Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Mol Ther ; 32(3): 609-618, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38204164

RESUMEN

Mucopolysaccharidosis type I (MPS I) causes systemic accumulation of glycosaminoglycans due to a genetic deficiency of α-L-iduronidase (IDUA), which results in progressive systemic symptoms affecting multiple organs, including the central nervous system (CNS). Because the blood-brain barrier (BBB) prevents enzymes from reaching the brain, enzyme replacement therapy is effective only against the somatic symptoms. Hematopoietic stem cell transplantation can address the CNS symptoms, but the risk of complications limits its applicability. We have developed a novel genetically modified protein consisting of IDUA fused with humanized anti-human transferrin receptor antibody (lepunafusp alfa; JR-171), which has been shown in nonclinical studies to be distributed to major organs, including the brain, bringing about systemic reductions in heparan sulfate (HS) and dermatan sulfate concentrations. Subsequently, a first-in-human study was conducted to evaluate the safety, pharmacokinetics, and exploratory efficacy of JR-171 in 18 patients with MPS I. No notable safety issues were observed. Plasma drug concentration increased dose dependently and reached its maximum approximately 4 h after the end of drug administration. Decreased HS in the cerebrospinal fluid suggested successful delivery of JR-171 across the BBB, while suppressed urine and serum concentrations of the substrates indicated that its somatic efficacy was comparable to that of laronidase.


Asunto(s)
Mucopolisacaridosis I , Humanos , Mucopolisacaridosis I/terapia , Mucopolisacaridosis I/tratamiento farmacológico , Iduronidasa/efectos adversos , Iduronidasa/genética , Iduronidasa/metabolismo , Encéfalo/metabolismo , Barrera Hematoencefálica/metabolismo , Receptores de Transferrina/genética , Heparitina Sulfato/metabolismo
2.
Mol Ther ; 29(2): 671-679, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33038326

RESUMEN

Pabinafusp alfa (JR-141) is a novel enzyme drug that crosses the blood-brain barrier by transcytosis via transferrin receptors. In order to establish its efficacy and safety, a multicenter, single-arm, open-label phase 2/3 clinical trial was conducted in 28 Japanese patients with mucopolysaccharidosis II (MPS-II, Hunter syndrome) by intravenous administrations of 2.0 mg/kg of pabinafusp alfa for 52 weeks. The primary efficacy endpoint was changes in heparan sulfate (HS) concentrations in the cerebrospinal fluid (CSF). Secondary endpoints included assessments of neurocognitive development for central efficacy, and changes in plasma HS and dermatan sulfate (DS) concentrations for peripheral efficacy. HS concentrations in the CSF significantly decreased from baseline to week 52 (p < 0.001), suggesting continuous inhibition of substrate accumulations in the CNS, i.e., hitherto unaddressed progressive neurodegeneration. Evaluations of neurocognitive developments showed positive changes in 21 of the 28 patients. Serum HS and DS concentrations, liver and spleen volumes, and other assessments suggested the peripheral efficacy of pabinafusp alfa was comparable to that of idursulfase. Drug-related adverse events were mild or moderate in severity, transient, and manageable. The results establish delivery across the BBB of pabinafusp alfa as an effective therapeutic for treating both the CNS and peripheral symptoms of patients with MPS-II.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Iduronato Sulfatasa/administración & dosificación , Mucopolisacaridosis II/tratamiento farmacológico , Receptores de Transferrina/antagonistas & inhibidores , Proteínas Recombinantes de Fusión/uso terapéutico , Quimioterapia Combinada , Humanos , Mucopolisacaridosis II/diagnóstico , Resultado del Tratamiento
3.
Mol Ther ; 29(7): 2378-2386, 2021 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-33781915

RESUMEN

In Hunter syndrome (mucopolysaccharidosis II [MPS-II]), systemic accumulation of glycosaminoglycans (GAGs) due to a deficiency of iduronate-2-sulfatase (IDS), caused by mutations in the IDS gene, leads to multiple somatic manifestations and in patients with the severe (neuronopathic) phenotype, also to central nervous system (CNS) involvement. These symptoms cannot be effectively treated with current enzyme-replacement therapies, as they are unable to cross the blood-brain barrier (BBB). Pabinafusp alfa, a novel IDS fused with an anti-human transferrin receptor antibody, was shown to penetrate the BBB and to address neurodegeneration in preclinical studies. Subsequent phase 1/2 and 2/3 clinical studies in Japan have shown marked reduction of GAG accumulation in the cerebrospinal fluid (CSF), along with favorable clinical responses. A 26-week, open-label, randomized, parallel-group phase 2 study was conducted in Brazil to further evaluate the safety and efficacy of intravenously administered pabinafusp alfa at 1.0, 2.0, and 4.0 mg/kg/week in MPS-II patients. The safety profiles in the three dosage groups were similar. Neurodevelopmental evaluation suggested positive neurocognitive signals despite a relatively short study period. The 2.0-mg/kg group, which demonstrated marked reductions in substrate concentrations in the CSF, serum, and urine, was considered to provide the best combination regarding safety and efficacy signals.


Asunto(s)
Anticuerpos Monoclonales/administración & dosificación , Terapia de Reemplazo Enzimático/métodos , Iduronato Sulfatasa/administración & dosificación , Mucopolisacaridosis II/tratamiento farmacológico , Receptores de Transferrina/antagonistas & inhibidores , Proteínas Recombinantes de Fusión/administración & dosificación , Adolescente , Adulto , Brasil/epidemiología , Niño , Quimioterapia Combinada , Femenino , Humanos , Masculino , Mucopolisacaridosis II/epidemiología , Mucopolisacaridosis II/genética , Mucopolisacaridosis II/patología , Receptores de Transferrina/inmunología , Resultado del Tratamiento , Adulto Joven
4.
Int J Mol Sci ; 22(20)2021 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-34681597

RESUMEN

Enzyme replacement therapy (ERT) improves somatic manifestations in mucopolysaccharidoses (MPS). However, because intravenously administered enzymes cannot cross the blood-brain barrier (BBB), ERT is ineffective against the progressive neurodegeneration and resultant severe central nervous system (CNS) symptoms observed in patients with neuronopathic MPS. Attempts to surmount this problem have been made with intrathecal and intracerebroventricular ERT in order to achieve CNS effects, but the burdens on patients are inimical to long-term administrations. However, since pabinafusp alfa, a human iduronate-2-sulfatase fused with a BBB-crossing anti-transferrin receptor antibody, showed both central and peripheral efficacy in a mouse model, subsequent clinical trials in a total of 62 patients with MPS-II (Hunter syndrome) in Japan and Brazil substantiated this dual efficacy and provided an acceptable safety profile. To date, pabinafusp alfa is the only approved intravenous ERT that is effective against both the somatic and CNS symptoms of patients with MPS-II. This article summarizes the previously obtained preclinical and clinical evidence related to the use of this drug, presents latest data, and discusses the preclinical, translational, and clinical challenges of evaluating, ameliorating, and preventing neurodegeneration in patients with MPS-II.


Asunto(s)
Terapia de Reemplazo Enzimático , Iduronato Sulfatasa/uso terapéutico , Mucopolisacaridosis II/tratamiento farmacológico , Animales , Biomarcadores/líquido cefalorraquídeo , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Ensayos Clínicos como Asunto , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Humanos , Iduronato Sulfatasa/genética , Iduronato Sulfatasa/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mucopolisacaridosis II/patología , Proteínas Recombinantes/efectos adversos , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/uso terapéutico , Índice de Severidad de la Enfermedad
5.
Mol Cell ; 41(5): 529-42, 2011 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-21362549

RESUMEN

The cellular response to DNA double-strand breaks (DSBs) is mobilized by the protein kinase ATM, which phosphorylates key players in the DNA damage response (DDR) network. A major question is how ATM controls DSB repair. Optimal repair requires chromatin relaxation at damaged sites. Chromatin reorganization is coupled to dynamic alterations in histone posttranslational modifications. Here, we show that in human cells, DSBs induce monoubiquitylation of histone H2B, a modification that is associated in undamaged cells with transcription elongation. We find that this process relies on recruitment to DSB sites and ATM-dependent phosphorylation of the responsible E3 ubiquitin ligase: the RNF20-RNF40 heterodimer. H2B monoubiquitylation is required for timely recruitment of players in the two major DSB repair pathways-nonhomologous end-joining and homologous recombination repair-and optimal repair via both pathways. Our data and previous data suggest a two-stage model for chromatin decondensation that facilitates DSB repair.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Daño del ADN , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Histonas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina/química , Proteínas de la Ataxia Telangiectasia Mutada , Cromatina/química , Cromatina/metabolismo , Ensayo Cometa/métodos , Células HeLa , Histonas/química , Humanos , Cinética , Fosforilación , Procesamiento Proteico-Postraduccional , Interferencia de ARN , Recombinación Genética , Ubiquitina-Proteína Ligasas/metabolismo
6.
Nucleic Acids Res ; 42(18): 11487-501, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25223785

RESUMEN

Non-homologous end-joining (NHEJ) and homologous recombination (HR) are the two prominent pathways responsible for the repair of DNA double-strand breaks (DSBs). NHEJ is not restricted to a cell-cycle stage, whereas HR is active primarily in the S/G2 phases suggesting there are cell cycle-specific mechanisms that play a role in the choice between NHEJ and HR. Here we show NHEJ is attenuated in S phase via modulation of the autophosphorylation status of the NHEJ factor DNA-PKcs at serine 2056 by the pro-HR factor BRCA1. BRCA1 interacts with DNA-PKcs in a cell cycle-regulated manner and this interaction is mediated by the tandem BRCT domain of BRCA1, but surprisingly in a phospho-independent manner. BRCA1 attenuates DNA-PKcs autophosphorylation via directly blocking the ability of DNA-PKcs to autophosphorylate. Subsequently, blocking autophosphorylation of DNA-PKcs at the serine 2056 phosphorylation cluster promotes HR-required DNA end processing and loading of HR factors to DSBs and is a possible mechanism by which BRCA1 promotes HR.


Asunto(s)
Proteína BRCA1/metabolismo , Proteína Quinasa Activada por ADN/metabolismo , Fase S , Proteína BRCA1/química , Línea Celular , Roturas del ADN de Doble Cadena , Proteína Quinasa Activada por ADN/química , Células HeLa , Humanos , Fosforilación , Estructura Terciaria de Proteína , Tolerancia a Radiación , Reparación del ADN por Recombinación , Fase S/genética , Serina/metabolismo
7.
Orphanet J Rare Dis ; 19(1): 104, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454486

RESUMEN

BACKGROUND: Mucopolysaccharidosis type II (MPS II), or Hunter syndrome, is a rare X-linked metabolic disorder predominantly affecting males. Pabinafusp alfa, an iduronate-2-sulfatase enzyme designed to cross the blood-brain barrier, was approved in Japan in 2021 as the first enzyme replacement therapy targeting both the neuropathic and somatic signs and symptoms of MPS II. This study reports caregivers' experiences of MPS II patients receiving pabinafusp alfa through qualitative interviews. METHODS: Semi-structured, qualitative interviews were conducted with caregivers at seven clinical sites in Japan using a semi-structured moderation guide (Voice of the Caregiver guide). Thematic analysis was applied to the interview transcripts to identify symptoms and health-related quality of life impacts at baseline, changes during treatment, and overall treatment experience. RESULTS: Seven caregivers from 16 trial sites participated, representing seven children aged 8-18 years who had received pabinafusp alfa for 3.3-3.5 years at the time of the interviews. Data suggest a general trend toward improvement in multiple aspects, although not all caregivers observed discernible changes. Reported cognitive improvements included language skills, concentration, self-control, eye contact, mental clarity, concept understanding, following instructions, and expressing personal needs. Further changes were reported that included musculoskeletal improvements and such somatic changes as motor function, mobility, organ involvement, joint mobility, sleep patterns, and fatigue. Four caregivers reported improvements in family quality of life, five expressed treatment satisfaction, and all seven indicated a strong willingness to continue treatment of their children with pabinafusp alfa. CONCLUSION: Caregivers' perspectives in this study demonstrate treatment satisfaction and improvement in various aspects of quality of life following therapy with pabinafusp alfa. These findings enhance understanding of pabinafusp alfa's potential benefits in treating MPS II and contribute to defining MPS II-specific outcome measures for future clinical trials.


Asunto(s)
Iduronato Sulfatasa , Mucopolisacaridosis II , Masculino , Niño , Humanos , Mucopolisacaridosis II/tratamiento farmacológico , Cuidadores/psicología , Calidad de Vida , Japón , Iduronato Sulfatasa/uso terapéutico , Terapia de Reemplazo Enzimático/métodos , Enfermedades Raras/tratamiento farmacológico
8.
Nucleic Acids Res ; 39(5): 1692-702, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21051358

RESUMEN

hSSB1 is a newly discovered single-stranded DNA (ssDNA)-binding protein that is essential for efficient DNA double-strand break signalling through ATM. However, the mechanism by which hSSB1 functions to allow efficient signalling is unknown. Here, we show that hSSB1 is recruited rapidly to sites of double-strand DNA breaks (DSBs) in all interphase cells (G1, S and G2) independently of, CtIP, MDC1 and the MRN complex (Rad50, Mre11, NBS1). However expansion of hSSB1 from the DSB site requires the function of MRN. Strikingly, silencing of hSSB1 prevents foci formation as well as recruitment of MRN to sites of DSBs and leads to a subsequent defect in resection of DSBs as evident by defective RPA and ssDNA generation. Our data suggests that hSSB1 functions upstream of MRN to promote its recruitment at DSBs and is required for efficient resection of DSBs. These findings, together with previous work establish essential roles of hSSB1 in controlling ATM activation and activity, and subsequent DSB resection and homologous recombination (HR).


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Proteínas de Unión al ADN/fisiología , Ácido Anhídrido Hidrolasas , Proteínas de Ciclo Celular/análisis , Línea Celular , Enzimas Reparadoras del ADN/análisis , Proteínas de Unión al ADN/análisis , Humanos , Proteína Homóloga de MRE11 , Proteínas Mitocondriales , Proteínas Nucleares/análisis , Radiación Ionizante
9.
Pharmaceutics ; 14(6)2022 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-35745811

RESUMEN

Enzyme replacement therapy (ERT) has paved the way for treating the somatic symptoms of lysosomal storage diseases (LSDs), but the inability of intravenously administered enzymes to cross the blood-brain barrier (BBB) has left the central nervous system (CNS)-related symptoms of LSDs largely impervious to the therapeutic benefits of ERT, although ERT via intrathecal and intracerebroventricular routes can be used for some neuronopathic LSDs (in particular, mucopolysaccharidoses). However, the considerable practical issues involved make these routes unsuitable for long-term treatment. Efforts have been made to modify enzymes (e.g., by fusing them with antibodies against innate receptors on the cerebrovascular endothelium) so that they can cross the BBB via receptor-mediated transcytosis (RMT) and address neuronopathy in the CNS. This review summarizes the various scientific and technological challenges of applying RMT to the development of safe and effective enzyme therapeutics for neuronopathic mucopolysaccharidoses; it then discusses the translational and methodological issues surrounding preclinical and clinical evaluation to establish RMT-applied ERT.

10.
J Biol Chem ; 285(2): 1414-23, 2010 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-19893054

RESUMEN

DNA double strand break (DSB) repair by non-homologous end joining (NHEJ) is initiated by DSB detection by Ku70/80 (Ku) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) recruitment, which promotes pathway progression through poorly defined mechanisms. Here, Ku and DNA-PKcs solution structures alone and in complex with DNA, defined by x-ray scattering, reveal major structural reorganizations that choreograph NHEJ initiation. The Ku80 C-terminal region forms a flexible arm that extends from the DNA-binding core to recruit and retain DNA-PKcs at DSBs. Furthermore, Ku- and DNA-promoted assembly of a DNA-PKcs dimer facilitates trans-autophosphorylation at the DSB. The resulting site-specific autophosphorylation induces a large conformational change that opens DNA-PKcs and promotes its release from DNA ends. These results show how protein and DNA interactions initiate large Ku and DNA-PKcs rearrangements to control DNA-PK biological functions as a macromolecular machine orchestrating assembly and disassembly of the initial NHEJ complex on DNA.


Asunto(s)
Antígenos Nucleares/metabolismo , Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Antígenos Nucleares/química , Antígenos Nucleares/genética , ADN/química , ADN/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Humanos , Autoantígeno Ku , Unión Proteica/fisiología , Estructura Terciaria de Proteína/fisiología
11.
JIMD Rep ; 62(1): 9-14, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34765392

RESUMEN

Mucopolysaccharidosis type II (MPS II; Hunter syndrome) is an X-linked recessive lysosomal storage disease caused by a mutation in the IDS gene and characterized by systemic accumulations of glycosaminoglycans. Its somatic symptoms can be relieved by enzyme replacement therapy (ERT) with idursulfase, but because the enzyme cannot cross the blood-brain-barrier (BBB), it does not address the progressive neurodegeneration and subsequent central nervous system (CNS) manifestations seen in patients with neuropathic MPS-II. However, pabinafusp alfa, a human iduronate-2-sulfatase (IDS) fused with a BBB-crossing anti-transferrin receptor antibody, has been shown to be efficacious against both the somatic and CNS symptoms of MPS II. We report two cases of MPS-II in Japanese siblings sharing the same G140V mutation in the IDS gene, who showed markedly contrasting developmental trajectories following enzyme replacement therapy (ERT). Sibling 1 was diagnosed at 2 years of age, started undergoing conventional ERT shortly afterward, and scored a developmental quotient (DQ) of 53 on the Kyoto Scale of Psychological Development (KSPD) at 4 years of age. Sibling 2 was diagnosed prenatally and received conventional ERT from the age of 1 month through 1 year and 11 months, when he switched to pabinafusp alpha. He attained a DQ of 104 at age 3 years and 11 months, along with significant declines in heparan sulfate concentrations in the cerebrospinal fluid. This marked difference in neurocognitive development highlights the importance of early initiation of ERT with a BBB-penetrating enzyme in patients with neuropathic MPS-II.

12.
Nucleic Acids Res ; 36(19): 6333-42, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18835848

RESUMEN

In higher animal cells, the principal limitation of gene-targeting technology is the extremely low efficiency of targeted integration, which occurs three to four orders of magnitude less frequently than random integration. Assuming that random integration mechanistically involves non-homologous end-joining (NHEJ), inactivation of this pathway should reduce random integration and may enhance gene targeting. To test this possibility, we examined the frequencies of random and targeted integration in NHEJ-deficient chicken DT40 and human Nalm-6 cell lines. As expected, loss of NHEJ resulted in drastically reduced random integration in DT40 cells. Unexpectedly, however, this was not the case for Nalm-6 cells, indicating that NHEJ is not the sole mechanism of random integration. Nevertheless, we present evidence that NHEJ inactivation can lead to enhanced gene targeting through a reduction of random integration and/or an increase in targeted integration by homologous recombination. Most intriguingly, our results show that, in the absence of functional NHEJ, random integration of targeting vectors occurs more frequently than non-targeting vectors (harboring no or little homology to the host genome), implying that suppression of NHEJ-independent random integration events is needed to greatly enhance gene targeting in animal cells.


Asunto(s)
Marcación de Gen/métodos , Recombinación Genética , Animales , Línea Celular Tumoral , Pollos/genética , ADN/metabolismo , ADN Ligasas/genética , Eliminación de Gen , Vectores Genéticos , Humanos
13.
DNA Repair (Amst) ; 5(3): 303-11, 2006 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-16325483

RESUMEN

Ku, the heterodimer of Ku70 and Ku86, plays crucial roles in non-homologous end-joining (NHEJ), a major pathway for repairing DNA double-strand breaks (DSBs) in mammalian cells. It has recently been reported that heterozygous disruption of the human KU86 locus results in haploinsufficient phenotypes, including retarded growth, increased radiosensitivity, elevated p53 levels and shortened telomeres. In this paper, however, we show that heterozygous inactivation of either the KU70 or KU86 gene does not cause any defects in cell proliferation or DSB repair in human somatic cells. Moreover, although these heterozygous cell lines express reduced levels of both Ku70 and Ku86, they appear to maintain overall genome integrity with no elevated p53 levels or telomere shortening. These results clearly indicate that Ku haploinsufficiency is not a commonly observed phenomenon in human cells. Our data also suggest that the impact of KU70/KU86 mutations on telomere metabolism varies between cell types in humans.


Asunto(s)
Antígenos Nucleares/genética , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , ADN/genética , Silenciador del Gen , Inestabilidad Genómica , Animales , División Celular , Proliferación Celular , Dimerización , Marcación de Gen , Células HCT116/patología , Células HeLa/patología , Humanos , Autoantígeno Ku , Ratones , Telómero/genética
14.
DNA Cell Biol ; 26(7): 517-25, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17630856

RESUMEN

The Bloom syndrome helicase BLM and the tumor-suppressor protein p53 play important roles in preserving genome integrity. Here, we knock out the genes for BLM and p53 in a human pre-B-cell line, Nalm-6. We show that p53 plays an important role in cell proliferation, but not apoptosis, when BLM is absent. Intriguingly, despite the apoptotic function of p53, BLM(/)TP53(/) cells were more sensitive than either single mutant to etoposide, an anticancer agent that poisons DNA topoisomerase II. Our results suggest a direct, BLM-independent role for p53 in etoposide-induced, topoisomerase II-mediated DNA damage in human cells.


Asunto(s)
Síndrome de Bloom/genética , ADN Helicasas/deficiencia , Etopósido/toxicidad , Trastornos del Crecimiento/genética , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética , Síndrome de Bloom/enzimología , División Celular , Línea Celular , Reparación del ADN , Eliminación de Gen , Humanos , Intercambio de Cromátides Hermanas
15.
Biotechniques ; 41(3): 311-6, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16989091

RESUMEN

Targeted gene disruption is a powerful tool for studying gene function in cells and animals. In addition, this technology includes a potential to correct disease-causing mutations. However, constructing targeting vectors is a laborious step in the gene-targeting strategy, even apart from the low efficiency of homologous recombination in mammals. Here, we introduce a quick and simplified method to construct targeting vectors. This method is based on the commercially available MultiSite Gateway technology. The sole critical step is to design primers to PCR amplify genomic fragments for homologous DNA arms, after which neither ligation reaction nor extensive restriction mapping is necessary at all. The method therefore is readily applicable to embryonic stem (ES) cell studies as well as all organisms whose genome has been sequenced. Recently, we and others have shown that the human pre-B cell line Nalm-6 allows for high-efficiency gene targeting. The combination of the simplified vector construction system and the high-efficiency gene targeting in the Nalm-6 cell line has enabled rapid disruption of virtually any locus of the human genome within one month, and homozygous knockout clones lacking a human gene of interest can be created within 2-3 months. Thus, our system greatly facilitates reverse genetic studies of mammalian--particularly human--genes.


Asunto(s)
Embrión de Mamíferos/citología , Marcación de Gen , Técnicas Genéticas , Vectores Genéticos , Genoma , Células Madre/citología , Secuencia de Bases , Línea Celular , ADN Ligasa (ATP) , ADN Ligasas/genética , Cartilla de ADN/química , Homocigoto , Humanos , Modelos Genéticos , Datos de Secuencia Molecular
16.
DNA Cell Biol ; 25(1): 19-24, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16405397

RESUMEN

Gene targeting provides a powerful means for analyzing gene function, as exemplified by knockout mouse studies and recent work with the highly recombinogenic chicken DT40 B-lymphocyte line. In human cultured cells, however, the low frequency of gene targeting is a serious barrier to efficiently generate knockout clones. Moreover, commonly used human cell lines are karyotypically abnormal or unstable. Here, we show using promoterless targeting constructs that Nalm-6, a human pre-B ALL cell line, is highly proficient for gene targeting by homologous recombination. Indeed, the efficiency of TP53 gene targeting in Nalm-6 appears nearly two orders of magnitude higher than that in HCT116, a colon cancer cell line popularly used for gene targeting. Expression analysis revealed a lack of MSH2 expression in this cell line. As Nalm-6 has a stable neardiploid karyotype with normal p53 status, our results underscore the usefulness of Nalm-6 for gene knockout studies in humans.


Asunto(s)
Linfocitos B/metabolismo , Línea Celular , Marcación de Gen , Proteína 2 Homóloga a MutS/metabolismo , Recombinación Genética , Línea Celular/metabolismo , Línea Celular Tumoral , Aberraciones Cromosómicas , Genes p53 , Humanos , Proteína 2 Homóloga a MutS/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Regiones Promotoras Genéticas
17.
PLoS One ; 8(8): e72253, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23967291

RESUMEN

Nonhomologous end-joining (NHEJ) and homologous recombination (HR) are two major pathways for repairing DNA double-strand breaks (DSBs); however, their respective roles in human somatic cells remain to be elucidated. Here we show using a series of human gene-knockout cell lines that NHEJ repairs nearly all of the topoisomerase II- and low-dose radiation-induced DNA damage, while it negatively affects survival of cells harbouring replication-associated DSBs. Intriguingly, we find that loss of DNA ligase IV, a critical NHEJ ligase, and Artemis, an NHEJ factor with endonuclease activity, independently contribute to increased resistance to replication-associated DSBs. We also show that loss of Artemis alleviates hypersensitivity of DNA ligase IV-null cells to low-dose radiation- and topoisomerase II-induced DSBs. Finally, we demonstrate that Artemis-null human cells display increased gene-targeting efficiencies, particularly in the absence of DNA ligase IV. Collectively, these data suggest that DNA ligase IV and Artemis act cooperatively to promote NHEJ, thereby suppressing HR. Our results point to the possibility that HR can only operate on accidental DSBs when NHEJ is missing or abortive, and Artemis may be involved in pathway switching from incomplete NHEJ to HR.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , ADN Ligasas/metabolismo , Recombinación Homóloga , Proteínas Nucleares/metabolismo , Línea Celular , Roturas del ADN de Doble Cadena/efectos de los fármacos , Roturas del ADN de Doble Cadena/efectos de la radiación , Reparación del ADN por Unión de Extremidades/efectos de los fármacos , Reparación del ADN por Unión de Extremidades/efectos de la radiación , ADN Ligasa (ATP) , ADN Ligasas/deficiencia , Replicación del ADN/efectos de los fármacos , Replicación del ADN/efectos de la radiación , ADN-Topoisomerasas de Tipo II/metabolismo , Proteínas de Unión al ADN , Endonucleasas , Técnicas de Inactivación de Genes , Marcación de Gen , Recombinación Homóloga/efectos de los fármacos , Recombinación Homóloga/efectos de la radiación , Humanos , Mutación , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Inhibidores de Topoisomerasa II/farmacología
18.
DNA Repair (Amst) ; 11(3): 310-6, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22265216

RESUMEN

DNA double strand breaks (DSBs) are repaired by non-homologous end joining (NHEJ) or homologous recombination (HR). The DNA cell cycle stage and resection of the DSB ends are two key mechanisms which are believed to push DSB repair to the HR pathway. Here, we show that the NHEJ factor Ku80 associates with DSBs in S phase, when HR is thought to be the preferred repair pathway, and its dynamics/kinetics at DSBs is similar to those observed for Ku80 in non-S phase in mammalian cells. A Ku homolog from Mycobacterium tuberculosis binds to and is retained at DSBs in S phase and was used as a tool to determine if blocking DNA ends affects end resection and HR in mammalian cells. A decrease in DNA end resection, as marked by IR-induced RPA, BrdU, and Rad51 focus formation, and HR are observed when Ku deficient rodent cells are complemented with Mt-Ku. Together, this data suggests that Ku70/80 binds to DSBs in all cell cycle stages and is likely actively displaced from DSB ends to free the DNA ends for DNA end resection and thus HR to occur.


Asunto(s)
Antígenos Nucleares/metabolismo , Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Recombinación Homóloga/genética , Animales , Células CHO , Cricetinae , Cricetulus , Reparación del ADN , Humanos , Autoantígeno Ku , Ratones , Mycobacterium tuberculosis/metabolismo , Unión Proteica , Transporte de Proteínas , Recombinasa Rad51/metabolismo , Fase S
19.
Radiat Res ; 175(1): 83-9, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21175350

RESUMEN

The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is the key functional element in the DNA-PK complex that drives nonhomologous end joining (NHEJ), the predominant DNA double-strand break (DSB) repair mechanism operating to rejoin such breaks in mammalian cells after exposure to ionizing radiation. It has been reported that DNA-PKcs phosphorylation and kinase activity are critical determinants of radiosensitivity, based on responses reported after irradiation of asynchronously dividing populations of various mutant cell lines. In the present study, the relative radiosensitivity to cell killing as well as chromosomal instability of 13 DNA-PKcs site-directed mutant cell lines (defective at phosphorylation sites or kinase activity) were examined after exposure of synchronized G(1) cells to (137)Cs γ rays. DNA-PKcs mutant cells defective in phosphorylation at multiple sites within the T2609 cluster or within the PI3K domain displayed extreme radiosensitivity. Cells defective at the S2056 cluster or T2609 single site alone were only mildly radiosensitive, but cells defective at even one site in both the S2056 and T2609 clusters were maximally radiosensitive. Thus a synergism between the capacity for phosphorylation at the S2056 and T2609 clusters was found to be critical for induction of radiosensitivity.


Asunto(s)
Inestabilidad Cromosómica , Proteína Quinasa Activada por ADN/fisiología , Tolerancia a Radiación , Animales , Células CHO , Cricetinae , Cricetulus , Reparación del ADN , Fase G1 , Humanos , Fosforilación
20.
Cell Cycle ; 9(13): 2529-36, 2010 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-20543558

RESUMEN

The protein kinases ATM and DNA-PKcs play critical roles in the cellular response to DNA double strand breaks (DSBs). ATM and DNA-PKcs are activated in response to DSBs and play several important roles in propagation of the damage signal and for the repair of DNA damage. Recent work from several groups, including ours, has focused on studying the dynamics of each of these proteins at DSBs and the requirements and factors which play a role(s) in this process. The use of live cell imaging of fluorescently-tagged ATM and DNA-PKcs has allowed us to study the real-time response of these proteins to laser-generated DNA damage in vivo. Here, we will extensively discuss the behavior of the ATM and DNA-PKcs proteins at DSB sites.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Roturas del ADN de Doble Cadena , Proteína Quinasa Activada por ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada , Humanos , Cinética , Fosforilación , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA