Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 298(8): 102226, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35787369

RESUMEN

Increased MAPK signaling is a hallmark of various cancers and is a central regulator of cell survival. Direct ERK1/2 inhibition is considered a promising approach to avoid ERK1/2 reactivation caused by upstream kinases BRAF, MEK1/2, and KRAS, as well as by receptor tyrosine kinase inhibitors, but the dynamics and selectivity of ERK1/2 inhibitors are much less studied compared with BRAF or MEK inhibitors. Using ERK1/2 and downstream kinase ELK1 reporter cell lines of lung cancer (H1299; NRASQ61K), colon cancer (HCT-116; KRASG13D), neuroblastoma (SH-SY5Y), and leukemia (U937), we examined the relationship between ERK inhibition and drug-induced toxicity for five ERK inhibitors: SCH772984, ravoxertinib, LY3214996, ulixertinib, and VX-11e, as well as one MEK inhibitor, PD0325901. Comparing cell viability and ERK inhibition revealed different ERK dependencies for these cell lines. We identify several drugs, such as SCH772984 and VX-11e, which induce excessive toxicity not directly related to ERK1/2 inhibition in specific cell lines. We also show that PD0325901, LY3214996, and ulixertinib are prone to ERK1/2 reactivation over time. We distinguished two types of ERK1/2 reactivation: the first could be reversed by adding a fresh dose of inhibitors, while the second persists even after additional treatments. We also showed that cells that became resistant to the MEK1/2 inhibitor PD0325901 due to ERK1/2 reactivation remained sensitive to ERK1/2 inhibitor ulixertinib. Our data indicate that correlation of ERK inhibition with drug-induced toxicity in multiple cell lines may help to find more selective and effective ERK1/2 inhibitors.


Asunto(s)
Antineoplásicos , Quinasas de Proteína Quinasa Activadas por Mitógenos , Neuroblastoma , Inhibidores de Proteínas Quinasas , Aminopiridinas , Antineoplásicos/farmacología , Benzamidas , Línea Celular Tumoral , Supervivencia Celular , Difenilamina/análogos & derivados , Humanos , Indazoles , Sistema de Señalización de MAP Quinasas , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Neuroblastoma/tratamiento farmacológico , Piperazinas , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Pirazoles , Piridonas , Pirimidinas , Pirroles
2.
Int J Mol Sci ; 24(11)2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37298233

RESUMEN

Molecular heterogeneity in prostate cancer (PCa) is one of the key reasons underlying the differing likelihoods of recurrence after surgical treatment in individual patients of the same clinical category. In this study, we performed RNA-Seq profiling of 58 localized PCa and 43 locally advanced PCa tissue samples obtained as a result of radical prostatectomy on a cohort of Russian patients. Based on bioinformatics analysis, we examined features of the transcriptome profiles within the high-risk group, including within the most commonly represented molecular subtype, TMPRSS2-ERG. The most significantly affected biological processes in the samples were also identified, so that they may be further studied in the search for new potential therapeutic targets for the categories of PCa under consideration. The highest predictive potential was found with the EEF1A1P5, RPLP0P6, ZNF483, CIBAR1, HECTD2, OGN, and CLIC4 genes. We also reviewed the main transcriptome changes in the groups at intermediate risk of PCa-Gleason Score 7 (groups 2 and 3 according to the ISUP classification)-on the basis of which the LPL, MYC, and TWIST1 genes were identified as promising additional prognostic markers, the statistical significance of which was confirmed using qPCR validation.


Asunto(s)
Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/cirugía , Próstata , Factores de Riesgo , Perfilación de la Expresión Génica , Prostatectomía , Transcriptoma , Proteínas de Fusión Oncogénica/genética , Regulador Transcripcional ERG/genética , Biomarcadores de Tumor/genética , Canales de Cloruro/genética , Serina Endopeptidasas/genética
3.
Int J Mol Sci ; 24(3)2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36768739

RESUMEN

Radical prostatectomy is the gold standard treatment for prostate cancer (PCa); however, it does not always completely cure PCa, and patients often experience a recurrence of the disease. In addition, the clinical and pathological parameters used to assess the prognosis and choose further tactics for treating a patient are insufficiently informative and need to be supplemented with new markers. In this study, we performed RNA-Seq of PCa tissue samples, aimed at identifying potential prognostic markers at the level of gene expression and miRNAs associated with one of the key signs of cancer aggressiveness-lymphatic dissemination. The relative expression of candidate markers was validated by quantitative PCR, including an independent sample of patients based on archival material. Statistically significant results, derived from an independent set of samples, were confirmed for miR-148a-3p and miR-615-3p, as well as for the CST2, OCLN, and PCAT4 genes. Considering the obtained validation data, we also analyzed the predictive value of models based on various combinations of identified markers using algorithms based on machine learning. The highest predictive potential was shown for the "CST2 + OCLN + pT" model (AUC = 0.863) based on the CatBoost Classifier algorithm.


Asunto(s)
MicroARNs , Neoplasias de la Próstata , Masculino , Humanos , Transcriptoma , Pronóstico , Biomarcadores de Tumor/genética , Neoplasias de la Próstata/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Prostatectomía
4.
Int J Mol Sci ; 23(23)2022 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-36499174

RESUMEN

Almost all people become infected with herpes viruses, including herpes simplex virus type 1 (HSV-1), during their lifetime. Typically, these viruses persist in a latent form that is resistant to all available antiviral medications. Under certain conditions, such as immunosuppression, the latent forms reactivate and cause disease. Moreover, strains of herpesviruses that are drug-resistant have rapidly emerged. Therefore, it is important to develop alternative methods capable of eradicating herpesvirus infections. One promising direction is the development of CRISPR/Cas systems for the therapy of herpesvirus infections. We aimed to design a CRISPR/Cas system for relatively effective long-term and safe control of HSV-1 infection. Here, we show that plasmids encoding the CRISPR/Cas9 system from Streptococcus pyogenes with a single sgRNA targeting the UL30 gene can completely suppress HSV-1 infection of the Vero cell line within 6 days and provide substantial protection within 9 days. For the first time, we show that CRISPR/CasX from Deltaproteobacteria with a single guide RNA against UL30 almost completely suppresses HSV-1 infection of the Vero cell line for 3 days and provides substantial protection for 6 days. We also found that the Cas9 protein without sgRNAs attenuates HSV-1 infection. Our results show that the developed CRISPR/Cas systems are promising therapeutic approaches to control HSV-1 infections.


Asunto(s)
Herpes Simple , Infecciones por Herpesviridae , Herpesviridae , Herpesvirus Humano 1 , Humanos , Sistemas CRISPR-Cas/genética , Herpesvirus Humano 1/genética , Herpes Simple/genética , Infecciones por Herpesviridae/genética , Proteína 9 Asociada a CRISPR/genética
5.
Int J Mol Sci ; 23(19)2022 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-36232996

RESUMEN

Following radical surgery, patients may suffer a relapse. It is important to identify such patients so that therapy tactics can be modified appropriately. Existing stratification schemes do not display the probability of recurrence with enough precision since locally advanced prostate cancer (PCa) is classified as high-risk but is not ranked in greater detail. Between 40 and 50% of PCa cases belong to the TMPRSS2-ERG subtype that is a sufficiently homogeneous group for high-precision prognostic marker search to be possible. This study includes two independent cohorts and is based on high throughput sequencing and qPCR data. As a result, we have been able to suggest a perspective-trained model involving a deep neural network based on both qPCR data for mRNA and miRNA and clinicopathological criteria that can be used for recurrence risk forecasts in patients with TMPRSS2-ERG-positive, locally advanced PCa (the model uses ALDH3A2 + ODF2 + QSOX2 + hsa-miR-503-5p + ISUP + pT, with an AUC = 0.944). In addition to the prognostic model's use of identified differentially expressed genes and miRNAs, miRNA-target pairs were found that correlate with the prognosis and can be presented as an interactome network.


Asunto(s)
MicroARNs , Neoplasias de la Próstata , Proteínas de Choque Térmico , Humanos , Masculino , MicroARNs/genética , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Proteínas de Fusión Oncogénica/genética , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro , Neoplasias de la Próstata/metabolismo , ARN Mensajero , Serina Endopeptidasas , Regulador Transcripcional ERG
6.
Int J Mol Sci ; 23(5)2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35269638

RESUMEN

Annual fish of the genus Nothobranchius are promising models for aging research. Nothobranchius reproduces typical aspects of vertebrate aging, including hallmarks of brain aging. Meclofenoxate (MF) is a well-known compound that can enhance cognitive performance. The drug is prescribed for asthenic conditions, trauma, and vascular diseases of the brain. It is believed that MF is able to delay age-dependent changes in the human brain. However, until now, there has been no study of the MF effect on the brain transcriptome. In the present work, we performed an RNA-Seq study of brain tissues from aged Nothobranchius guentheri, which were almost lifetime administered with MF, as well as young and aged control fish. As expected, in response to MF, we revealed significant overexpression of neuron-specific genes including genes involved in synaptic activity and plasticity, neurotransmitter secretion, and neuron projection. The effect was more pronounced in female fish. In this aspect, MF alleviated age-dependent decreased expression of genes involved in neuronal activity. In both treated and untreated animals, we observed strong aging-associated overexpression of immune and inflammatory response genes. MF treatment did not prevent this effect, and moreover, some of these genes tended to be slightly upregulated under MF treatment. Additionally, we noticed upregulation of some genes associated with aging and cellular senescence, including isoforms of putative vascular cell adhesion molecule 1 (VCAM1), protein O-GlcNAcase (OGA), protein kinase C alpha type (KPCA), prolow-density lipoprotein receptor-related protein 1 (LRP1). Noteworthy, MF treatment was also associated with the elevated transcription of transposons, which are highly abundant in the N. guentheri genome. In conclusion, MF compensates for the age-dependent downregulation of neuronal activity genes, but its effect on aging brain transcriptome still cannot be considered unambiguously positive.


Asunto(s)
Ciprinodontiformes , Fundulidae , Envejecimiento/metabolismo , Animales , Encéfalo , Ciprinodontiformes/genética , Ciprinodontiformes/metabolismo , Femenino , Fundulidae/genética , Meclofenoxato/metabolismo , Meclofenoxato/farmacología , Transcriptoma
7.
BMC Plant Biol ; 20(Suppl 1): 301, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-33050879

RESUMEN

BACKGROUND: Flax (Linum usitatissimum L.) is grown for fiber and seed in many countries. Flax cultivars differ in the oil composition and, depending on the ratio of fatty acids, are used in pharmaceutical, food, or paint industries. It is known that genes of SAD (stearoyl-ACP desaturase) and FAD (fatty acid desaturase) families play a key role in the synthesis of fatty acids, and some alleles of these genes are associated with a certain composition of flax oil. However, data on genetic polymorphism of these genes are still insufficient. RESULTS: On the basis of the collection of the Institute for Flax (Torzhok, Russia), we formed a representative set of 84 cultivars and lines reflecting the diversity of fatty acid composition of flax oil. An approach for the determination of full-length sequences of SAD1, SAD2, FAD2A, FAD2B, FAD3A, and FAD3B genes using the Illumina platform was developed and deep sequencing of the 6 genes in 84 flax samples was performed on MiSeq. The obtained high coverage (about 400x on average) enabled accurate assessment of polymorphisms in SAD1, SAD2, FAD2A, FAD2B, FAD3A, and FAD3B genes and evaluation of cultivar/line heterogeneity. The highest level of genetic diversity was observed for FAD3A and FAD3B genes - 91 and 62 polymorphisms respectively. Correlation analysis revealed associations between particular variants in SAD and FAD genes and predominantly those fatty acids whose conversion they catalyze: SAD - stearic and oleic acids, FAD2 - oleic and linoleic acids, FAD3 - linoleic and linolenic acids. All except one low-linolenic flax cultivars/lines contained both the substitution of tryptophan to stop codon in the FAD3A gene and histidine to tyrosine substitution in the FAD3B gene, while samples with only one of these polymorphisms had medium content of linolenic acid and cultivars/lines without them were high-linolenic. CONCLUSIONS: Genetic polymorphism of SAD and FAD genes was evaluated in the collection of flax cultivars and lines with diverse oil composition, and associations between particular polymorphisms and the ratio of fatty acids were revealed. The achieved results are the basis for the development of marker-assisted selection and DNA-based certification of flax cultivars.


Asunto(s)
Ácido Graso Desaturasas/genética , Ácidos Grasos/metabolismo , Lino/genética , Variación Genética , Oxigenasas de Función Mixta/genética , Sustitución de Aminoácidos , ADN de Plantas , Lino/enzimología , Lino/metabolismo , Genes de Plantas , Heterogeneidad Genética , Oxigenasas de Función Mixta/metabolismo , Análisis de Secuencia de ADN , Ácido alfa-Linolénico/metabolismo
8.
Int J Mol Sci ; 21(18)2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32971818

RESUMEN

Carotid paragangliomas (CPGLs) are rare neuroendocrine tumors often associated with mutations in SDHx genes. The immunohistochemistry of succinate dehydrogenase (SDH) subunits has been considered a useful instrument for the prediction of SDHx mutations in paragangliomas/pheochromocytomas. We compared the mutation status of SDHx genes with the immunohistochemical (IHC) staining of SDH subunits in CPGLs. To identify pathogenic/likely pathogenic variants in SDHx genes, exome sequencing data analysis among 42 CPGL patients was performed. IHC staining of SDH subunits was carried out for all CPGLs studied. We encountered SDHx variants in 38% (16/42) of the cases in SDHx genes. IHC showed negative (5/15) or weak diffuse (10/15) SDHB staining in most tumors with variants in any of SDHx (94%, 15/16). In SDHA-mutated CPGL, SDHA expression was completely absent and weak diffuse SDHB staining was detected. Positive immunoreactivity for all SDH subunits was found in one case with a variant in SDHD. Notably, CPGL samples without variants in SDHx also demonstrated negative (2/11) or weak diffuse (9/11) SDHB staining (42%, 11/26). Obtained results indicate that SDH immunohistochemistry does not fully reflect the presence of mutations in the genes; diagnostic effectiveness of this method was 71%. However, given the high sensitivity of SDHB immunohistochemistry, it could be used for initial identifications of patients potentially carrying SDHx mutations for recommendation of genetic testing.


Asunto(s)
Tumor del Cuerpo Carotídeo , Mutación , Proteínas de Neoplasias , Succinato Deshidrogenasa , Adulto , Tumor del Cuerpo Carotídeo/enzimología , Tumor del Cuerpo Carotídeo/genética , Tumor del Cuerpo Carotídeo/patología , Femenino , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Succinato Deshidrogenasa/genética , Succinato Deshidrogenasa/metabolismo
9.
Int J Mol Sci ; 21(21)2020 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-33171937

RESUMEN

Overcoming drug resistance of cancer cells is the major challenge in molecular oncology. Here, we demonstrate that long non-coding RNA LINC00973 is up-regulated in normal and cancer cells of different origins upon treatment with different chemotherapeutics. Bioinformatics analysis shows that this is a consequence of DNA damage response pathway activation or mitotic arrest. Knockdown of LINC0973 decreases p21 levels, activates cellular proliferation of cancer cells, and suppresses apoptosis of drug-treated cells. We have found that LINC00973 strongly increases p21 protein content, possibly by blocking its degradation. Besides, we have found that ectopic over-expression of LINC00973 inhibits formation of the pro-survival p53-Ser15-P isoform, which preserves chromosome integrity. These results might open a new approach to the development of more efficient anti-cancer drugs.


Asunto(s)
Resistencia a Antineoplásicos/genética , Neoplasias/genética , ARN Largo no Codificante/genética , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Células HCT116 , Humanos , Transducción de Señal/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo
10.
BMC Plant Biol ; 19(Suppl 1): 54, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30813909

RESUMEN

BACKGROUND: Flax (Linum usitatissimum L.) is grown for fiber and seed production. Unfavorable environments, such as nutrient deficiency and non-optimal soil acidity, decrease the quantity and quality of yield. Cultivation of tolerant to stress varieties can significantly reduce the crop losses. Understanding the mechanisms of flax response to the stresses and identification of resistance gene candidates will help in breeding of improved cultivars. In the present work, the response of flax plants to increased pH level and zinc (Zn) deficiency was studied. RESULTS: We performed high-throughput transcriptome sequencing of two flax cultivars with diverse tolerance to increased pH level and Zn deficiency: Norlin (tolerant) and Mogilevsky (sensitive). Sixteen cDNA libraries were created from flax plants grown under control conditions, increased pH level, Zn deficiency, and both stresses simultaneously, and about 35 million reads were obtained for each experiment type. Unfavorable pH resulted in significantly stronger gene expression alterations compared to Zn deficiency. Ion homeostasis, oxidoreductase activity, cell wall, and response to stress Gene Ontology terms were the most affected by unfavorable pH and Zn deficiency both in tolerant and sensitive flax cultivars. Upregulation of genes encoding metal transporters was identified under increased pH level, Zn deficiency, and both stresses simultaneously. Under Zn deficiency, only in tolerant cultivar Norlin, we revealed the induction of several photosynthesis-related genes and, in this way, this tolerant genotype could overcome unfavorable effects of reduced Zn content. CONCLUSIONS: We identified genes with expression alterations in flax under non-optimal soil acidity and Zn deficiency based on high-throughput sequencing data. These genes are involved in diverse processes, including ion transport, cell wall biogenesis, and photosynthesis, and could play an important role in flax response to the studied stresses. Moreover, genes with distinct expression changes between examined tolerant and sensitive genotypes could determine the mechanisms of flax tolerance to non-optimal soil acidity and Zn deficiency.


Asunto(s)
Lino/metabolismo , Suelo/química , Zinc/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Secuenciación de Nucleótidos de Alto Rendimiento , ARN de Planta/genética , Zinc/deficiencia
11.
BMC Med Genet ; 20(Suppl 1): 48, 2019 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-30967136

RESUMEN

BACKGROUND: Carotid paragangliomas (CPGLs) are rare neuroendocrine tumors that arise from the paraganglion at the bifurcation of the carotid artery and are responsible for approximately 65% of all head and neck paragangliomas. CPGLs can occur sporadically or along with different hereditary tumor syndromes. Approximately 30 genes are known to be associated with CPGLs. However, the genetic basis behind the development of these tumors is not fully elucidated, and the molecular mechanisms underlying CPGL pathogenesis remain unclear. METHODS: Whole exome and transcriptome high-throughput sequencing of CPGLs was performed on an Illumina platform. Exome libraries were prepared using a Nextera Rapid Capture Exome Kit (Illumina) and were sequenced under 75 bp paired-end model. For cDNA library preparation, a TruSeq Stranded Total RNA Library Prep Kit with Ribo-Zero Gold (Illumina) was used; transcriptome sequencing was carried out with 100 bp paired-end read length. Obtained data were analyzed using xseq which estimates the influence of mutations on gene expression profiles allowing to identify potential causative genes. RESULTS: We identified a total of 16 candidate genes (MYH15, CSP1, MYH3, PTGES3L, CSGALNACT2, NMD3, IFI44, GMCL1, LSP1, PPFIBP2, RBL2, MAGED1, CNIH3, STRA6, SLC6A13, and ATM) whose variants potentially influence their expression (cis-effect). The strongest cis-effect of loss-of-function variants was found in MYH15, CSP1, and MYH3, and several likely pathogenic variants in these genes associated with CPGLs were predicted. CONCLUSIONS: Using the xseq probabilistic model, three novel potential causative genes, namely MYH15, CSP1, and MYH3, were identified in carotid paragangliomas.


Asunto(s)
Arterias Carótidas/patología , Predisposición Genética a la Enfermedad , Neoplasias de Cabeza y Cuello/genética , Paraganglioma/genética , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Mutación , Transcriptoma , Secuenciación del Exoma
12.
BMC Med Genet ; 20(Suppl 1): 52, 2019 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-30967137

RESUMEN

BACKGROUND: CpG island methylator phenotype (CIMP) is found in 15-20% of malignant colorectal tumors and is characterized by strong CpG hypermethylation over the genome. The molecular mechanisms of this phenomenon are not still fully understood. The development of CIMP is followed by global gene expression alterations and metabolic changes. In particular, CIMP-low colon adenocarcinoma (COAD), predominantly corresponded to consensus molecular subtype 3 (CMS3, "Metabolic") subgroup according to COAD molecular classification, is associated with elevated expression of genes participating in metabolic pathways. METHODS: We performed bioinformatics analysis of RNA-Seq data from The Cancer Genome Atlas (TCGA) project for CIMP-high and non-CIMP COAD samples with DESeq2, clusterProfiler, and topGO R packages. Obtained results were validated on a set of fourteen COAD samples with matched morphologically normal tissues using quantitative PCR (qPCR). RESULTS: Upregulation of multiple genes involved in glycolysis and related processes (ENO2, PFKP, HK3, PKM, ENO1, HK2, PGAM1, GAPDH, ALDOA, GPI, TPI1, and HK1) was revealed in CIMP-high tumors compared to non-CIMP ones. Most remarkably, the expression of the PKLR gene, encoding for pyruvate kinase participating in gluconeogenesis, was decreased approximately 20-fold. Up to 8-fold decrease in the expression of OGDHL gene involved in tricarboxylic acid (TCA) cycle was observed in CIMP-high tumors. Using qPCR, we confirmed the increase (4-fold) in the ENO2 expression and decrease (2-fold) in the OGDHL mRNA level on a set of COAD samples. CONCLUSIONS: We demonstrated the association between CIMP-high status and the energy metabolism changes at the transcriptomic level in colorectal adenocarcinoma against the background of immune pathway activation. Differential methylation of at least nine CpG sites in OGDHL promoter region as well as decreased OGDHL mRNA level can potentially serve as an additional biomarker of the CIMP-high status in COAD.


Asunto(s)
Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Islas de CpG/genética , Metilación de ADN , Metabolismo Energético/genética , Anciano , Biología Computacional , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación , Fenotipo , Regiones Promotoras Genéticas , Reproducibilidad de los Resultados , Federación de Rusia
13.
BMC Genomics ; 19(Suppl 3): 113, 2018 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-29504907

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is a common cancer worldwide. The main cause of death in CRC includes tumor progression and metastasis. At molecular level, these processes may be triggered by epithelial-mesenchymal transition (EMT) and necessitates specific alterations in cell metabolism. Although several EMT-related metabolic changes have been described in CRC, the mechanism is still poorly understood. RESULTS: Using CrossHub software, we analyzed RNA-Seq expression profile data of CRC derived from The Cancer Genome Atlas (TCGA) project. Correlation analysis between the change in the expression of genes involved in glycolysis and EMT was performed. We obtained the set of genes with significant correlation coefficients, which included 21 EMT-related genes and a single glycolytic gene, HK3. The mRNA level of these genes was measured in 78 paired colorectal cancer samples by quantitative polymerase chain reaction (qPCR). Upregulation of HK3 and deregulation of 11 genes (COL1A1, TWIST1, NFATC1, GLIPR2, SFPR1, FLNA, GREM1, SFRP2, ZEB2, SPP1, and RARRES1) involved in EMT were found. The results of correlation study showed that the expression of HK3 demonstrated a strong correlation with 7 of the 21 examined genes (ZEB2, GREM1, TGFB3, TGFB1, SNAI2, TWIST1, and COL1A1) in CRC. CONCLUSIONS: Upregulation of HK3 is associated with EMT in CRC and may be a crucial metabolic adaptation for rapid proliferation, survival, and metastases of CRC cells.


Asunto(s)
Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Transición Epitelial-Mesenquimal/genética , Hexoquinasa/genética , Femenino , Perfilación de la Expresión Génica , Genómica , Humanos , Masculino , Persona de Mediana Edad , Regulación hacia Arriba
14.
BMC Evol Biol ; 17(Suppl 2): 253, 2017 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-29297314

RESUMEN

BACKGROUND: The species relationships within the genus Linum have already been studied several times by means of different molecular and phylogenetic approaches. Nevertheless, a number of ambiguities in phylogeny of Linum still remain unresolved. In particular, the species relationships within the sections Stellerolinum and Dasylinum need further clarification. Also, the question of independence of the species of the section Adenolinum still remains unanswered. Moreover, the relationships of L. narbonense and other species of the section Linum require further clarification. Additionally, the origin of tetraploid species of the section Linum (2n = 30) including the cultivated species L. usitatissimum has not been explored. The present study examines the phylogeny of blue-flowered species of Linum by comparisons of 5S rRNA gene sequences as well as ITS1 and ITS2 sequences of 35S rRNA genes. RESULTS: High-throughput sequencing has been used for analysis of multicopy rRNA gene families. In addition to the molecular phylogenetic analysis, the number and chromosomal localization of 5S and 35S rDNA sites has been determined by FISH. Our findings confirm that L. stelleroides forms a basal branch from the clade of blue-flowered flaxes which is independent of the branch formed by species of the sect. Dasylinum. The current molecular phylogenetic approaches, the cytogenetic analysis as well as different genomic DNA fingerprinting methods applied previously did not discriminate certain species within the sect. Adenolinum. The allotetraploid cultivated species L. usitatissimum and its wild ancestor L. angustifolium (2n = 30) could originate either as the result of hybridization of two diploid species (2n = 16) related to the modern L. gandiflorum and L. decumbens, or hybridization of a diploid species (2n = 16) and a diploid ancestor of modern L. narbonense (2n = 14). CONCLUSIONS: High-throughput sequencing of multicopy rRNA gene families allowed us to make several adjustments to the phylogeny of blue-flowered flax species and also reveal intra- and interspecific divergence of the rRNA gene sequences.


Asunto(s)
Evolución Biológica , Lino/genética , Genes de Plantas , Genes de ARNr , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN Ribosómico/genética , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Secuencia de Consenso/genética , ADN Ribosómico/genética , Variación Genética , Cariotipo , Metafase , Filogenia , Secuencias Repetitivas de Ácidos Nucleicos/genética , Especificidad de la Especie
15.
BMC Plant Biol ; 17(Suppl 2): 253, 2017 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-29297347

RESUMEN

BACKGROUND: Flax (Linum usitatissimum L.) is a crop plant used for fiber and oil production. Although potentially high-yielding flax varieties have been developed, environmental stresses markedly decrease flax production. Among biotic stresses, Fusarium oxysporum f. sp. lini is recognized as one of the most devastating flax pathogens. It causes wilt disease that is one of the major limiting factors for flax production worldwide. Breeding and cultivation of flax varieties resistant to F. oxysporum is the most effective method for controlling wilt disease. Although the mechanisms of flax response to Fusarium have been actively studied, data on the plant response to infection and resistance gene candidates are currently very limited. RESULTS: The transcriptomes of two resistant and two susceptible flax cultivars with respect to Fusarium wilt, as well as two resistant BC2F5 populations, which were grown under control conditions or inoculated with F. oxysporum, were sequenced using the Illumina platform. Genes showing changes in expression under F. oxysporum infection were identified in both resistant and susceptible flax genotypes. We observed the predominant overexpression of numerous genes that are involved in defense response. This was more pronounced in resistant cultivars. In susceptible cultivars, significant downregulation of genes involved in cell wall organization or biogenesis was observed in response to F. oxysporum. In the resistant genotypes, upregulation of genes related to NAD(P)H oxidase activity was detected. Upregulation of a number of genes, including that encoding beta-1,3-glucanase, was significantly greater in the cultivars and BC2F5 populations resistant to Fusarium wilt than in susceptible cultivars in response to F. oxysporum infection. CONCLUSIONS: Using high-throughput sequencing, we identified genes involved in the early defense response of L. usitatissimum against the fungus F. oxysporum. In response to F. oxysporum infection, we detected changes in the expression of pathogenesis-related protein-encoding genes and genes involved in ROS production or related to cell wall biogenesis. Furthermore, we identified genes that were upregulated specifically in flax genotypes resistant to Fusarium wilt. We suggest that the identified genes in resistant cultivars and BC2F5 populations showing induced expression in response to F. oxysporum infection are the most promising resistance gene candidates.


Asunto(s)
Resistencia a la Enfermedad/genética , Lino/microbiología , Fusarium/metabolismo , Enfermedades de las Plantas/microbiología , Susceptibilidad a Enfermedades/metabolismo , Lino/genética , Lino/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Predisposición Genética a la Enfermedad/genética , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento
16.
BMC Genet ; 18(Suppl 1): 117, 2017 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-29297384

RESUMEN

BACKGROUND: Neuropilin and tolloid-like 2 (NETO2) is a single-pass transmembrane protein that has been shown primarily implicated in neuron-specific processes. Upregulation of NETO2 gene was also detected in several cancer types. In colorectal cancer (CRC), it was associated with tumor progression, invasion, and metastasis, and seems to be involved in epithelial-mesenchymal transition (EMT). However, the mechanism of NETO2 action is still poorly understood. RESULTS: We have revealed significant increase in the expression of NETO2 gene and deregulation of eight EMT-related genes in CRC. Four of them were upregulated (TWIST1, SNAIL1, LEF1, and FOXA2); the mRNA levels of other genes (FOXA1, BMP2, BMP5, and SMAD7) were decreased. Expression of NETO2 gene was weakly correlated with that of genes involved in the EMT process. CONCLUSIONS: We found considerable NETO2 upregulation, but no significant correlation between the expression of NETO2 and EMT-related genes in CRC. Thus, NETO2 may be involved in CRC progression, but is not directly associated with EMT.


Asunto(s)
Neoplasias Colorrectales/genética , Regulación Neoplásica de la Expresión Génica , Proteínas de la Membrana/genética , Progresión de la Enfermedad , Transición Epitelial-Mesenquimal/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Regulación hacia Arriba
17.
BMC Plant Biol ; 16(Suppl 3): 237, 2016 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-28105944

RESUMEN

BACKGROUND: Cultivated flax (Linum usitatissimum L.) is widely used for production of textile, food, chemical and pharmaceutical products. However, various stresses decrease flax production. Search for genes, which are involved in stress response, is necessary for breeding of adaptive cultivars. Imbalanced concentration of nutrient elements in soil decrease flax yields and also results in heritable changes in some flax lines. The appearance of Linum Insertion Sequence 1 (LIS-1) is the most studied modification. However, LIS-1 function is still unclear. RESULTS: High-throughput sequencing of transcriptome of flax plants grown under normal (N), phosphate deficient (P), and nutrient excess (NPK) conditions was carried out using Illumina platform. The assembly of transcriptome was performed, and a total of 34924, 33797, and 33698 unique transcripts for N, P, and NPK sequencing libraries were identified, respectively. We have not revealed any LIS-1 derived mRNA in our sequencing data. The analysis of high-throughput sequencing data allowed us to identify genes with potentially differential expression under imbalanced nutrition. For further investigation with qPCR, 15 genes were chosen and their expression levels were evaluated in the extended sampling of 31 flax plants. Significant expression alterations were revealed for genes encoding WRKY and JAZ protein families under P and NPK conditions. Moreover, the alterations of WRKY family genes differed depending on LIS-1 presence in flax plant genome. Besides, we revealed slight and LIS-1 independent mRNA level changes of KRP2 and ING1 genes, which are adjacent to LIS-1, under nutrition stress. CONCLUSIONS: Differentially expressed genes were identified in flax plants, which were grown under phosphate deficiency and excess nutrition, on the basis of high-throughput sequencing and qPCR data. We showed that WRKY and JAS gene families participate in flax response to imbalanced nutrient content in soil. Besides, we have not identified any mRNA, which could be derived from LIS-1, in our transcriptome sequencing data. Expression of LIS-1 flanking genes, ING1 and KRP2, was suggested not to be nutrient stress-induced. Obtained results provide new insights into edaphic stress response in flax and the role of LIS-1 in these process.


Asunto(s)
Lino/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Suelo/química , Lino/genética , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Proteínas de Plantas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ADN
18.
BMC Genet ; 17(Suppl 3): 156, 2016 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-28105937

RESUMEN

BACKGROUND: The switch from oxidative phosphorylation to glycolysis in proliferating cancer cells, even under aerobic conditions, has been shown first in 1926 by Otto Warburg. Today this phenomenon is known as the "Warburg effect" and recognized as a hallmark of cancer. The metabolic shift to glycolysis is associated with the alterations in signaling pathways involved in energy metabolism, including glucose uptake and fermentation, and regulation of mitochondrial functions. Hexokinases (HKs), which catalyze the first step of glycolysis, have been identified to play a role in tumorigenesis of human colorectal cancer (CRC) and melanoma. However, the mechanism of action of HKs in the promotion of tumor growth remains unclear. RESULTS: The purpose of the present study was to investigate the effect of silencing of hexokinase genes (HK1, HK2, and HK3) in colorectal cancer (HT-29, SW 480, HCT-15, RKO, and HCT 116) and melanoma (MDA-MB-435S and SK-MEL-28) cell lines using short hairpin RNA (shRNA) lentiviral vectors. shRNA lentiviral plasmid vectors pLSLP-HK1, pLSLP-HK2, and pLSLP-HK3 were constructed and then transfected separately or co-transfected into the cells. HK2 inactivation was associated with increased expression of HK1 in colorectal cancer cell lines pointing to the compensation effect. Simultaneous attenuation of HK1 and HK2 levels led to decreased cell viability. Co-transfection with shRNA vectors against HK1, HK2, and HK3 mRNAs resulted in a rapid cell death via apoptosis. CONCLUSIONS: We have demonstrated that simultaneous inactivation of HK1 and HK2 was sufficient to decrease proliferation and viability of melanoma and colorectal cancer cells. Our results suggest that HK1 and HK2 could be the key therapeutic targets for reducing aerobic glycolysis in examined cancers.


Asunto(s)
Hexoquinasa/genética , Lentivirus/genética , ARN Interferente Pequeño/metabolismo , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Hexoquinasa/antagonistas & inhibidores , Hexoquinasa/metabolismo , Humanos , Melanoma/genética , Melanoma/patología , Interferencia de ARN , ARN Mensajero/metabolismo
19.
Front Endocrinol (Lausanne) ; 15: 1381093, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38721148

RESUMEN

Vagal paraganglioma (VPGL) is a rare neuroendocrine tumor that originates from the paraganglion associated with the vagus nerve. VPGLs present challenges in terms of diagnostics and treatment. VPGL can occur as a hereditary tumor and, like other head and neck paragangliomas, is most frequently associated with mutations in the SDHx genes. However, data regarding the genetics of VPGL are limited. Herein, we report a rare case of a 41-year-old woman with VPGL carrying a germline variant in the FH gene. Using whole-exome sequencing, a variant, FH p.S249R, was identified; no variants were found in other PPGL susceptibility and candidate genes. Loss of heterozygosity analysis revealed the loss of the wild-type allele of the FH gene in the tumor. The pathogenic effect of the p.S249R variant on FH activity was confirmed by immunohistochemistry for S-(2-succino)cysteine (2SC). Potentially deleterious somatic variants were found in three genes, SLC7A7, ZNF225, and MED23. The latter two encode transcriptional regulators that can impact gene expression deregulation and are involved in tumor development and progression. Moreover, FH-mutated VPGL was characterized by a molecular phenotype different from SDHx-mutated PPGLs. In conclusion, the association of genetic changes in the FH gene with the development of VPGL was demonstrated. The germline variant FH: p.S249R and somatic deletion of the second allele can lead to biallelic gene damage that promotes tumor initiation. These results expand the clinical and mutation spectra of FH-related disorders and improve our understanding of the molecular genetic mechanisms underlying the pathogenesis of VPGL.


Asunto(s)
Neoplasias de los Nervios Craneales , Paraganglioma , Adulto , Femenino , Humanos , Ácido Anhídrido Hidrolasas/genética , Neoplasias de los Nervios Craneales/genética , Neoplasias de los Nervios Craneales/patología , Secuenciación del Exoma , Mutación de Línea Germinal , Paraganglioma/genética , Paraganglioma/patología , Enfermedades del Nervio Vago/genética , Enfermedades del Nervio Vago/patología
20.
Biomolecules ; 13(4)2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37189460

RESUMEN

Reactive oxygen species (ROS) play a major role in the regulation of various processes in the cell. The increase in their production is a factor contributing to the development of numerous pathologies, including inflammation, fibrosis, and cancer. Accordingly, the study of ROS production and neutralization, as well as redox-dependent processes and the post-translational modifications of proteins, is warranted. Here, we present a transcriptomic analysis of the gene expression of various redox systems and related metabolic processes, such as polyamine and proline metabolism and the urea cycle in Huh7.5 hepatoma cells and the HepaRG liver progenitor cell line, that are widely used in hepatitis research. In addition, changes in response to the activation of polyamine catabolism that contribute to oxidative stress were studied. In particular, differences in the gene expression of various ROS-producing and ROS-neutralizing proteins, the enzymes of polyamine metabolisms and proline and urea cycles, as well as calcium ion transporters between cell lines, are shown. The data obtained are important for understanding the redox biology of viral hepatitis and elucidating the influence of the laboratory models used.


Asunto(s)
Carcinoma Hepatocelular , Hepatocitos , Neoplasias Hepáticas , Poliaminas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Perfilación de la Expresión Génica , Hepatocitos/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Redes y Vías Metabólicas , Oxidación-Reducción , Poliaminas/metabolismo , Prolina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Urea
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA