Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Physiol ; 602(14): 3489-3504, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39008710

RESUMEN

Cerebral palsy (CP) describes some upper motoneuron disorders due to non-progressive disturbances occurring in the developing brain that cause progressive changes to muscle. While longer sarcomeres increase muscle stiffness in patients with CP compared to typically developing (TD) patients, changes in extracellular matrix (ECM) architecture can increase stiffness. Our goal was to investigate how changes in muscle and ECM architecture impact muscle stiffness, gait and joint function in CP. Gracilis and adductor longus biopsies were collected from children with CP undergoing tendon lengthening surgery for hamstring and hip adduction contractures, respectively. Gracilis biopsies were collected from TD patients undergoing anterior cruciate ligament reconstruction surgery with hamstring autograft. Muscle mechanical testing, two-photon imaging and hydroxyproline assay were performed on biopsies. Corresponding data were compared to radiographic hip displacement in CP adductors (CPA), gait kinematics in CP hamstrings (CPH), and joint range of motion in CPA and CPH. We found at matched sarcomere lengths muscle stiffness and collagen architecture were similar between TD and CP hamstrings. However, CPH stiffness (R2 = 0.1973), collagen content (R2 = 0.5099) and cross-linking (R2 = 0.3233) were correlated to decreased knee range of motion. Additionally, we observed collagen fibres within the muscle ECM increase alignment during muscular stretching. These data demonstrate that while ECM architecture is similar between TD and CP hamstrings, collagen fibres biomechanics are sensitive to muscle strain and may be altered at longer in vivo sarcomere lengths in CP muscle. Future studies could evaluate the impact of ECM architecture on TD and CP muscle stiffness across in vivo operating ranges. KEY POINTS: At matched sarcomere lengths, gracilis muscle mechanics and collagen architecture are similar in TD patients and patients with CP. In both TD and CP muscles, collagen fibres dynamically increase their alignment during muscle stretching. Aspects of muscle mechanics and collagen architecture are predictive of in vivo knee joint motion and radiographic hip displacement in patients with CP. Longer sarcomere lengths in CP muscle in vivo may alter collagen architecture and biomechanics to drive deficits in joint mobility and gait function.


Asunto(s)
Parálisis Cerebral , Colágeno , Humanos , Parálisis Cerebral/fisiopatología , Parálisis Cerebral/patología , Niño , Masculino , Femenino , Colágeno/metabolismo , Fenómenos Biomecánicos , Adolescente , Músculo Grácil , Rango del Movimiento Articular , Músculo Esquelético/fisiología , Músculo Esquelético/fisiopatología , Marcha/fisiología , Músculos Isquiosurales/fisiología , Músculos Isquiosurales/fisiopatología , Matriz Extracelular/fisiología
2.
Dev Med Child Neurol ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937924

RESUMEN

AIM: To evaluate the mechanosensitivity of muscle satellite cells (MuSCs) and fibro-adipogenic progenitors (FAPs) in cerebral palsy (CP) and the efficacy of the drug verteporfin in restoring cells' regenerative capacity. METHOD: Muscle biopsies were collected from six children with CP and six typically developing children. MuSCs and FAPs were isolated and plated on collagen-coated polyacrylamide gels at stiffnesses of 0.2 kPa, 8 kPa, and 25 kPa. Cells were treated with verteporfin to block mechanosensing or with dimethyl sulfoxide as a negative control. MuSC differentiation and FAP activation into myofibroblasts were measured using immunofluorescence staining. RESULTS: Surprisingly, MuSC differentiation was not affected by stiffness; however, stiff substrates resulted in large myonuclear clustering. Across all stiffnesses, MuSCs from children with CP had less differentiation than those of their typically developing counterparts. FAP activation into myofibroblasts was significantly higher in children with CP than their typically developing peers, but was not affected by stiffness. Verteporfin did not affect differentiation or activation in either cell population, but slightly decreased myonuclear clustering on stiff substrates. INTERPRETATION: Cells from children with CP were less regenerative and more fibrotic compared to those of their typically developing counterparts, with MuSCs being sensitive to increases in stiffness. Therefore, the mechanosensitivity of MuSCs and FAPs may represent a new target to improve differentiation and activation in CP muscle.

3.
Am J Physiol Cell Physiol ; 325(4): C895-C906, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37602412

RESUMEN

Fibro-adipogenic progenitors (FAPs) are key regulators of skeletal muscle regeneration and homeostasis. However, dysregulation of these cells leads to fibro-fatty infiltration across various muscle diseases. FAPs are the key source of extracellular matrix (ECM) deposition in muscle, and disruption to this process leads to a pathological accumulation of ECM, known as fibrosis. The replacement of contractile tissue with fibrotic ECM functionally impairs the muscle and increases muscle stiffness. FAPs and fibrotic muscle form a progressively degenerative feedback loop where, as a muscle becomes fibrotic, it induces a fibrotic FAP phenotype leading to further development of fibrosis. In this review, we summarize FAPs' role in fibrosis in terms of their activation, heterogeneity, contributions to fibrotic degeneration, and role across musculoskeletal diseases. We also discuss current research on potential therapeutic avenues to attenuate fibrosis by targeting FAPs.


Asunto(s)
Adipocitos , Adipogénesis , Humanos , Adipocitos/patología , Células Madre , Fibrosis , Músculo Esquelético/patología , Diferenciación Celular/fisiología
4.
Am J Physiol Cell Physiol ; 325(4): C1017-C1030, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37661921

RESUMEN

The muscle extracellular matrix (ECM) forms a complex network of collagens, proteoglycans, and other proteins that produce a favorable environment for muscle regeneration, protect the sarcolemma from contraction-induced damage, and provide a pathway for the lateral transmission of contractile force. In each of these functions, the structure and organization of the muscle ECM play an important role. Many aspects of collagen architecture, including collagen alignment, cross linking, and packing density affect the regenerative capacity, passive mechanical properties, and contractile force transmission pathways of skeletal muscle. The balance between fortifying the muscle ECM and maintaining ECM turnover and compliance is highly dependent on the integrated organization, or architecture, of the muscle matrix, especially related to collagen. While muscle ECM remodeling patterns in response to exercise and disease are similar, in that collagen synthesis can increase in both cases, one outcome leads to a stronger muscle and the other leads to fibrosis. In this review, we provide a comprehensive analysis of the architectural features of each layer of muscle ECM: epimysium, perimysium, and endomysium. Further, we detail the importance of muscle ECM architecture to biomechanical function in the context of exercise or fibrosis, including disease, injury, and aging. We describe how collagen architecture is linked to active and passive muscle biomechanics and which architectural features are acutely dynamic and adapt over time. Future studies should investigate the significance of collagen architecture in muscle stiffness, ECM turnover, and lateral force transmission in the context of health and fibrosis.


Asunto(s)
Matriz Extracelular , Músculo Esquelético , Humanos , Músculo Esquelético/metabolismo , Matriz Extracelular/metabolismo , Colágeno/metabolismo , Proteoglicanos/metabolismo , Fibrosis
5.
J Ren Nutr ; 33(2): 316-325, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36270479

RESUMEN

OBJECTIVE: Chronic kidney disease (CKD) is associated with decreased anabolic response to insulin contributing to protein-energy wasting. Targeted metabolic profiling of oral glucose tolerance testing (OGTT) may help identify metabolic pathways contributing to disruptions to insulin response in CKD. METHODS: Using targeted metabolic profiling, we studied the plasma metabolome response in 41 moderate-to-severe nondiabetic CKD patients and 20 healthy controls at fasting and 2 hours after an oral glucose load. We used linear mixed modeling with random intercepts, adjusting for age, gender, race/ethnicity, body weight, and batch to assess heterogeneity in response to OGTT by CKD status. RESULTS: Mean estimated glomerular filtration rate among CKD participants was 38.9 ± 12.7 mL/min per 1.73 m2 compared to 87.2 ± 17.7 mL/min per 1.73 m2 among controls. Glucose ingestion induced an anabolic response resulting in increased glycolysis products and a reduction in a wide range of metabolites including amino acids, tricarboxylic acid cycle intermediates, and purine nucleotides compared to fasting. Participants with CKD demonstrated a blunted anabolic response to OGTT evidenced by significant changes in 13 metabolites compared to controls. The attenuated metabolome response predominant involved mitochondrial energy metabolism, vitamin B family, and purine nucleotides. Compared to controls, CKD participants had elevated lactate:pyruvate (L:P) ratio and decreased guanosine diphosphate:guanosine triphosphate ratio during OGTT. CONCLUSION: Metabolic profiling of OGTT response suggests a broad disruption of mitochondrial energy metabolism in CKD patients. These findings motivate further investigation into the impact of insulin sensitizers and mitochondrial targeted therapeutics on energy metabolism in patients with nondiabetic CKD.


Asunto(s)
Resistencia a la Insulina , Insuficiencia Renal Crónica , Humanos , Prueba de Tolerancia a la Glucosa , Resistencia a la Insulina/fisiología , Insulina , Glucosa , Metaboloma , Glucemia/metabolismo
6.
FASEB J ; 35(9): e21860, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34411340

RESUMEN

Desminopathy is the most common intermediate filament disease in humans. The most frequent mutation causing desminopathy in patients is a R350P DES missense mutation. We have developed a rat model with an analogous mutation in R349P Des. To investigate the role of R349P Des in mechanical loading, we stimulated the sciatic nerve of wild-type littermates (WT) (n = 6) and animals carrying the mutation (MUT) (n = 6) causing a lengthening contraction of the dorsi flexor muscles. MUT animals showed signs of ongoing regeneration at baseline as indicated by a higher number of central nuclei (genotype: P < .0001). While stimulation did not impact central nuclei, we found an increased number of IgG positive fibers (membrane damage indicator) after eccentric contractions with both genotypes (stimulation: P < .01). Interestingly, WT animals displayed a more pronounced increase in IgG positive fibers with stimulation compared to MUT (interaction: P < .05). In addition to altered histology, molecular signaling on the protein level differed between WT and MUT. The membrane repair protein dysferlin decreased with eccentric loading in WT but increased in MUT (interaction: P < .05). The autophagic substrate p62 was increased in both genotypes with loading (stimulation: P < .05) but tended to be more elevated in WT (interaction: P = .05). Caspase 3 levels, a central regulator of apoptotic cell death, was increased with stimulation in both genotypes (stimulation: P < .01) but more so in WT animals (interaction: P < .0001). Overall, our data indicate that R349P Des rats have a lower susceptibility to structural muscle damage of the cytoskeleton and sarcolemma with acute eccentric loading.


Asunto(s)
Desmina/genética , Contracción Muscular , Músculo Esquelético/lesiones , Músculo Esquelético/metabolismo , Mutación , Enfermedad Aguda , Animales , Apoptosis , Enfermedad Crónica , Colágeno/metabolismo , Modelos Animales de Enfermedad , Estimulación Eléctrica , Femenino , Masculino , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/patología , Ratas , Riesgo
7.
Int J Mol Sci ; 23(18)2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36142754

RESUMEN

Duchenne muscular dystrophy (DMD) is a degenerative genetic myopathy characterized by complete absence of dystrophin. Although the mdx mouse lacks dystrophin, its phenotype is milder compared to DMD patients. The incorporation of a null mutation in the Cmah gene led to a more DMD-like phenotype (i.e., more fibrosis). Although fibrosis is thought to be the major determinant of 'structural weakness', intracellular remodeling of myofibrillar geometry was shown to be a major cellular determinant thereof. To dissect the respective contribution to muscle weakness, we assessed biomechanics and extra- and intracellular architecture of whole muscle and single fibers from extensor digitorum longus (EDL) and diaphragm. Despite increased collagen contents in both muscles, passive stiffness in mdx Cmah-/- diaphragm was similar to wt mice (EDL muscles were twice as stiff). Isometric twitch and tetanic stresses were 50% reduced in mdx Cmah-/- diaphragm (15% in EDL). Myofibrillar architecture was severely compromised in mdx Cmah-/- single fibers of both muscle types, but more pronounced in diaphragm. Our results show that the mdx Cmah-/- genotype reproduces DMD-like fibrosis but is not associated with changes in passive visco-elastic muscle stiffness. Furthermore, detriments in active isometric force are compatible with the pronounced myofibrillar disarray of the dystrophic background.


Asunto(s)
Distrofina , Distrofia Muscular de Duchenne , Animales , Colágeno/metabolismo , Diafragma/metabolismo , Modelos Animales de Enfermedad , Distrofina/genética , Distrofina/metabolismo , Fibrosis , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Debilidad Muscular/patología , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo
8.
Am J Physiol Cell Physiol ; 321(2): C330-C342, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34191625

RESUMEN

Muscle stem cells (MuSCs) are essential for the robust regenerative capacity of skeletal muscle. However, in fibrotic environments marked by abundant collagen and altered collagen organization, the regenerative capability of MuSCs is diminished. MuSCs are sensitive to their extracellular matrix environment but their response to collagen architecture is largely unknown. The present study aimed to systematically test the effect of underlying collagen structures on MuSC functions. Collagen hydrogels were engineered with varied architectures: collagen concentration, cross linking, fibril size, and fibril alignment, and the changes were validated with second harmonic generation imaging and rheology. Proliferation and differentiation responses of primary mouse MuSCs and immortal myoblasts (C2C12s) were assessed using EdU assays and immunolabeling skeletal muscle myosin expression, respectively. Changing collagen concentration and the corresponding hydrogel stiffness did not have a significant influence on MuSC proliferation or differentiation. However, MuSC differentiation on atelocollagen gels, which do not form mature pyridinoline cross links, was increased compared with the cross-linked control. In addition, MuSCs and C2C12 myoblasts showed greater differentiation on gels with smaller collagen fibrils. Proliferation rates of C2C12 myoblasts were also higher on gels with smaller collagen fibrils, whereas MuSCs did not show a significant difference. Surprisingly, collagen alignment did not have significant effects on muscle progenitor function. This study demonstrates that MuSCs are capable of sensing their underlying extracellular matrix (ECM) structures and enhancing differentiation on substrates with less collagen cross linking or smaller collagen fibrils. Thus, in fibrotic muscle, targeting cross linking and fibril size rather than collagen expression may more effectively support MuSC-based regeneration.


Asunto(s)
Diferenciación Celular/fisiología , Desarrollo de Músculos/fisiología , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Miocitos Cardíacos/citología , Animales , Matriz Extracelular/metabolismo , Ratones , Fibras Musculares Esqueléticas/metabolismo , Enfermedades Musculares/metabolismo , Miocitos Cardíacos/metabolismo , Regeneración/fisiología
9.
J Physiol ; 599(3): 943-962, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33247944

RESUMEN

KEY POINTS: The amount of fibrotic material in dystrophic mouse muscles relates to contractile function, but not passive function. Collagen fibres in skeletal muscle are associated with increased passive muscle stiffness in fibrotic muscles. The alignment of collagen is independently associated with passive stiffness in dystrophic skeletal muscles. These outcomes demonstrate that collagen architecture rather than collagen content should be a target of anti-fibrotic therapies to treat muscle stiffness. ABSTRACT: Fibrosis is prominent in many skeletal muscle pathologies including dystrophies, neurological disorders, cachexia, chronic kidney disease, sarcopenia and metabolic disorders. Fibrosis in muscle is associated with decreased contractile forces and increased passive stiffness that limits joint mobility leading to contractures. However, the assumption that more fibrotic material is directly related to decreased function has not held true. Here we utilize novel measurement of extracellular matrix (ECM) and collagen architecture to relate ECM form to muscle function. We used mdx mice, a model for Duchenne muscular dystrophy that becomes fibrotic, and wildtype mice. In this model, extensor digitorum longus (EDL) muscle was significantly stiffer, but with similar total collagen, while the soleus muscle did not change stiffness, but increased collagen. The stiffness of the EDL was associated with increased collagen crosslinking as determined by collagen solubility. Measurement of ECM alignment using polarized light microscopy showed a robust relationship between stiffness and alignment for wildtype muscle that broke down in mdx muscles. Direct visualization of large collagen fibres with second harmonic generation imaging revealed their relative abundance in stiff muscles. Collagen fibre alignment was linked to stiffness across all muscles investigated and the most significant factor in a multiple linear regression-based model of muscle stiffness from ECM parameters. This work establishes novel characteristics of skeletal muscle ECM architecture and provides evidence for a mechanical function of collagen fibres in muscle. This finding suggests that anti-fibrotic strategies to enhance muscle function and excessive stiffness should target large collagen fibres and their alignment rather than total collagen.


Asunto(s)
Distrofia Muscular Animal , Distrofia Muscular de Duchenne , Animales , Colágeno , Fibrosis , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Contracción Muscular , Músculo Esquelético/patología
10.
Connect Tissue Res ; 62(3): 287-298, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-31779492

RESUMEN

Purpose: Joint contractures in children with cerebral palsy contain muscle tissue that is mechanically stiffer with higher collagen content than typically developing children. Interestingly, the correlation between collagen content and stiffness is weak. To date, no data are available on collagen types or other extracellular matrix proteins in these muscles, nor any information regarding their function. Thus, our purpose was to measure specific extracellular protein composition in cerebral palsy and typically developing human muscles along with structural aspects of extracellular matrix architecture to determine the extent to which these explain mechanical properties. Materials and Methods: Biopsies were collected from children with cerebral palsy undergoing muscle lengthening procedures and typically developing children undergoing anterior cruciate ligament reconstruction. Tissue was prepared for the determination of collagen types I, III, IV, and VI, proteoglycan, biglycan, decorin, hyaluronic acid/uronic acid and collagen crosslinking. Results: All collagen types increased in cerebral palsy along with pyridinoline crosslinks, total proteoglycan, and uronic acid. In all cases, type I or total collagen and total proteoglycan were positive predictors, while biglycan was a negative predictor of stiffness. Together these parameters accounted for a greater degree of variance within groups than across groups, demonstrating an altered relationship between extracellular matrix and stiffness with cerebral palsy. Further, stereological analysis revealed a significant increase in collagen fibrils organized in cables and an increased volume fraction of fibroblasts in CP muscle. Conclusions: These data demonstrate a novel adaptation of muscle extracellular matrix in children with cerebral palsy that includes alterations in extracellular matrix protein composition and structure related to mechanical function.


Asunto(s)
Parálisis Cerebral , Contractura , Biglicano , Parálisis Cerebral/complicaciones , Niño , Colágeno , Matriz Extracelular , Humanos , Músculo Esquelético
11.
Cell Physiol Biochem ; 54(3): 333-353, 2020 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-32275813

RESUMEN

BACKGROUND/AIMS: Cell migration and extracellular matrix remodeling underlie normal mammalian development and growth as well as pathologic tumor invasion. Skeletal muscle is no exception, where satellite cell migration replenishes nuclear content in damaged tissue and extracellular matrix reforms during regeneration. A key set of enzymes that regulate these processes are matrix metalloproteinases (MMP)s. The collagenase MMP-13 is transiently upregulated during muscle regeneration, but its contribution to damage resolution is unknown. The purpose of this work was to examine the importance of MMP-13 in muscle regeneration and growth in vivo and to delineate a satellite cell specific role for this collagenase. METHODS: Mice with total and satellite cell specific Mmp13 deletion were utilized to determine the importance of MMP-13 for postnatal growth, regeneration after acute injury, and in chronic injury from a genetic cross with dystrophic (mdx) mice. We also evaluated insulin-like growth factor 1 (IGF-1) mediated hypertrophy in the presence and absence of MMP-13. We employed live-cell imaging and 3D migration measurements on primary myoblasts obtained from these animals. Outcome measures included muscle morphology and function. RESULTS: Under basal conditions, Mmp13-/- mice did not exhibit histological or functional deficits in muscle. However, following acute injury, regeneration was impaired at 11 and 14 days post injury. Muscle hypertrophy caused by increased IGF-1 was blunted with minimal satellite cell incorporation in the absence of MMP-13. Mmp13-/- primary myoblasts displayed reduced migratory capacity in 2D and 3D, while maintaining normal proliferation and differentiation. Satellite cell specific deletion of MMP-13 recapitulated the effects of global MMP-13 ablation on muscle regeneration, growth and myoblast movement. CONCLUSION: These results show that satellite cells provide an essential autocrine source of MMP-13, which not only regulates their migration, but also supports postnatal growth and resolution of acute damage.


Asunto(s)
Movimiento Celular/genética , Metaloproteinasa 13 de la Matriz/metabolismo , Músculo Esquelético/enzimología , Regeneración/genética , Células Satélite del Músculo Esquelético/enzimología , Animales , Movimiento Celular/fisiología , Matriz Extracelular/enzimología , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Femenino , Factor I del Crecimiento Similar a la Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/farmacología , Masculino , Metaloproteinasa 13 de la Matriz/genética , Ratones , Ratones Endogámicos mdx , Ratones Noqueados , Músculo Esquelético/lesiones , Músculo Esquelético/metabolismo , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Regeneración/fisiología
12.
Connect Tissue Res ; 61(3-4): 248-261, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31492079

RESUMEN

Purpose/Aim: Skeletal muscle tissue explants have been cultured and studied for nearly 100 years. These cultures, which retain complex tissue structure in an environment suited to precision manipulation and measurement, have led to seminal discoveries of the extrinsic and intrinsic mechanisms regulating contractility, metabolism and regeneration. This review discusses the two primary models of muscle explant: isolated myofiber and intact muscle.Materials and Methods: Relevant literature was reviewed and synthesized with a focus on the unique challenges and capabilities of each explant model.Results: Impactful past, current and future novel applications are discussed.Conclusions: Experiments using skeletal muscle explants have been integral to our understanding of the fundamentals of muscle physiology. As they are refined and adapted, they are poised to continue to inform the field for years to come.


Asunto(s)
Diferenciación Celular , Modelos Biológicos , Músculo Esquelético/metabolismo , Regeneración , Células Satélite del Músculo Esquelético/metabolismo , Animales , Humanos , Músculo Esquelético/patología , Células Satélite del Músculo Esquelético/patología
13.
Physiology (Bethesda) ; 33(1): 16-25, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29212889

RESUMEN

Stem cells mechanosense the stiffness of their microenvironment, which impacts differentiation. Although tissue hydration anti-correlates with stiffness, extracellular matrix (ECM) stiffness is clearly transduced into gene expression via adhesion and cytoskeleton proteins that tune fates. Cytoskeletal reorganization of ECM can create heterogeneity and influence fates, with fibrosis being one extreme.


Asunto(s)
Diferenciación Celular , Matriz Extracelular/fisiología , Células Madre/fisiología , Animales , Adhesión Celular , Citoesqueleto/fisiología , Humanos , Mecanotransducción Celular
14.
Muscle Nerve ; 60(4): 464-473, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31323135

RESUMEN

INTRODUCTION: Dysferlin loss-of-function mutations cause muscular dystrophy, accompanied by impaired membrane repair and muscle weakness. Growth promoting strategies including insulin-like growth factor 1 (IGF-1) could provide benefit but may cause strength loss or be ineffective. The objective of this study was to determine whether locally increased IGF-1 promotes functional muscle hypertrophy in dysferlin-null (Dysf-/- ) mice. METHODS: Muscle-specific transgenic expression and postnatal viral delivery of Igf1 were used in Dysf-/- and control mice. Increased IGF-1 levels were confirmed by enzyme-linked immunosorbent assay. Testing for skeletal muscle mass and function was performed in male and female mice. RESULTS: Muscle hypertrophy occurred in response to increased IGF-1 in mice with and without dysferlin. Male mice showed a more robust response compared with females. Increased IGF-1 did not cause loss of force per cross-sectional area in Dysf-/- muscles. DISCUSSION: We conclude that increased local IGF-1 promotes functional hypertrophy when dysferlin is absent and reestablishes IGF-1 as a potential therapeutic for dysferlinopathies.


Asunto(s)
Disferlina/genética , Factor I del Crecimiento Similar a la Insulina/genética , Músculo Esquelético/metabolismo , Animales , Diafragma/metabolismo , Diafragma/patología , Ratones , Ratones Noqueados , Ratones Transgénicos , Músculo Esquelético/patología , Distrofias Musculares/genética , Tamaño de los Órganos
15.
Biophys J ; 114(2): 450-461, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29401442

RESUMEN

Contractile cells can reorganize fibrous extracellular matrices and form dense tracts of fibers between neighboring cells. These tracts guide the development of tubular tissue structures and provide paths for the invasion of cancer cells. Here, we studied the mechanisms of the mechanical plasticity of collagen tracts formed by contractile premalignant acinar cells and fibroblasts. Using fluorescence microscopy and second harmonic generation, we quantified the collagen densification, fiber alignment, and strains that remain within the tracts after cellular forces are abolished. We explained these observations using a theoretical fiber network model that accounts for the stretch-dependent formation of weak cross-links between nearby fibers. We tested the predictions of our model using shear rheology experiments. Both our model and rheological experiments demonstrated that increasing collagen concentration leads to substantial increases in plasticity. We also considered the effect of permanent elongation of fibers on network plasticity and derived a phase diagram that classifies the dominant mechanisms of plasticity based on the rate and magnitude of deformation and the mechanical properties of individual fibers. Plasticity is caused by the formation of new cross-links if moderate strains are applied at small rates or due to permanent fiber elongation if large strains are applied over short periods. Finally, we developed a coarse-grained model for plastic deformation of collagen networks that can be employed to simulate multicellular interactions in processes such as morphogenesis, cancer invasion, and fibrosis.


Asunto(s)
Colágeno/metabolismo , Fenómenos Mecánicos , Animales , Fenómenos Biomecánicos , Matriz Extracelular/metabolismo , Fibroblastos/citología , Ratones , Modelos Biológicos , Células 3T3 NIH , Ratas , Esferoides Celulares/metabolismo , Estrés Mecánico
16.
FASEB J ; 29(7): 2769-79, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25795455

RESUMEN

Muscle loading is important for maintaining muscle mass; when load is removed, atrophy is inevitable. However, in clinical situations such as critical care myopathy, masticatory muscles do not lose mass. Thus, their properties may be harnessed to preserve mass. We compared masticatory and appendicular muscles responses to microgravity, using mice aboard the space shuttle Space Transportation System-135. Age- and sex-matched controls remained on the ground. After 13 days of space flight, 1 masseter (MA) and tibialis anterior (TA) were frozen rapidly for biochemical and functional measurements, and the contralateral MA was processed for morphologic measurements. Flight TA muscles exhibited 20 ± 3% decreased muscle mass, 2-fold decreased phosphorylated (P)-Akt, and 4- to 12-fold increased atrogene expression. In contrast, MAs had no significant change in mass but a 3-fold increase in P-focal adhesion kinase, 1.5-fold increase in P-Akt, and 50-90% lower atrogene expression compared with limb muscles, which were unaltered in microgravity. Myofibril force measurements revealed that microgravity caused a 3-fold decrease in specific force and maximal shortening velocity in TA muscles. It is surprising that myofibril-specific force from both control and flight MAs were similar to flight TA muscles, yet power was compromised by 40% following flight. Continued loading in microgravity prevents atrophy, but masticatory muscles have a different set point that mimics disuse atrophy in the appendicular muscle.


Asunto(s)
Músculos Masticadores/patología , Vuelo Espacial , Ingravidez/efectos adversos , Animales , Fenómenos Biomecánicos , Femenino , Expresión Génica , Masticación/fisiología , Músculos Masticadores/fisiopatología , Ratones , Ratones Endogámicos C57BL , Contracción Muscular/fisiología , Proteínas Musculares/genética , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Atrofia Muscular/etiología , Atrofia Muscular/patología , Atrofia Muscular/fisiopatología , Miofibrillas/patología , Miofibrillas/fisiología , Proteínas Ligasas SKP Cullina F-box/genética , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas/genética , Soporte de Peso/fisiología
17.
Muscle Nerve ; 54(1): 71-8, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26616495

RESUMEN

INTRODUCTION: Collagen cross-linking is a key parameter in extracellular matrix (ECM) maturation, turnover, and stiffness. We examined aspects of collagen cross-linking in dystrophin-deficient murine, canine, and human skeletal muscle. METHODS: DMD patient biopsies and samples from mdx mice and golden retriever muscular dystrophy dog samples (with appropriate controls) were analyzed. Collagen cross-linking was evaluated using solubility and hydroxyproline assays. Expression of the cross-linking enzyme lysyl oxidase (LOX) was determined by real-time polymerase chain reaction, immunoblotting, and immunofluorescence. RESULTS: LOX protein levels are increased in dystrophic muscle from all species evaluated. Dystrophic mice and dogs had significantly higher cross-linked collagen than controls, especially in the diaphragm. Distribution of intramuscular LOX was heterogeneous in all samples, but it increased in frequency and intensity in dystrophic muscle. CONCLUSION: These findings implicate elevated collagen cross-linking as an important component of the disrupted ECM in dystrophic muscles, and heightened cross-linking is evident in mouse, dog, and man. Muscle Nerve 54: 71-78, 2016.


Asunto(s)
Diafragma/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología , Proteína-Lisina 6-Oxidasa/metabolismo , Adolescente , Animales , Niño , Colágeno/metabolismo , Perros , Femenino , Humanos , Hidroxiprolina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Distrofia Muscular de Duchenne/genética , Proteína-Lisina 6-Oxidasa/genética , ARN Mensajero/metabolismo , Vimentina/metabolismo
18.
Am J Physiol Cell Physiol ; 306(10): C889-98, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24598364

RESUMEN

Many skeletal muscle diseases are associated with progressive fibrosis leading to impaired muscle function. Collagen within the extracellular matrix is the primary structural protein providing a mechanical scaffold for cells within tissues. During fibrosis collagen not only increases in amount but also undergoes posttranslational changes that alter its organization that is thought to contribute to tissue stiffness. Little, however, is known about collagen organization in fibrotic muscle and its consequences for function. To investigate the relationship between collagen content and organization with muscle mechanical properties, we studied mdx mice, a model for Duchenne muscular dystrophy (DMD) that undergoes skeletal muscle fibrosis, and age-matched control mice. We determined collagen content both histologically, with picosirius red staining, and biochemically, with hydroxyproline quantification. Collagen content increased in the mdx soleus and diaphragm muscles, which was exacerbated by age in the diaphragm. Collagen packing density, a parameter of collagen organization, was determined using circularly polarized light microscopy of picosirius red-stained sections. Extensor digitorum longus (EDL) and soleus muscle had proportionally less dense collagen in mdx muscle, while the diaphragm did not change packing density. The mdx muscles had compromised strength as expected, yet only the EDL had a significantly increased elastic stiffness. The EDL and diaphragm had increased dynamic stiffness and a change in relative viscosity. Unexpectedly, passive stiffness did not correlate with collagen content and only weakly correlated with collagen organization. We conclude that muscle fibrosis does not lead to increased passive stiffness and that collagen content is not predictive of muscle stiffness.


Asunto(s)
Colágeno/química , Diafragma/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología , Procesamiento Proteico-Postraduccional , Animales , Fenómenos Biomecánicos , Colágeno/metabolismo , Diafragma/fisiopatología , Modelos Animales de Enfermedad , Elasticidad , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Fibrosis , Hidroxiprolina/análisis , Hidroxiprolina/metabolismo , Masculino , Ratones , Ratones Endogámicos mdx , Músculo Esquelético/fisiopatología , Distrofia Muscular de Duchenne/fisiopatología , Conformación Proteica , Viscosidad
19.
ACS Biomater Sci Eng ; 10(1): 497-506, 2024 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-38113146

RESUMEN

Spheroids exhibit enhanced cell-cell interactions that facilitate improved survival and mimic the physiological cellular environment in vivo. Cell spheroids have been successfully used as building blocks for engineered tissues, yet the viability of this approach with skeletal muscle spheroids is poorly understood, particularly when incorporated into three-dimensional (3D) constructs. Bioprinting is a promising strategy to recapitulate the hierarchical organization of native tissue that is fundamental to its function. However, the influence of bioprinting on skeletal muscle cell spheroids and their function are yet to be interrogated. Using C2C12 mouse myoblasts and primary bovine muscle stem cells (MuSCs), we characterized spheroid formation as a function of duration and cell seeding density. We then investigated the potential of skeletal muscle spheroids entrapped in alginate bioink as tissue building blocks for bioprinting myogenic tissue. Both C2C12 and primary bovine MuSCs formed spheroids of similar sizes and remained viable after bioprinting. Spheroids of both cell types fused into larger tissue clusters over time within alginate and exhibited tissue formation comparable to monodisperse cells. Compared to monodisperse cells in alginate gels, C2C12 spheroids exhibited greater MyHC expression after 2 weeks, while cells within bovine MuSC spheroids displayed increased cell spreading. Both monodisperse and MuSC spheroids exhibited increased expression of genes denoting mid- and late-stage myogenic differentiation. Together, these data suggest that skeletal muscle spheroids have the potential for generating myogenic tissue via 3D bioprinting and reveal areas of research that could enhance myogenesis and myogenic differentiation in future studies.


Asunto(s)
Esferoides Celulares , Ingeniería de Tejidos , Animales , Bovinos , Ratones , Ingeniería de Tejidos/métodos , Músculo Esquelético , Diferenciación Celular , Alginatos
20.
Am J Physiol Cell Physiol ; 305(5): C529-38, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23761625

RESUMEN

Efficient skeletal muscle repair and regeneration require coordinated remodeling of the extracellular matrix (ECM). Previous reports have indicated that matrix metalloproteinases (MMPs) play the pivotal role in ECM remodeling during muscle regeneration. The goal of the current study was to determine if the interstitial collagenase MMP-13 was involved in the muscle repair process. Using intramuscular cardiotoxin injections to induce acute muscle injury, we found that MMP-13 expression and activity transiently increased during the regeneration process. In addition, in muscles from mdx mice, which exhibit chronic injury, MMP-13 expression and protein levels were elevated. In differentiating C2C12 cells, a murine myoblast cell line, Mmp13 expression was most pronounced after myoblast fusion and during myotube formation. Using pharmacological inhibition of MMP-13 to test whether MMP-13 activity is necessary for the proliferation, differentiation, migration, and fusion of C2C12 cells, we found a dramatic blockade of myoblast migration, as well as a delay in differentiation. In contrast, C2C12 cells with stable overexpression of MMP-13 showed enhanced migration, without affecting myoblast maturation. Taken together, these results support a primary role for MMP-13 in myoblast migration that leads to secondary effects on differentiation.


Asunto(s)
Movimiento Celular/fisiología , Metaloproteinasa 13 de la Matriz/metabolismo , Músculo Esquelético/enzimología , Mioblastos/enzimología , Regeneración/fisiología , Animales , Diferenciación Celular , Células Cultivadas , Proteínas Cardiotóxicas de Elápidos/toxicidad , Expresión Génica , Masculino , Metaloproteinasa 13 de la Matriz/genética , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Ratones , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/enzimología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/lesiones , Mioblastos/citología , Mioblastos/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA