Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 296: 100410, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33581115

RESUMEN

Trace element selenium (Se) is incorporated as the 21st amino acid, selenocysteine, into selenoproteins through tRNA[Ser]Sec. Selenoproteins act as gatekeepers of redox homeostasis and modulate immune function to effect anti-inflammation and resolution. However, mechanistic underpinnings involving metabolic reprogramming during inflammation and resolution remain poorly understood. Bacterial endotoxin lipopolysaccharide (LPS) activation of murine bone marrow-derived macrophages cultured in the presence or absence of Se (as selenite) was used to examine temporal changes in the proteome and metabolome by multiplexed tandem mass tag-quantitative proteomics, metabolomics, and machine-learning approaches. Kinetic deltagram and clustering analysis indicated that addition of Se led to extensive reprogramming of cellular metabolism upon stimulation with LPS enhancing the pentose phosphate pathway, tricarboxylic acid cycle, and oxidative phosphorylation, to aid in the phenotypic transition toward alternatively activated macrophages, synonymous with resolution of inflammation. Remodeling of metabolic pathways and consequent metabolic adaptation toward proresolving phenotypes began with Se treatment at 0 h and became most prominent around 8 h after LPS stimulation that included succinate dehydrogenase complex, pyruvate kinase, and sedoheptulokinase. Se-dependent modulation of these pathways predisposed bone marrow-derived macrophages to preferentially increase oxidative phosphorylation to efficiently regulate inflammation and its timely resolution. The use of macrophages lacking selenoproteins indicated that all three metabolic nodes were sensitive to selenoproteome expression. Furthermore, inhibition of succinate dehydrogenase complex with dimethylmalonate affected the proresolving effects of Se by increasing the resolution interval in a murine peritonitis model. In summary, our studies provide novel insights into the role of cellular Se via metabolic reprograming to facilitate anti-inflammation and proresolution.


Asunto(s)
Selenio/metabolismo , Selenoproteínas/metabolismo , Animales , Susceptibilidad a Enfermedades/metabolismo , Inflamación/metabolismo , Inflamación/fisiopatología , Lipopolisacáridos/metabolismo , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Peritonitis/tratamiento farmacológico , Peritonitis/inmunología , Proteoma/metabolismo , Proteómica , Selenio/farmacología , Selenoproteínas/genética , Selenoproteínas/fisiología , Succinato Deshidrogenasa/metabolismo
2.
J Proteome Res ; 18(1): 239-251, 2019 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-30336042

RESUMEN

The constitutive androstane receptor (CAR; NR1I3) contributes important regulatory roles in biotransformation, xenobiotic transport function, energy metabolism and lipid homeostasis. In this investigation, global serum and liver tissue metabolomes were assessed analytically in wild type and CAR-null transgenic mice using NMR, GC-MS and UPLC-MS/MS-based metabolomics. Significantly, CAR activation increased serum levels of fatty acids, lactate, ketone bodies and tricarboxylic acid cycle products, whereas levels of phosphatidylcholine, sphingomyelin, amino acids and liver glucose were decreased following short-term activation of CAR. Mechanistically, quantitative mRNA analysis demonstrated significantly decreased expression of key gluconeogenic pathways, and increased expression of glucose utilization pathways, changes likely resulting from down-regulation of the hepatic glucose sensor and bidirectional transporter, Glut2. Short-term CAR activation also resulted in enhanced fatty acid synthesis and impaired ß-oxidation. In summary, CAR contributes an expansive role regulating energy metabolism, significantly impacting glucose and monocarboxylic acid utilization, fatty acid metabolism and lipid homeostasis, through receptor-mediated regulation of several genes in multiple associated pathways.


Asunto(s)
Metabolismo Energético , Metabolómica/métodos , Receptores Citoplasmáticos y Nucleares/fisiología , Animales , Receptor de Androstano Constitutivo , Ácidos Grasos/metabolismo , Gluconeogénesis , Glucosa/metabolismo , Metabolismo de los Lípidos , Hígado/metabolismo , Ratones , Ratones Transgénicos
3.
J Proteome Res ; 18(4): 1715-1724, 2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30777439

RESUMEN

The aryl hydrocarbon receptor (AHR) is a major regulator of immune function within the gastrointestinal tract. Resident microbiota are capable of influencing AHR-dependent signaling pathways via production of an array of bioactive molecules that act as AHR agonists, such as indole or indole-3-aldehyde. Bacteria produce a number of quinoline derivatives, of which some function as quorum-sensing molecules. Thus, we screened relevant hydroxyquinoline derivatives for AHR activity using AHR responsive reporter cell lines. 2,8-Dihydroxyquinoline (2,8-DHQ) was identified as a species-specific AHR agonist that exhibits full AHR agonist activity in human cell lines, but only induces modest AHR activity in mouse cells. Additional dihydroxylated quinolines tested failed to activate the human AHR. Nanomolar concentrations of 2,8-DHQ significantly induced CYP1A1 expression and, upon cotreatment with cytokines, synergistically induced IL6 expression. Ligand binding competition studies subsequently confirmed 2,8-DHQ to be a human AHR ligand. Several dihydroxyquinolines were detected in human fecal samples, with concentrations of 2,8-DHQ ranging between 0 and 3.4 pmol/mg feces. Additionally, in mice the microbiota was necessary for the presence of DHQ in cecal contents. These results suggest that microbiota-derived 2,8-DHQ would contribute to AHR activation in the human gut, and thus participate in the protective and homeostatic effects observed with gastrointestinal AHR activation.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/agonistas , Microbioma Gastrointestinal/fisiología , Oxiquinolina/análogos & derivados , Receptores de Hidrocarburo de Aril/agonistas , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Células CACO-2 , Heces/microbiología , Humanos , Ratones , Oxiquinolina/metabolismo , Oxiquinolina/farmacología , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Triptófano/metabolismo
4.
Appl Environ Microbiol ; 85(15)2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31152019

RESUMEN

The Gram-negative bacterium Erwinia amylovora causes fire blight disease of apples and pears. While the virulence systems of E. amylovora have been studied extensively, relatively little is known about its parasitic behavior. The aim of this study was to identify primary metabolites that must be synthesized by this pathogen for full virulence. A series of auxotrophic E. amylovora mutants, representing 21 metabolic pathways, were isolated and characterized for metabolic defects and virulence in apple immature fruits and shoots. On detached apple fruitlets, mutants defective in arginine, guanine, hexosamine, isoleucine/valine, leucine, lysine, proline, purine, pyrimidine, sorbitol, threonine, tryptophan, and glucose metabolism had reduced virulence compared to the wild type, while mutants defective in asparagine, cysteine, glutamic acid, histidine, and serine biosynthesis were as virulent as the wild type. Auxotrophic mutant growth in apple fruitlet medium had a modest positive correlation with virulence in apple fruitlet tissues. Apple tree shoot inoculations with a representative subset of auxotrophs confirmed the apple fruitlet results. Compared to the wild type, auxotrophs defective in virulence caused an attenuated hypersensitive immune response in tobacco, with the exception of an arginine auxotroph. Metabolomic footprint analyses revealed that auxotrophic mutants which grew poorly in fruitlet medium nevertheless depleted environmental resources. Pretreatment of apple flowers with an arginine auxotroph inhibited the growth of the wild-type E. amylovora, while heat-killed auxotroph cells did not exhibit this effect, suggesting nutritional competition with the virulent strain on flowers. The results of our study suggest that certain nonpathogenic E. amylovora auxotrophs could have utility as fire blight biocontrol agents.IMPORTANCE This study has revealed the availability of a range of host metabolites to E. amylovora cells growing in apple tissues and has examined whether these metabolites are available in sufficient quantities to render bacterial de novo synthesis of these metabolites partially or even completely dispensable for disease development. The metabolomics analysis revealed that auxotrophic E. amylovora mutants have substantial impact on their environment in culture, including those that fail to grow appreciably. The reduced growth of virulent E. amylovora on flowers treated with an arginine auxotroph is consistent with the mutant competing for limiting resources in the flower environment. This information could be useful for novel fire blight management tool development, including the application of nonpathogenic E. amylovora auxotrophs to host flowers as an environmentally friendly biocontrol method. Fire blight management options are currently limited mainly to antibiotic sprays onto open blossoms and pruning of infected branches, so novel management options would be attractive to growers.


Asunto(s)
Erwinia amylovora/metabolismo , Malus/microbiología , Metaboloma , Enfermedades de las Plantas/microbiología , Erwinia amylovora/patogenicidad , Metabolómica , Virulencia
5.
J Proteome Res ; 17(4): 1375-1382, 2018 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-29521512

RESUMEN

The liver and the mammary gland have complementary metabolic roles during lactation. Substrates synthesized by the liver are released into the circulation and are taken up by the mammary gland for milk production. The aryl hydrocarbon receptor (AHR) has been identified as a lactation regulator in mice, and its activation has been associated with myriad morphological, molecular, and functional defects such as stunted gland development, decreased milk production, and changes in gene expression. In this study, we identified adverse metabolic changes in the lactation network (mammary, liver, and serum) associated with AHR activation using 1H nuclear magnetic resonance (NMR)-based metabolomics. Pregnant mice expressing Ahr d (low affinity) or Ahr b (high affinity) were fed diets containing beta naphthoflavone (BNF), a potent AHR agonist. Mammary, serum, and liver metabolomics analysis identified significant changes in lipid and TCA cycle intermediates in the Ahr b mice. We observed decreased amino acid and glucose levels in the mammary gland extracts of Ahr b mice fed BNF. The serum of BNF fed Ahr b mice had significant changes in LDL/VLDL (increased) and HDL, PC, and GPC (decreased). Quantitative PCR analysis revealed ∼50% reduction in the expression of key lactogenesis mammary genes including whey acid protein, α-lactalbumin, and ß-casein. We also observed morphologic and developmental disruptions in the mammary gland that are consistent with previous reports. Our observations support that AHR activity contributes to metabolism regulation in the lactation network.


Asunto(s)
Metabolómica , Receptores de Hidrocarburo de Aril/metabolismo , Animales , Caseínas/genética , Femenino , Expresión Génica , Lactalbúmina/genética , Lactancia/genética , Lactancia/metabolismo , Hígado/metabolismo , Glándulas Mamarias Animales/metabolismo , Ratones , Embarazo , Receptores de Hidrocarburo de Aril/agonistas , Proteína de Suero de Leche/genética
6.
J Exp Biol ; 221(Pt 6)2018 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-29444838

RESUMEN

When active tissues receive insufficient oxygen to meet metabolic demand, succinate accumulates and has two fundamental effects: it causes ischemia-reperfusion injury while also activating the hypoxia-inducible factor pathway (HIF). The Glanville fritillary butterfly (Melitaea cinxia) possesses a balanced polymorphism in Sdhd, shown previously to affect HIF pathway activation and tracheal morphology and used here to experimentally test the hypothesis that variation in succinate dehydrogenase affects oxidative injury. We stimulated butterflies to fly continuously in a respirometer (3 min duration), which typically caused episodes of exhaustion and recovery, suggesting a potential for cellular injury from hypoxia and reoxygenation in flight muscles. Indeed, flight muscle from butterflies flown on consecutive days had lipidome profiles similar to those of rested paraquat-injected butterflies, but distinct from those of rested untreated butterflies. Many butterflies showed a decline in flight metabolic rate (FMR) on day 2, and there was a strong inverse relationship between the ratio of day 2 to day 1 FMR and the abundance of sodiated adducts of phosphatidylcholines and co-enzyme Q (CoQ). This result is consistent with elevation of sodiated lipids caused by disrupted intracellular ion homeostasis in mammalian tissues after hypoxia-reperfusion. Butterflies carrying the Sdhd M allele had a higher abundance of lipid markers of cellular damage, but the association was reversed in field-collected butterflies, where focal individuals typically flew for seconds at a time rather than continuously. These results indicate that Glanville fritillary flight muscles can be injured by episodes of high exertion, but injury severity appears to be determined by an interaction between SDH genotype and behavior (prolonged versus intermittent flight).


Asunto(s)
Mariposas Diurnas/fisiología , Vuelo Animal , Proteínas de Insectos/genética , Metabolismo de los Lípidos , Estrés Oxidativo , Polimorfismo Genético , Succinato Deshidrogenasa/genética , Animales , Mariposas Diurnas/enzimología , Mariposas Diurnas/genética , Cromatografía Liquida , Femenino , Proteínas de Insectos/metabolismo , Masculino , España , Succinato Deshidrogenasa/metabolismo , Espectrometría de Masas en Tándem
7.
Anal Chem ; 89(15): 7900-7906, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28650151

RESUMEN

Short chain fatty acids (SCFAs) are important regulators of host physiology and metabolism and may contribute to obesity and associated metabolic diseases. Interest in SCFAs has increased in part due to the recognized importance of how production of SCFAs by the microbiota may signal to the host. Therefore, reliable, reproducible, and affordable methods for SCFA profiling are required for accurate identification and quantitation. In the current study, four different methods for SCFA (acetic acid, propionic acid, and butyric acid) extraction and quantitation were compared using two independent platforms including gas chromatography coupled with mass spectrometry (GC-MS) and 1H nuclear magnetic resonance (NMR) spectroscopy. Sensitivity, recovery, repeatability, matrix effect, and validation using mouse fecal samples were determined across all methods. The GC-MS propyl esterification method exhibited superior sensitivity for acetic acid and butyric acid measurement (LOD < 0.01 µg mL-1, LOQ < 0.1 µg mL-1) and recovery accuracy (99.4%-108.3% recovery rate for 100 µg mL-1 SCFA mixed standard spike in and 97.8%-101.8% recovery rate for 250 µg mL-1 SCFAs mixed standard spike in). NMR methods by either quantitation relative to an internal standard or quantitation using a calibration curve yielded better repeatability and minimal matrix effects compared to GC-MS methods. All methods generated good calibration curve linearity (R2 > 0.99) and comparable measurement of fecal SCFA concentration. Lastly, these methods were used to quantitate fecal SCFAs obtained from conventionally raised (CONV-R) and germ free (GF) mice. Results from global metabolomic analysis of feces generated by 1H NMR and bomb calorimetry were used to further validate these approaches.

8.
J Nutr ; 147(5): 746-753, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28298542

RESUMEN

Background: The use of parenteral nutrition formulas is often associated with the development of hepatic steatosis. We have shown previously that the addition of a lipid emulsion (LE) rich in n-6 (ω-6) fatty acids (FAs) ameliorated triglyceride (TG) accumulation in the livers of nonobese mice fed a high-carbohydrate diet (HCD) for 5 wk. However, it remains unclear how rapidly this condition develops and whether it can be prevented by LE with or without a running wheel for voluntary exercise (Exe).Objective: We investigated in an 8-d study whether mice develop steatosis and whether the administration of LE with or without Exe reduces the concentration of total FAs and prevents an increase in the expression of genes in the liver associated with lipogenesis.Methods: Male C57BL/6 mice aged 5 wk were randomized into 5 groups: standard feed pellet (SFP); a liquid HCD (77% of total energy from carbohydrates and 0.5% from fat); HCD + Exe; HCD + 13.5% LE (67% carbohydrates and 13.5% fat); or HCD + 13.5% LE + Exe. Hepatic TG concentration, lipogenic genes, and total FAs were measured on day 8.Results: Oil Red O staining and TG quantification showed hepatic TG accumulation on day 8; the addition of 13.5% LE either with or without Exe suppressed the TG accumulation compared with HCD (P < 0.005). With the use of quantitative reverse transcriptase-polymerase chain reaction analysis, the expression concentrations of lipogenic genes [ATP-citrate lyase, acetyl coenzyme A carboxylase 1, FA synthase (Fasn), and stearoyl coenzyme A desaturase 1 (Scd1)] in the HCD + 13.5% LE group were 26-60% of HCD (P < 0.01) and 11-38% of HCD in the HCD + 13.5% LE + Exe group (P < 0.001), with interactions for Fasn and Scd1 (P < 0.05). With the use of gas chromatography-mass spectrometry analysis, the HCD + 13.5% LE group had lower monounsaturated fatty acids (38.7% of HCD) but higher polyunsaturated fatty acids (164% of HCD) (P < 0.001).Conclusions: In short-term studies designed to resemble the early dynamic stage of the development of hepatic steatosis, the addition of 13.5% LE to a liquid HCD reduced hepatic lipogenesis. Exe exerted an independent protective effect and interacted with LE to further reduce the expression of Scd1.


Asunto(s)
Dieta , Carbohidratos de la Dieta/farmacología , Ácidos Grasos Omega-6/uso terapéutico , Hígado Graso/prevención & control , Lipogénesis , Carrera/fisiología , Triglicéridos/metabolismo , Animales , Carbohidratos de la Dieta/administración & dosificación , Carbohidratos de la Dieta/metabolismo , Grasas de la Dieta/administración & dosificación , Grasas de la Dieta/metabolismo , Grasas de la Dieta/farmacología , Grasas de la Dieta/uso terapéutico , Emulsiones , Ácidos Grasos/administración & dosificación , Ácidos Grasos/metabolismo , Ácidos Grasos/farmacología , Ácidos Grasos/uso terapéutico , Ácidos Grasos Monoinsaturados/metabolismo , Ácidos Grasos Omega-6/administración & dosificación , Ácidos Grasos Omega-6/metabolismo , Ácidos Grasos Omega-6/farmacología , Ácidos Grasos Insaturados/metabolismo , Hígado Graso/enzimología , Hígado Graso/metabolismo , Lipogénesis/efectos de los fármacos , Lipogénesis/genética , Lipogénesis/fisiología , Hígado/efectos de los fármacos , Hígado/enzimología , Hígado/metabolismo , Masculino , Ratones Endogámicos C57BL , Soluciones para Nutrición Parenteral , Distribución Aleatoria
9.
J Proteome Res ; 15(8): 2626-33, 2016 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-27246581

RESUMEN

Endometriosis is a common chronic estrogen-dependent gynecological disease affecting 10% of women in their reproductive age. It is characterized by proliferation of functional endometrial glands and stroma outside the uterine cavity. In the present study, we used mass spectrometry-based lipidomics to investigate the alterations in serum lipid profiles of mice induced with endometriosis. We identified several dysregulated lipids such as phosphatidylcholines, sphingomyelins, phosphatidylethanolamines, and triglycerides and show that triglycerides may be due to a general inflammatory condition in the peritoneum. We also show that in addition to phosphatidylcholine alteration, there is also an effect in the ratio of phosphatidylcholine/phosphatidylethanolamine in serum of mice induced with the disease and that this change may be due to increased expression of the phosphatidylethanolamine N-methyltransferase gene. The study provides new insight into the etiology of endometriosis.


Asunto(s)
Endometriosis/metabolismo , Metabolismo de los Lípidos , Metabolómica , Animales , Endometriosis/etiología , Femenino , Ratones , Fosfatidilcolinas/sangre , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/sangre , Fosfatidiletanolaminas/metabolismo , Esfingomielinas/metabolismo , Triglicéridos/metabolismo
10.
J Proteome Res ; 15(2): 563-71, 2016 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-26696396

RESUMEN

Recent studies have identified the important role of the gut microbiota in the pathogenesis and progression of obesity and related metabolic disorders. The antioxidant tempol was shown to prevent or reduce weight gain and modulate the gut microbiota community in mice; however, the mechanism by which tempol modulates weight gain/loss with respect to the host and gut microbiota has not been clearly established. Here we show that tempol (0, 1, 10, and 50 mg/kg p.o. for 5 days) decreased cecal bacterial fermentation and increased fecal energy excretion in a dose-dependent manner. Liver (1)H NMR-based metabolomics identified a dose-dependent decrease in glycogen and glucose, enhanced glucogenic and ketogenic activity (tyrosine and phenylalanine), and increased activation of the glycolysis pathway. Serum (1)H NMR-based metabolomics indicated that tempol promotes enhanced glucose catabolism. Hepatic gene expression was significantly altered as demonstrated by an increase in Pepck and G6pase and a decrease in Hnf4a, ChREBP, Fabp1, and Cd36 mRNAs. No significant change in the liver and serum metabolomic profiles was observed in germ-free mice, thus establishing a significant role for the gut microbiota in mediating the beneficial metabolic effects of tempol. These results demonstrate that tempol modulates the gut microbial community and its function, resulting in reduced host energy availability and a significant shift in liver metabolism toward a more catabolic state.


Asunto(s)
Óxidos N-Cíclicos/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Metaboloma/efectos de los fármacos , Metabolómica/métodos , Animales , Antioxidantes/farmacología , Relación Dosis-Respuesta a Droga , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/genética , Cromatografía de Gases y Espectrometría de Masas , Microbioma Gastrointestinal/fisiología , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/microbiología , Expresión Génica/efectos de los fármacos , Interacciones Huésped-Patógeno , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Metaboloma/genética , Ratones Endogámicos BALB C , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Marcadores de Spin
11.
J Biol Chem ; 290(11): 6705-13, 2015 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-25605736

RESUMEN

Enzymes in the de novo purine biosynthesis pathway are recruited to form a dynamic metabolic complex referred to as the purinosome. Previous studies have demonstrated that purinosome assembly responds to purine levels in culture medium. Purine-depleted medium or 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole (DMAT) treatment stimulates the purinosome assembly in HeLa cells. Here, several metabolomic technologies were applied to quantify the static cellular levels of purine nucleotides and measure the de novo biosynthesis rate of IMP, AMP, and GMP. Direct comparison of purinosome-rich cells (cultured in purine-depleted medium) and normal cells showed a 3-fold increase in IMP concentration in purinosome-rich cells and similar levels of AMP, GMP, and ratios of AMP/GMP and ATP/ADP for both. In addition, a higher level of IMP was also observed in HeLa cells treated with DMAT. Furthermore, increases in the de novo IMP/AMP/GMP biosynthetic flux rate under purine-depleted condition were observed. The synthetic enzymes, adenylosuccinate synthase (ADSS) and inosine monophosphate dehydrogenase (IMPDH), downstream of IMP were also shown to be part of the purinosome. Collectively, these results provide further evidence that purinosome assembly is directly related to activated de novo purine biosynthesis, consistent with the functionality of the purinosome.


Asunto(s)
Metabolómica/métodos , Complejos Multienzimáticos/metabolismo , Nucleótidos de Purina/metabolismo , Purinas/metabolismo , Adenilosuccinato Sintasa/análisis , Adenilosuccinato Sintasa/metabolismo , Bencimidazoles/metabolismo , Ligasas de Carbono-Nitrógeno con Glutamina como Donante de Amida-N/análisis , Ligasas de Carbono-Nitrógeno con Glutamina como Donante de Amida-N/metabolismo , Células HeLa , Humanos , IMP Deshidrogenasa/análisis , IMP Deshidrogenasa/metabolismo , Espectroscopía de Resonancia Magnética , Complejos Multienzimáticos/análisis , Nucleótidos de Purina/análisis , Purinas/análisis , Espectrometría de Masa por Ionización de Electrospray
12.
Biochim Biophys Acta ; 1852(7): 1242-52, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25736301

RESUMEN

Fibroblast growth factor 21 (FGF21) is a modulator of energy homeostasis and is increased in human nonalcoholic liver disease (NAFLD) and after feeding of methionine- and choline-deficient diet (MCD), a conventional inducer of murine nonalcoholic steatohepatitis (NASH). However, the significance of FGF21 induction in the occurrence of MCD-induced NASH remains undetermined. C57BL/6J Fgf21-null and wild-type mice were treated with MCD for 1 week. Hepatic Fgf21 mRNA was increased early after commencing MCD treatment independent of peroxisome proliferator-activated receptor (PPAR) α and farnesoid X receptor. While no significant differences in white adipose lipolysis were seen in both genotypes, hepatic triglyceride (TG) contents were increased in Fgf21-null mice, likely due to the up-regulation of genes encoding CD36 and phosphatidic acid phosphatase 2a/2c, involved in fatty acid (FA) uptake and diacylglycerol synthesis, respectively, and suppression of increased mRNAs encoding carnitine palmitoyl-CoA transferase 1α, PPARγ coactivator 1α, and adipose TG lipase, which are associated with lipid clearance in the liver. The MCD-treated Fgf21-null mice showed increased hepatic endoplasmic reticulum (ER) stress. Exposure of primary hepatocytes to palmitic acid elevated the mRNA levels encoding DNA damage-inducible transcript 3, an indicator of ER stress, and FGF21 in a PPARα-independent manner, suggesting that lipid-induced ER stress can enhance hepatic FGF21 expression. Collectively, FGF21 is elevated in the early stage of MCD-induced NASH likely to minimize hepatic lipid accumulation and ensuing ER stress. These results provide a possible mechanism on how FGF21 is increased in NAFLD/NASH.


Asunto(s)
Deficiencia de Colina/complicaciones , Factores de Crecimiento de Fibroblastos/metabolismo , Metionina/deficiencia , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Adipocitos Blancos/metabolismo , Animales , Antígenos CD36/genética , Antígenos CD36/metabolismo , Células Cultivadas , Dieta/efectos adversos , Estrés del Retículo Endoplásmico , Factores de Crecimiento de Fibroblastos/genética , Hepatocitos/metabolismo , Lipasa/genética , Lipasa/metabolismo , Lipólisis , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/etiología , PPAR alfa/genética , PPAR alfa/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Fosfatidato Fosfatasa/genética , Fosfatidato Fosfatasa/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Triglicéridos/metabolismo
13.
Chem Res Toxicol ; 29(12): 1987-1997, 2016 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-27782392

RESUMEN

The drug metabolism field has long recognized the beneficial and sometimes deleterious influence of microbiota in the absorption, distribution, metabolism, and excretion of drugs. Early pioneering work with the sulfanilamide precursor prontosil pointed toward the necessity not only to better understand the metabolic capabilities of the microbiota but also, importantly, to identify the specific microbiota involved in the generation and metabolism of drugs. However, technological limitations important for cataloging the microbiota community as well as for understanding and/or predicting their metabolic capabilities hindered progress. Current advances including mass spectrometry-based metabolite profiling as well as culture-independent sequence-based identification and functional analysis of microbiota have begun to shed light on microbial metabolism. In this review, case studies will be presented to highlight key aspects (e.g., microbiota identification, metabolic function and prediction, metabolite identification, and profiling) that have helped to clarify how the microbiota might impact or be impacted by drug metabolism. Lastly, a perspective of the future of this field is presented that takes into account what important knowledge is lacking and how to tackle these problems.


Asunto(s)
Microbiota , Sondas Moleculares , Preparaciones Farmacéuticas/metabolismo , Animales , Humanos
14.
Microb Cell Fact ; 15: 11, 2016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-26767617

RESUMEN

BACKGROUND: Energy from remote methane reserves is transformative; however, unintended release of this potent greenhouse gas makes it imperative to convert methane efficiently into more readily transported biofuels. No pure microbial culture that grows on methane anaerobically has been isolated, despite that methane capture through anaerobic processes is more efficient than aerobic ones. RESULTS: Here we engineered the archaeal methanogen Methanosarcina acetivorans to grow anaerobically on methane as a pure culture and to convert methane into the biofuel precursor acetate. To capture methane, we cloned the enzyme methyl-coenzyme M reductase (Mcr) from an unculturable organism, anaerobic methanotrophic archaeal population 1 (ANME-1) from a Black Sea mat, into M. acetivorans to effectively run methanogenesis in reverse. Starting with low-density inocula, M. acetivorans cells producing ANME-1 Mcr consumed up to 9 ± 1 % of methane (corresponding to 109 ± 12 µmol of methane) after 6 weeks of anaerobic growth on methane and utilized 10 mM FeCl3 as an electron acceptor. Accordingly, increases in cell density and total protein were observed as cells grew on methane in a biofilm on solid FeCl3. When incubated on methane for 5 days, high-densities of ANME-1 Mcr-producing M. acetivorans cells consumed 15 ± 2 % methane (corresponding to 143 ± 16 µmol of methane), and produced 10.3 ± 0.8 mM acetate (corresponding to 52 ± 4 µmol of acetate). We further confirmed the growth on methane and acetate production using (13)C isotopic labeling of methane and bicarbonate coupled with nuclear magnetic resonance and gas chromatography/mass spectroscopy, as well as RNA sequencing. CONCLUSIONS: We anticipate that our metabolically-engineered strain will provide insights into how methane is cycled in the environment by Archaea as well as will possibly be utilized to convert remote sources of methane into more easily transported biofuels via acetate.


Asunto(s)
Biocombustibles , Metano/metabolismo , Methanosarcina/metabolismo , Methanosarcina/enzimología , Oxidorreductasas/metabolismo
15.
Environ Sci Technol ; 49(13): 8067-77, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26023891

RESUMEN

Environmental exposure to dioxins and dioxin-like compounds poses a significant health risk for human health. Developing a better understanding of the mechanisms of toxicity through activation of the aryl hydrocarbon receptor (AHR) is likely to improve the reliability of risk assessment. In this study, the AHR-dependent metabolic response of mice exposed to 2,3,7,8-tetrachlorodibenzofuran (TCDF) was assessed using global (1)H nuclear magnetic resonance (NMR)-based metabolomics and targeted metabolite profiling of extracts obtained from serum and liver. (1)H NMR analyses revealed that TCDF exposure suppressed gluconeogenesis and glycogenolysis, stimulated lipogenesis, and triggered inflammatory gene expression in an Ahr-dependent manner. Targeted analyses using gas chromatography coupled with mass spectrometry showed TCDF treatment altered the ratio of unsaturated/saturated fatty acids. Consistent with this observation, an increase in hepatic expression of stearoyl coenzyme A desaturase 1 was observed. In addition, TCDF exposure resulted in inhibition of de novo fatty acid biosynthesis manifested by down-regulation of acetyl-CoA, malonyl-CoA, and palmitoyl-CoA metabolites and related mRNA levels. In contrast, no significant changes in the levels of glucose and lipid were observed in serum and liver obtained from Ahr-null mice following TCDF treatment, thus strongly supporting the important role of the AHR in mediating the metabolic effects seen following TCDF exposure.


Asunto(s)
Benzofuranos/toxicidad , Hígado/efectos de los fármacos , Metabolómica/métodos , Receptores de Hidrocarburo de Aril/metabolismo , Animales , Dioxinas/toxicidad , Contaminantes Ambientales/toxicidad , Ácidos Grasos/metabolismo , Expresión Génica/efectos de los fármacos , Glucosa/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Hígado/metabolismo , Espectroscopía de Resonancia Magnética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes
16.
BMC Evol Biol ; 14: 166, 2014 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-25085339

RESUMEN

BACKGROUND: A compelling demonstration of adaptation by natural selection is the ability of parasites to manipulate host behavior. One dramatic example involves fungal species from the genus Ophiocordyceps that control their ant hosts by inducing a biting behavior. Intensive sampling across the globe of ants that died after being manipulated by Ophiocordyceps suggests that this phenomenon is highly species-specific. We advance our understanding of this system by reconstructing host manipulation by Ophiocordyceps parasites under controlled laboratory conditions and combining this with field observations of infection rates and a metabolomics survey. RESULTS: We report on a newly discovered species of Ophiocordyceps unilateralis sensu lato from North America that we use to address the species-specificity of Ophiocordyceps-induced manipulation of ant behavior. We show that the fungus can kill all ant species tested, but only manipulates the behavior of those it infects in nature. To investigate if this could be explained at the molecular level, we used ex vivo culturing assays to measure the metabolites that are secreted by the fungus to mediate fungus-ant tissue interactions. We show the fungus reacts heterogeneously to brains of different ant species by secreting a different array of metabolites. By determining which ion peaks are significantly enriched when the fungus is grown alongside brains of its naturally occurring host, we discovered candidate compounds that could be involved in behavioral manipulation by O. unilateralis s.l.. Two of these candidates are known to be involved in neurological diseases and cancer. CONCLUSIONS: The integrative work presented here shows that ant brain manipulation by O. unilateralis s.l. is species-specific seemingly because the fungus produces a specific array of compounds as a reaction to the presence of the host brain it has evolved to manipulate. These studies have resulted in the discovery of candidate compounds involved in establishing behavioral manipulation by this specialized fungus and therefore represent a major advancement towards an understanding of the molecular mechanisms underlying this phenomenon.


Asunto(s)
Hormigas/microbiología , Hypocreales/fisiología , Animales , Hormigas/clasificación , Encéfalo/microbiología , Interacciones Huésped-Parásitos , América del Norte , Especificidad de la Especie
17.
Hepatology ; 55(6): 1994-2004, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22234961

RESUMEN

UNLABELLED: The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor. Activation of AhR mediates the expression of target genes (e.g., CYP1A1) by binding to dioxin response element (DRE) sequences in their promoter region. To understand the multiple mechanisms of AhR-mediated gene regulation, a microarray analysis on liver isolated from ligand-treated transgenic mice expressing a wild-type (WT) Ahr or a DRE-binding mutant Ahr (A78D) on an ahr-null background was performed. Results revealed that AhR DRE binding is not required for the suppression of genes involved in cholesterol synthesis. Quantitative reverse-transcription polymerase chain reaction performed on both mouse liver and primary human hepatocyte RNA demonstrated a coordinated repression of genes involved in cholesterol biosynthesis, namely, HMGCR, FDFT1, SQLE, and LSS after receptor activation. An additional transgenic mouse line was established expressing a liver-specific Ahr-A78D on a Cre(Alb)/Ahr(flox/flox) background. These mice displayed a similar repression of cholesterol biosynthetic genes, compared to Ahr(flox/flox) mice, further indicating that the observed modulation is AhR specific and occurs in a DRE-independent manner. Elevated hepatic transcriptional levels of the genes of interest were noted in congenic C57BL/6J-Ah(d) allele mice, when compared to the WT C57BL/6J mice, which carry the Ah(b) allele. Down-regulation of AhR nuclear translocator levels using short interfering RNA in a human cell line revealed no effect on the expression of cholesterol biosynthetic genes. Finally, cholesterol secretion was shown to be significantly decreased in human cells after AhR activation. CONCLUSION: These data firmly establish an endogenous role for AhR as a regulator of the cholesterol biosynthesis pathway independent of its DRE-binding ability, and suggest that AhR may be a previously unrecognized therapeutic target.


Asunto(s)
Colesterol/biosíntesis , Dioxinas/farmacología , Receptores de Hidrocarburo de Aril/fisiología , Elementos de Respuesta/fisiología , Animales , Línea Celular Tumoral , Regulación de la Expresión Génica , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Análisis de Secuencia por Matrices de Oligonucleótidos
18.
Metabolites ; 12(10)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36295797

RESUMEN

Evidence supports the potential influence of persistent organic pollutants (POPs) on the pathogenesis and progression of obesity and diabetes. Diet-toxicant interactions appear to be important in diet-induced obesity/diabetes; however, the factors influencing this interaction, especially the early life environmental exposure, are unclear. Herein, we investigated the metabolic effects following early life five-day exposure (24 µg/kg body weight per day) to 3,3',4,4',5-pentacholorobiphenyl (PCB 126) at four months after exposure in mice fed with control (CTRL) or high-fat diet (HFD). Activation of aryl hydrocarbon receptor (AHR) signaling as well as higher levels of liver nucleotides were observed at 4 months after PCB 126 exposure in mice, independent of diet status. Inflammatory responses including higher levels of serum cytokines and adipose inflammatory gene expression caused by early life PCB 126 were observed only in HFD-fed mice in adulthood. Notably, early life PCB 126 exposure worsened HFD-induced impaired glucose homeostasis characterized by glucose intolerance and elevated gluconeogenesis and tricarboxylic acid (TCA) cycle flux without worsening the effects of HFD related to adiposity in adulthood. Furthermore, early life PCB 126 exposure resulted in diet-dependent changes in bacterial community structure and function later in life, as indicated by metagenomic and metabolomic analyses. These data contribute to a more comprehensive understanding of the interactions between diet and early life environmental chemical exposure.

19.
Methods Mol Biol ; 2194: 291-300, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32926372

RESUMEN

Bile acids are important end products of cholesterol metabolism, having been shown to serve as signaling molecules and intermediates between the host and the gut microbiota. Here we describe a robust and accurate method using ultrahigh-pressure liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS) for the quantification of bile acids in stool/cecal and tissue samples.


Asunto(s)
Ácidos y Sales Biliares/análisis , Cromatografía Líquida de Alta Presión/métodos , Metabolómica/métodos , Espectrometría de Masas en Tándem/métodos , Ácidos y Sales Biliares/sangre , Heces/química , Intestinos/química , Hígado/química
20.
Annu Rev Anal Chem (Palo Alto Calif) ; 14(1): 467-487, 2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34314226

RESUMEN

High-resolution mass spectrometry (MS) has advanced the study of metabolism in living systems by allowing many metabolites to be measured in a single experiment. Although improvements in mass detector sensitivity have facilitated the detection of greater numbers of analytes, compound identification strategies, feature reduction software, and data sharing have not kept up with the influx of MS data. Here, we discuss the ongoing challenges with MS-based metabolomics, including de novo metabolite identification from mass spectra, differentiation of metabolites from environmental contamination, chromatographic separation of isomers, and incomplete MS databases. Because of their popularity and sensitive detection of small molecules, this review focuses on the challenges of liquid chromatography-mass spectrometry-based methods. We then highlight important instrumentational, experimental, and computational tools that have been created to address these challenges and how they have enabled the advancement of metabolomics research.


Asunto(s)
Metabolómica , Programas Informáticos , Cromatografía Liquida , Bases de Datos Factuales , Espectrometría de Masas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA