Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Genomics ; 113(5): 3128-3140, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34245829

RESUMEN

The ductus arteriosus (DA) connects the fetal pulmonary artery and aorta, diverting placentally oxygenated blood from the developing lungs to the systemic circulation. The DA constricts in response to increases in oxygen (O2) with the first breaths, resulting in functional DA closure, with anatomic closure occurring within the first days of life. Failure of DA closure results in persistent patent ductus arteriosus (PDA), a common complication of extreme preterm birth. The DA's response to O2, though modulated by the endothelium, is intrinsic to the DA smooth muscle cells (DASMC). DA constriction is mediated by mitochondrial-derived reactive oxygen species, which increase in proportion to arterial partial pressure of oxygen (PaO2). The resulting redox changes inhibit voltage-gated potassium channels (Kv) leading to cell depolarization, calcium influx and DASMC constriction. To date, there has not been an unbiased assessment of the human DA O2-sensors using transcriptomics, nor are there known molecular mechanisms which characterize DA closure. DASMCs were isolated from DAs obtained from 10 term infants at the time of congenital heart surgery. Cells were purified by flow cytometry, negatively sorting using CD90 and CD31 to eliminate fibroblasts or endothelial cells, respectively. The purity of the DASMC population was confirmed by positive staining for α-smooth muscle actin, smoothelin B and caldesmon. Cells were grown for 96 h in hypoxia (2.5% O2) or normoxia (19% O2) and confocal imaging with Cal-520 was used to determine oxygen responsiveness. An oxygen-induced increase in intracellular calcium of 18.1% ± 4.4% and SMC constriction (-27% ± 1.5% shortening) occurred in all cell lines within five minutes. RNA sequencing of the cells grown in hypoxia and normoxia revealed significant regulation of 1344 genes (corrected p < 0.05). We examined these genes using Gene Ontology (GO). This unbiased assessment of altered gene expression indicated significant enrichment of the following GOterms: mitochondria, cellular respiration and transcription. The top regulated biologic process was generation of precursor metabolites and energy. The top regulated cellular component was mitochondrial matrix. The top regulated molecular function was transcription coactivator activity. Multiple members of the NADH-ubiquinone oxidoreductase (NDUF) family are upregulated in human DASMC (hDASMC) following normoxia. Several of our differentially regulated transcripts are encoded by genes that have been associated with genetic syndromes that have an increased incidence of PDA (Crebb binding protein and Histone Acetyltransferase P300). This first examination of the effects of O2 on human DA transcriptomics supports a putative role for mitochondria as oxygen sensors.


Asunto(s)
Conducto Arterioso Permeable , Conducto Arterial , Nacimiento Prematuro , Conducto Arterial/metabolismo , Conducto Arterioso Permeable/etiología , Conducto Arterioso Permeable/metabolismo , Células Endoteliales/metabolismo , Humanos , Recién Nacido , Mitocondrias/genética , Miocitos del Músculo Liso/metabolismo , Oxígeno/metabolismo , Oxígeno/farmacología , Nacimiento Prematuro/metabolismo , Transcriptoma , Vasoconstricción/fisiología
2.
Circulation ; 141(24): 1986-2000, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32192357

RESUMEN

BACKGROUND: Pulmonary arterial hypertension (PAH) is a lethal vasculopathy. Hereditary cases are associated with germline mutations in BMPR2 and 16 other genes; however, these mutations occur in <25% of patients with idiopathic PAH and are rare in PAH associated with connective tissue diseases. Preclinical studies suggest epigenetic dysregulation, including altered DNA methylation, promotes PAH. Somatic mutations of Tet-methylcytosine-dioxygenase-2 (TET2), a key enzyme in DNA demethylation, occur in cardiovascular disease and are associated with clonal hematopoiesis, inflammation, and adverse vascular remodeling. The role of TET2 in PAH is unknown. METHODS: To test for a role of TET2, we used a cohort of 2572 cases from the PAH Biobank. Within this cohort, gene-specific rare variant association tests were performed using 1832 unrelated European patients with PAH and 7509 non-Finnish European subjects from the Genome Aggregation Database (gnomAD) as control subjects. In an independent cohort of 140 patients, we quantified TET2 expression in peripheral blood mononuclear cells. To assess causality, we investigated hemodynamic and histological evidence of PAH in hematopoietic Tet2-knockout mice. RESULTS: We observed an increased burden of rare, predicted deleterious germline variants in TET2 in PAH patients of European ancestry (9/1832) compared with control subjects (6/7509; relative risk=6; P=0.00067). Assessing the whole cohort, 0.39% of patients (10/2572) had 12 TET2 mutations (75% predicted germline and 25% somatic). These patients had no mutations in other PAH-related genes. Patients with TET2 mutations were older (71±7 years versus 48±19 years; P<0.0001), were more unresponsive to vasodilator challenge (0/7 versus 140/1055 [13.2%]), had lower pulmonary vascular resistance (5.2±3.1 versus 10.5±7.0 Wood units; P=0.02), and had increased inflammation (including elevation of interleukin-1ß). Circulating TET2 expression did not correlate with age and was decreased in >86% of PAH patients. Tet2-knockout mice spontaneously developed PAH, adverse pulmonary vascular remodeling, and inflammation, with elevated levels of cytokines, including interleukin-1ß. Long-term therapy with an antibody targeting interleukin-1ß blockade resulted in regression of PAH. CONCLUSIONS: PAH is the first human disease related to potential TET2 germline mutations. Inherited and acquired abnormalities of TET2 occur in 0.39% of PAH cases. Decreased TET2 expression is ubiquitous and has potential as a PAH biomarker.


Asunto(s)
Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/genética , Epigénesis Genética/fisiología , Mutación/fisiología , Proteínas Proto-Oncogénicas/biosíntesis , Proteínas Proto-Oncogénicas/genética , Hipertensión Arterial Pulmonar/genética , Hipertensión Arterial Pulmonar/metabolismo , Adulto , Anciano , Animales , Estudios de Casos y Controles , Estudios de Cohortes , Dioxigenasas , Femenino , Expresión Génica , Humanos , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad
3.
Br J Haematol ; 186(5): 724-734, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31124578

RESUMEN

The mechanisms by which patients with RUNX1 familial platelet disorder with propensity to myeloid malignancies (FPDMM) develop myeloid malignancies (MM) are not fully understood. We report the results of targeted next-generation sequencing on three patients with RUNX1 FPDMM who developed acute myeloid leukaemia or myelodysplastic syndromes (AML/MDS). DNA samples were collected from bone marrow, peripheral blood and buccal swabs at different time points. One patient had clonal haematopoiesis, represented by an SRSF2 p.P95R variant, prior to his AML diagnosis, when he developed an additional NRAS p.G12D variant. His sister presented to us with MDS, with a TET2 p.S471fs and identical NRAS p.G12D variant. The third patient, from another family, had an additional RUNX1 p.R204X and an NFE2 p.Q139fs variant at AML diagnosis. This constitutes the first report of NFE2 variants in AML without extramedullary disease and NRAS variants in AML/MDS in the setting of FPDMM. A systematic review of the literature including our findings distinguishes two genetic landscapes at AML transformation from FPDMM characterized by either the presence or absence of somatic abnormalities in RUNX1 with or without variants in genes usually associated with MM. Whether clonal haematopoiesis precedes transformation only in patients without somatic abnormalities in RUNX1 needs further confirmation.


Asunto(s)
Trastornos de las Plaquetas Sanguíneas/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Mutación de Línea Germinal/genética , Femenino , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Trastornos Mieloproliferativos
4.
Data Brief ; 40: 107736, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35005134

RESUMEN

The Ductus Arteriosus (DA) is a fetal vessel that connects the aorta to the pulmonary artery ensuring that placental oxygenated blood is diverted from the lungs to the systemic circulation. Following exposure to oxygen (O2), in the first few days of life, the DA responds with a functional closure that is followed by anatomical closure. Here, we study human DA smooth muscle cells (DASMC) taken from 10 term infants during congenital heart surgery. Purification of these cells using flow cytometry ensured a pure population of DASMCs, which we confirmed as responsive to O2. An oxygen-induced increase in intracellular calcium of 18.1%±4.4% and SMC constriction (-27%±1.5% shortening) occurred in all cell lines within five minutes. These cells were maintained in either hypoxia (2.5% O2), mimicking in utero conditions or in normoxia (19% O2) mimicking neonate conditions. We then used 3' RNAsequencing to identify the transcriptome of DASMCs in each condition [1]. In this paper, we present the full differentially regulated gene list from this experiment.

5.
J Mol Diagn ; 23(10): 1292-1305, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34365012

RESUMEN

The identification of clinically significant genes recurrently mutated in myeloid malignancies necessitates expanding diagnostic testing with higher throughput, such as targeted next-generation sequencing. We present validation of the Thermo Fisher Oncomine Myeloid Next-Generation Sequencing Panel (OMP), targeting 40 genes and 29 fusion drivers recurrently mutated in myeloid malignancies. The study includes data from a sample exchange between two Canadian hospitals demonstrating high concordance for detection of DNA and RNA aberrations. Clinical validation demonstrates high accuracy, sensitivity, and specificity of the OMP, with a lower limit of detection of 5% for single-nucleotide variants and 10% for insertions/deletions. Prospective sequencing was performed for 187 samples from 168 unique patients presenting with suspected or confirmed myeloid malignancy and other hematological conditions to assess clinical impact of identifying variants. Of detected variants, 48% facilitated or clarified diagnoses, 29% affected prognoses, and 25% had the potential to influence clinical management. Of note, OMP was essential to identifying patients with premalignant clonal states likely contributing to cytopenias. We also found that the detection of even a single variant by the OMP assay, versus 0 variants, was predictive of overall survival, independent of age, sex, or diagnosis (P = 0.03). This study demonstrates that molecular profiling of myeloid malignancies with the OMP represents a promising strategy to advance molecular diagnostics.


Asunto(s)
ADN/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Leucemia Mieloide Aguda/genética , Técnicas de Diagnóstico Molecular/métodos , Síndromes Mielodisplásicos/genética , Trastornos Mieloproliferativos/genética , ARN/genética , Canadá/epidemiología , ADN/aislamiento & purificación , Exactitud de los Datos , Femenino , Fusión Génica , Humanos , Mutación INDEL , Leucemia Mieloide Aguda/epidemiología , Límite de Detección , Masculino , Síndromes Mielodisplásicos/epidemiología , Trastornos Mieloproliferativos/epidemiología , Polimorfismo de Nucleótido Simple , Estudios Prospectivos , ARN/aislamiento & purificación
6.
J Vis Exp ; (160)2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32597858

RESUMEN

Assessment of cardiac function is essential to conduct cardiovascular and pulmonary-vascular preclinical research. Pressure-volume loops (PV loops) generated by recording both pressure and volume during cardiac catheterization are vital when assessing both systolic and diastolic cardiac function. Left and right heart function are closely related, reflected in ventricular interdependence. Thus, recording biventricular function in the same animal is important to get a complete assessment of cardiac function. In this protocol, a closed chest approach to cardiac catheterization consistent with the way catheterization is performed in patients is adopted in mice. While challenging, the closed chest strategy is a more physiological approach, because opening the chest results in major changes in preload and afterload that create artifacts, most notably a fall in systemic blood pressure. While high-resolution echocardiography is used to assess rodents, cardiac catheterization is invaluable, particularly when assessing diastolic pressures in both ventricles. Described here is a procedure to perform invasive, closed chest, sequential left and right ventricular pressure-volume (PV) loops in the same animal. PV loops are acquired using admittance technology with a mouse pressure-volume catheter and pressure-volume system acquisition. The procedure is described, beginning with the neck dissection, which is required to access the right jugular vein and the right carotid artery, to the insertion and positioning of the catheter, and finally the data acquisition. Then, the criteria required to ensure the acquisition of high-quality PV loops are discussed. Finally, the analysis of the left and right ventricular PV loops and the different hemodynamic parameters available to quantify systolic and diastolic ventricular function are briefly described.


Asunto(s)
Cateterismo Cardíaco , Ventrículos Cardíacos/fisiopatología , Presión , Anestesia , Animales , Presión Sanguínea/fisiología , Temperatura Corporal , Catéteres , Análisis de Datos , Diástole/fisiología , Hemodinámica , Ratones Endogámicos C57BL , Sístole/fisiología
7.
Methods Mol Biol ; 2045: 167-180, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30941718

RESUMEN

Aging hematopoietic stem cells acquire mutations that sometimes impart a selective advantage. Next-generation DNA sequencing (NGS) can be used to detect expanded peripheral blood progeny of a mutant clone, usually carrying just one cancer-driver mutation, most often in the epigenetic regulator genes, DNMT3A or TET2. This phenomenon is known as clonal hematopoiesis (CH), age-related CH (ARCH) when considering its association with age, and CH of indeterminate potential (CHIP) when the variant allele fraction (VAF) is at least 2% in peripheral leukocytes. CHIP is present in at least 10-15% of adults older than 65 years and is a risk factor for hematological neoplasms and diseases exacerbated by mutant, hyper-inflammatory, monocytes/macrophages, such as atherosclerotic cardiovascular disease. Therefore, the detection of CHIP has important clinical consequences. Herein, we present a protocol for the generation of targeted, amplicon-based, NGS libraries for ion semiconductor sequencing and CHIP detection, using Ion Torrent platforms.


Asunto(s)
Envejecimiento/genética , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Neoplasias/genética , Adulto , Aterosclerosis/sangre , Aterosclerosis/genética , Evolución Clonal/genética , Genoma Humano , Humanos , Mutación , Neoplasias/sangre , Reacción en Cadena de la Polimerasa , Factores de Riesgo , Flujo de Trabajo
8.
Cancer Res ; 78(6): 1457-1470, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29339539

RESUMEN

The Hippo pathway component WW domain-containing transcription regulator 1 (TAZ) is a transcriptional coactivator and an oncogene in breast and lung cancer. Transcriptional targets of TAZ that modulate immune cell function in the tumor microenvironment are poorly understood. Here, we perform a comprehensive screen for immune-related genes regulated by TAZ and its paralog YAP using NanoString gene expression profiling. We identify the immune checkpoint molecule PD-L1 as a target of Hippo signaling. The upstream kinases of the Hippo pathway, mammalian STE20-like kinase 1 and 2 (MST1/2), and large tumor suppressor 1 and 2 (LATS1/2), suppress PD-L1 expression while TAZ and YAP enhance PD-L1 levels in breast and lung cancer cell lines. PD-L1 expression in cancer cell lines is determined by TAZ activity and TAZ/YAP/TEAD increase PD-L1 promoter activity. Critically, TAZ-induced PD-L1 upregulation in human cancer cells is sufficient to inhibit T-cell function. The relationship between TAZ and PD-L1 is not conserved in multiple mouse cell lines, likely due to differences between the human and mouse PD-L1 promoters. To explore the extent of divergence in TAZ immune-related targets between human and mouse cells, we performed a second NanoString screen using mouse cell lines. We show that many targets of TAZ may be differentially regulated between these species. These findings highlight the role of Hippo signaling in modifying human/murine physiologic/pathologic immune responses and provide evidence implicating TAZ in human cancer immune evasion.Significance: Human-specific activation of PD-L1 by a novel Hippo signaling pathway in cancer immune evasion may have a significant impact on research in immunotherapy. Cancer Res; 78(6); 1457-70. ©2018 AACR.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Antígeno B7-H1/inmunología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Escape del Tumor/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Línea Celular Tumoral , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Vía de Señalización Hippo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Regiones Promotoras Genéticas , Proteínas Serina-Treonina Quinasas/genética , Linfocitos T/fisiología , Transactivadores , Factores de Transcripción/genética , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Proteínas Señalizadoras YAP
9.
Exp Hematol ; 55: 56-70.e13, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28826859

RESUMEN

Tet methylcytosine dioxygenase 2 (TET2) is one of the earliest and most frequently mutated genes in clonal hematopoiesis of indeterminate potential (CHIP) and myeloid cancers, including myelodysplastic syndromes (MDS) and chronic myelomonocytic leukemia (CMML). TET2 catalyzes the oxidation of 5-methylcytosine to 5-hydroxymethylcytosine, leading to DNA demethylation, and also affects transcription by recruiting histone modifiers. Inactivating TET2 mutations cause epigenetic dysregulation, clonal hematopoietic stem cell (HSC) dominance, and monocytic lineage skewing. Here, we found that Tet2 was the most highly expressed Tet enzyme in murine macrophage (MΦ) differentiation. Tet2 transcription was further induced by lipopolysaccharide (LPS), but not interleukin (IL)-4, stimulation, potentially in a nuclear factor κß-dependent manner. Tet2 loss did not affect early LPS gene responses in vitro, but increased Il-1b, Il-6, and Arginase 1 (Arg1) mRNA expression at later stages of stimulation in bone-marrow-derived MΦs (BMMΦs). Tet2-deficient peritoneal MΦs, however, demonstrated profound, constitutive expression of LPS-induced genes associated with an inflammatory state in vivo. In contrast, Tet2 deficiency did not affect alternative MΦ gene expression significantly in response to IL-4. These results suggested impaired resolution of inflammation in the absence of Tet2 both in vitro and in vivo. For the first time, we also detected TET2 mutations in BMMΦs from MDS and CMML patients and assayed their effects on LPS responses, including their potential influence on human IL-6 expression. Our results show that Tet2 restrains inflammation in murine MΦs and mice, raising the possibility that loss of TET2 function in MΦs may alter the immune environment in the large elderly population with TET2-mutant CHIP and in TET2-mutant myeloid cancer patients.


Asunto(s)
Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica/genética , Inflamación/genética , Macrófagos/metabolismo , Proteínas Proto-Oncogénicas/genética , Animales , Arginasa/genética , Diferenciación Celular/genética , Línea Celular , Células Cultivadas , Dioxigenasas , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Interleucina-1beta/genética , Interleucina-6/genética , Leucemia Mielomonocítica Crónica/genética , Leucemia Mielomonocítica Crónica/patología , Lipopolisacáridos/farmacología , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/patología
10.
Oncotarget ; 8(24): 38426-38443, 2017 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-28415606

RESUMEN

Recent studies suggest that lung cancer stem cells (CSCs) may play major roles in lung cancer. Therefore, identification of lung CSC drivers may provide promising targets for lung cancer. TAZ is a transcriptional co-activator and key downstream effector of the Hippo pathway, which plays critical roles in various biological processes. TAZ has been shown to be overexpressed in lung cancer and involved in tumorigenicity of lung epithelial cells. However, whether TAZ is a driver for lung CSCs and tumor formation in vivo is unknown. In addition, the molecular mechanism underlying TAZ-induced lung tumorigenesis remains to be determined. In this study, we provided evidence that constitutively active TAZ (TAZ-S89A) is a driver for lung tumorigenesis in vivo in mice and formation of lung CSC. Further RNA-seq and qRT-PCR analysis identified Aldh1a1, a well-established CSC marker, as critical TAZ downstream target and showed that TAZ induces Aldh1a1 transcription by activating its promoter activity through interaction with the transcription factor TEAD. Most significantly, inhibition of ALDH1A1 with its inhibitor A37 or CRISPR gene knockout in lung cancer cells suppressed lung tumorigenic and CSC phenotypes in vitro, and tumor formation in mice in vivo. In conclusion, this study identified TAZ as a novel inducer of lung CSCs and the first transcriptional activator of the stem cell marker ALDH1A1. Most significantly, we identified ALDH1A1 as a critical meditator of TAZ-induced tumorigenic and CSC phenotypes in lung cancer. Our studies provided preclinical data for targeting of TAZ-TEAD-ALDH1A1 signaling to inhibit CSC-induced lung tumorigenesis in the future.


Asunto(s)
Aldehído Deshidrogenasa/biosíntesis , Regulación Neoplásica de la Expresión Génica/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neoplasias Pulmonares/patología , Células Madre Neoplásicas/patología , Familia de Aldehído Deshidrogenasa 1 , Animales , Carcinogénesis/patología , Línea Celular Tumoral , Humanos , Ratones , Retinal-Deshidrogenasa , Transactivadores , Factores de Transcripción , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA