the composites.

11.
Vaccine ; 26(31): 3860-9, 2008 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-18573574

RESUMEN

We have developed a murine cytomegalovirus (MCMV)-vectored vaccine expressing the mouse zona-pellucida-3 gene (rMCMV-ZP3), which successfully induces infertility in experimentally inoculated laboratory or wild-derived mice. However, the future success of this vector as a fully disseminating vaccine in free-living mice may be compromised by pre-existing immunity since there is a high prevalence of naturally acquired MCMV infection in these mice. To evaluate the effect of prior immunity to MCMV on vaccine efficacy, we constructed two new biologically effective recombinant MCMV vectors expressing the mouse ZP3 protein from two MCMV strains (N1 and G4) derived from free-living mice. In wild mice, mixed MCMV infection is common and could be acquired either by simultaneous coinfection or sequential infection with different MCMV strains. Interestingly, while coinfection with both wild-type and rMCMV-ZP3 via the intraperitoneal route reduced the impact of the rMCMV-ZP3, prior infection with the same wild-type strain as that used to construct the rMCMV-ZP3 abrogated the immunocontraceptive effects of either N1-ZP3 or G4-ZP3. However, prior infection with G4 28 days before the introduction of N1-ZP3 had a reduced influence on the efficacy of the rMCMV-ZP3. Thus, the strain of virus and the timing of prior infection are factors that may influence the efficacy of the rMCMV-ZP3. Given that mixed infection of mice with MCMV is common, it is possible that prior immunity acquired by natural mucosal infection may have less a less inhibitory effect on the immunocontraceptive outcome.


Asunto(s)
Proteínas del Huevo/inmunología , Vectores Genéticos/inmunología , Infecciones por Herpesviridae/inmunología , Glicoproteínas de Membrana/inmunología , Muromegalovirus/inmunología , Receptores de Superficie Celular/inmunología , Vacunas Anticonceptivas/inmunología , Animales , Anticuerpos Antivirales/sangre , Anticoncepción Inmunológica , Proteínas del Huevo/genética , Femenino , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos BALB C , Ovario/patología , Receptores de Superficie Celular/genética , Glándulas Salivales/virología , Factores de Tiempo , Glicoproteínas de la Zona Pelúcida
12.
Virology ; 352(2): 450-65, 2006 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-16781754

RESUMEN

Murine cytomegaloviruses encode a number of genes which modulate polymorphic host immune responses. We suggest that these viral genes should themselves therefore exhibit sequence polymorphism. Additionally, clinical isolates of human cytomegalovirus (HCMV) have been shown to vary extensively from the common laboratory strains. Almost all research conducted on murine cytomegalovirus (MCMV) has used the laboratory strains Smith and K181, which have been extensively passaged in vitro and in vivo since isolation. Using the heteroduplex mobility assay (HMA) to determine levels of sequence variation 11 MCMV genes were examined from 26 isolates of MCMV from wild mice, as well as both laboratory strains. Both the HMA and sequencing of selected genes demonstrated that whilst certain genes (M33, mck-2, m147.5, m152) were highly conserved, others (m04, m06, M44, m138, m144, m145 and m155) contained significant sequence variation. Several of these genes (m06, m144 and m155) exist in wild MCMV strains as one of several distinct genotypes.


Asunto(s)
Genes Virales , Muromegalovirus/genética , Animales , Animales de Laboratorio , Animales Salvajes , Secuencia de Bases , Células Cultivadas , Citomegalovirus/genética , ADN Viral/genética , Evolución Molecular , Variación Genética , Genotipo , Humanos , Ratones , Datos de Secuencia Molecular , Muromegalovirus/aislamiento & purificación , Filogenia , Homología de Secuencia de Ácido Nucleico , Especificidad de la Especie
13.
J Gen Virol ; 87(Pt 5): 1123-1132, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16603512

RESUMEN

As with human cytomegalovirus (HCMV) infection of humans, murine CMV (MCMV) infection is widespread in its natural host, the house mouse Mus domesticus, and may consist of mixed infection with different CMV isolates. The incidence and mechanisms by which mixed infection occurs in free-living mice are unknown. This study used two approaches to determine whether mixed infection with MCMV could be established in laboratory mice. The first utilized two naturally occurring MCMV strains, N1 and G4, into which the lacZ gene was inserted by homologous recombination. The lacZ gene was used to track recombinant and parental viruses in simultaneously coinfected mice. In the second approach, a real-time quantitative PCR (qPCR) assay was used to detect viral immediate-early 1 (ie1) gene sequences in mice successively coinfected with G4 and then with the K181 MCMV strain. In both systems, mixed infection was detected in the salivary glands and lungs of experimentally infected mice. MCMV-specific antibody in sera and G4 IE1-specific cytotoxic lymphocyte responses in the spleens of twice-infected mice did not prevent reinfection. Finally, the prevalence of mixed infection in free-living mice trapped in four Australian locations was investigated using real-time qPCR to detect ie1 DNA sequences of N1, G4 and K181. Mixed infection with MCMVs containing the G4 and K181 ie1 sequences was detected in the salivary glands of 34.2 % of trapped mice. The observations that mixed infections are common in free-living M. domesticus and are acquired by immunocompetent mice through simultaneous or successive infections are important for vaccine development.


Asunto(s)
Infecciones por Herpesviridae/virología , Muromegalovirus/patogenicidad , Animales , Anticuerpos Antivirales/sangre , Especificidad de Anticuerpos , Australia , Citotoxicidad Inmunológica , Femenino , Genes Virales , Infecciones por Herpesviridae/inmunología , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/inmunología , Inmunocompetencia , Pulmón/virología , Linfocitos/inmunología , Ratones/virología , Ratones Endogámicos BALB C , Muromegalovirus/genética , Muromegalovirus/inmunología , Muromegalovirus/aislamiento & purificación , Reacción en Cadena de la Polimerasa , Glándulas Salivales/virología , Bazo/inmunología , Proteínas Virales/genética , Proteínas Virales/inmunología , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA