Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Biomed Eng ; 26(1): 357-382, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38424090

RESUMEN

Among the various types of enzyme-based biosensors, sensors utilizing enzymes capable of direct electron transfer (DET) are recognized as the most ideal. However, only a limited number of redox enzymes are capable of DET with electrodes, that is, dehydrogenases harboring a subunit or domain that functions specifically to accept electrons from the redox cofactor of the catalytic site and transfer the electrons to the external electron acceptor. Such subunits or domains act as built-in mediators for electron transfer between enzymes and electrodes; consequently, such enzymes enable direct electron transfer to electrodes and are designated as DET-type enzymes. DET-type enzymes fall into several categories, including redox cofactors of catalytic reactions, built-in mediators for DET with electrodes and by their protein hierarchic structures, DET-type oxidoreductases with oligomeric structures harboring electron transfer subunits, and monomeric DET-type oxidoreductases harboring electron transfer domains. In this review, we cover the science of DET-type oxidoreductases and their biomedical applications. First, we introduce the structural biology and current understanding of DET-type enzyme reactions. Next, we describe recent technological developments based on DET-type enzymes for biomedical applications, such as biosensors and biochemical energy harvesting for self-powered medical devices. Finally, after discussing how to further engineer and create DET-type enzymes, we address the future prospects for DET-type enzymes in biomedical engineering.


Asunto(s)
Técnicas Biosensibles , Oxidación-Reducción , Oxidorreductasas , Transporte de Electrón , Técnicas Biosensibles/métodos , Humanos , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Electrodos , Electrones , Animales , Dominio Catalítico , Ingeniería Biomédica/métodos
2.
J Am Chem Soc ; 146(6): 4087-4097, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38295327

RESUMEN

DNA-protein complexes are attractive components with broad applications in various research fields, such as DNA aptamer-enzyme complexes as biosensing elements. However, noncovalent DNA-protein complexes often decrease detection sensitivity because they are highly susceptible to environmental conditions. In this study, we developed a versatile DNA-protein covalent-linking patch (D-Pclip) for fabricating covalent and stoichiometric DNA-protein complexes. We comprehensively explored the database to determine the DNA-binding ability of the candidates and selected UdgX as the only uracil-DNA glycosylase known to form covalent bonds with DNA via uracil, with a binding efficiency >90%. We integrated a SpyTag/SpyCatcher protein-coupling system into UdgX to create a universal and convenient D-Pclip. The usability of D-Pclip was shown by preparing a stoichiometric model complex of a hemoglobin (Hb)-binding aptamer and glucose oxidase (GOx) by mixing at 4 °C. The prepared aptamer-GOx complexes detected Hb in a dose-dependent manner within the clinically required detection range in buffer and human serum without any washing procedures. D-Pclip covalently connects any uracil-inserted DNA sequence and any SpyCatcher-fused protein stoichiometrically; therefore, it has a high potential for various applications.


Asunto(s)
Proteínas de Unión al ADN , ADN , Humanos , Proteínas de Unión al ADN/química , ADN/química , Secuencia de Bases , Uracilo
3.
Anal Chem ; 96(10): 4076-4085, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38408165

RESUMEN

In this work, direct electron transfer (DET)-type extended gate field effect transistor (EGFET) enzymatic sensors were developed by employing DET-type or quasi-DET-type enzymes to detect glucose or lactate in both 100 mM potassium phosphate buffer and artificial sweat. The system employed either a DET-type glucose dehydrogenase or a quasi-DET-type lactate oxidase, the latter of which was a mutant enzyme with suppressed oxidase activity and modified with amine-reactive phenazine ethosulfate. These enzymes were immobilized on the extended gate electrodes. Changes in the measured transistor drain current (ID) resulting from changes to the working electrode junction potential (φ) were observed as glucose and lactate concentrations were varied. Calibration curves were generated for both absolute measured ID and ΔID (normalized to a blank solution containing no substrate) to account for variations in enzyme immobilization and conjugation to the mediator and variations in reference electrode potential. This work resulted in a limit of detection of 53.9 µM (based on ID) for glucose and 2.12 mM (based on ID) for lactate, respectively. The DET-type and Quasi-DET-type EGFET enzymatic sensor was then modeled using the case of the lactate sensor as an equivalent circuit to validate the principle of sensor operation being driven through OCP changes caused by the substrate-enzyme interaction. The model showed slight deviation from collected empirical data with 7.3% error for the slope and 8.6% error for the y-intercept.


Asunto(s)
Técnicas Biosensibles , Electrones , Técnicas Biosensibles/métodos , Glucosa/metabolismo , Glucosa 1-Deshidrogenasa/metabolismo , Ácido Láctico , Enzimas Inmovilizadas/metabolismo , Electrodos
4.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34161273

RESUMEN

Enzymes are molecules that catalyze reactions critical to life. These catalysts are often studied in bulk water, where the influence of water volume on reactivity is neglected. Here, we demonstrate rate enhancement of up to two orders of magnitude for enzymes trapped in submicrometer water nanodroplets suspended in 1,2-dichloroethane. When single nanodroplets irreversibly adsorb onto an ultramicroelectrode surface, enzymatic activity is apparent in the amperometric current-time trace if the ultramicroelectrode generates the enzyme cofactor. Nanodroplet volume is easily accessible by integrating the current-time response and using Faraday's Law. The single nanodroplet technique allows us to plot the enzyme's activity as a function of nanodroplet size, revealing a strong inverse relationship. Finite element simulations confirm our experimental results and offer insights into parameters influencing single nanodroplet enzymology. These results provide a framework to profoundly influence the understanding of chemical reactivity at the nanoscale.


Asunto(s)
Electroquímica , Glucosa Deshidrogenasas/metabolismo , Nanopartículas/química , Agua/química , Electrodos , Flavina-Adenina Dinucleótido
5.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38474105

RESUMEN

Although IgG-free immunosensors are in high demand owing to ethical concerns, the development of convenient immunosensors that alternatively integrate recombinantly produced antibody fragments, such as single-chain variable fragments (scFvs), remains challenging. The low affinity of antibody fragments, unlike IgG, caused by monovalent binding to targets often leads to decreased sensitivity. We improved the affinity owing to the bivalent effect by fabricating a bivalent antibody-enzyme complex (AEC) composed of two scFvs and a single glucose dehydrogenase, and developed a rapid and convenient scFv-employed electrochemical detection system for the C-reactive protein (CRP), which is a homopentameric protein biomarker of systemic inflammation. The development of a point-of-care testing (POCT) system is highly desirable; however, no scFv-based CRP-POCT immunosensors have been developed. As expected, the bivalent AEC showed higher affinity than the single scFv and contributed to the high sensitivity of CRP detection. The electrochemical CRP detection using scFv-immobilized magnetic beads and the bivalent AEC as capture and detection antibodies, respectively, was achieved in 20 min without washing steps in human serum and the linear range was 1-10 nM with the limit of detection of 2.9 nM, which has potential to meet the criteria required for POCT application in rapidity, convenience, and hand-held detection devices without employing IgGs.


Asunto(s)
Técnicas Biosensibles , Anticuerpos de Cadena Única , Humanos , Anticuerpos de Cadena Única/metabolismo , Proteína C-Reactiva , Inmunoensayo
6.
Nucleic Acids Res ; 49(11): 6069-6081, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-34095949

RESUMEN

Aptamers can control the biological functions of enzymes, thereby facilitating the development of novel biosensors. While aptamers that inhibit catalytic reactions of enzymes were found and used as signal transducers to sense target molecules in biosensors, no aptamers that amplify enzymatic activity have been identified. In this study, we report G-quadruplex (G4)-forming DNA aptamers that upregulate the peroxidase activity in myoglobin specifically for luminol. Using in vitro selection, one G4-forming aptamer that enhanced chemiluminescence from luminol by myoglobin's peroxidase activity was discovered. Through our strategy-in silico maturation, which is a genetic algorithm-aided sequence manipulation method, the enhancing activity of the aptamer was improved by introducing mutations to the aptamer sequences. The best aptamer conserved the parallel G4 property with over 300-times higher luminol chemiluminescence from peroxidase activity more than myoglobin alone at an optimal pH of 5.0. Furthermore, using hemin and hemin-binding aptamers, we demonstrated that the binding property of the G4 aptamers to heme in myoglobin might be necessary to exert the enhancing effect. Structure determination for one of the aptamers revealed a parallel-type G4 structure with propeller-like loops, which might be useful for a rational design of aptasensors utilizing the G4 aptamer-myoglobin pair.


Asunto(s)
Aptámeros de Nucleótidos/química , G-Cuádruplex , Luminol/metabolismo , Mioglobina/metabolismo , Peroxidasa/metabolismo , Aptámeros de Nucleótidos/metabolismo , Simulación por Computador , Hemo/metabolismo , Luminiscencia , Luminol/química , Resonancia Magnética Nuclear Biomolecular , Técnica SELEX de Producción de Aptámeros , Especificidad por Sustrato
7.
Int J Mol Sci ; 24(3)2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36768169

RESUMEN

The electrochemical enzyme sensors based on direct electron transfer (DET)-type oxidoreductase-based enzymes are ideal for continuous and in vivo monitoring. However, the number and types of DET-type oxidoreductases are limited. The aim of this research is the development of a versatile method to create a DET-type oxidoreductase complex based on the SpyCatcher/SpyTag technique by preparing SpyCatcher-fused heme c and SpyTag-fused non-DET-type oxidoreductases, and by the in vitro formation of DET-type oxidoreductase complexes. A heme c containing an electron transfer protein derived from Rhizobium radiobacter (CYTc) was selected to prepare SpyCatcher-fused heme c. Three non-DET-type oxidoreductases were selected as candidates for the SpyTag-fused enzyme: fungi-derived flavin adenine dinucleotide (FAD)-dependent glucose dehydrogenase (GDH), an engineered FAD-dependent d-amino acid oxidase (DAAOx), and an engineered FMN-dependent l-lactate oxidase (LOx). CYTc-SpyCatcher (CYTc-SC) and SpyTag-Enzymes (ST-GDH, ST-DAAOx, ST-LOx) were prepared as soluble molecules while maintaining their redox properties and catalytic activities, respectively. CYTc-SC/ST-Enzyme complexes were formed by mixing CYTc-SpyCatcher and SpyTag-Enzymes, and the complexes retained their original enzymatic activity. Remarkably, the heme domain served as an electron acceptor from complexed enzymes by intramolecular electron transfer; consequently, all constructed CYTc-SC/ST-Enzyme complexes showed DET ability to the electrode, demonstrating the versatility of this method.


Asunto(s)
Electrones , Flavina-Adenina Dinucleótido , Flavina-Adenina Dinucleótido/metabolismo , Glucosa 1-Deshidrogenasa/metabolismo , Proteínas/metabolismo , Oxidación-Reducción
8.
Int J Mol Sci ; 24(6)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36982354

RESUMEN

Therapeutic monoclonal antibodies (mAbs) are currently the most effective medicines for a wide range of diseases. Therefore, it is expected that easy and rapid measurement of mAbs will be required to improve their efficacy. Here, we report an anti-idiotype aptamer-based electrochemical sensor for a humanized therapeutic antibody, bevacizumab, based on square wave voltammetry (SWV). With this measurement procedure, we were able to monitor the target mAb within 30 min by employing the anti-idiotype bivalent aptamer modified with a redox probe. A fabricated bevacizumab sensor achieved detection of bevacizumab from 1-100 nM while eliminating the need for free redox probes in the solution. The feasibility of monitoring biological samples was also demonstrated by detecting bevacizumab in the diluted artificial serum, and the fabricated sensor succeeded in detecting the target covering the physiologically relevant concentration range of bevacizumab. Our sensor contributes to ongoing efforts towards therapeutic mAbs monitoring by investigating their pharmacokinetics and improving their treatment efficacy.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Bevacizumab , Aptámeros de Nucleótidos/metabolismo , Anticuerpos Monoclonales , Oxidación-Reducción , Técnicas Electroquímicas/métodos , Técnicas Biosensibles/métodos
9.
Microb Cell Fact ; 21(1): 7, 2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-34991586

RESUMEN

BACKGROUND: Cyanobacteria are engineered via heterologous biosynthetic pathways to produce value-added chemicals via photosynthesis. Various chemicals have been successfully produced in engineered cyanobacteria. Chemical inducer-dependent promoters are used to induce the expression of target biosynthetic pathway genes. A chemical inducer is not ideal for large-scale reactions owing to its high cost; therefore, it is important to develop scaling-up methods to avoid their use. In this study, we designed a green light-inducible alcohol production system using the CcaS/CcaR green light gene expression system in the cyanobacterium Synechocystis sp. PCC 6803 (PCC 6803). RESULTS: To establish the green light-inducible production of isobutanol and 3-methyl-1-butanol (3MB) in PCC 6803, keto-acid decarboxylase (kdc) and alcohol dehydrogenase (adh) were expressed under the control of the CcaS/CcaR system. Increases in the transcription level were induced by irradiation with red and green light without severe effects on host cell growth. We found that the production of isobutanol and 3MB from carbon dioxide (CO2) was induced under red and green light illumination and was substantially repressed under red light illumination alone. Finally, production titers of isobutanol and 3MB reached 238 mg L-1 and 75 mg L-1, respectively, in 5 days under red and green light illumination, and these values are comparable to those reported in previous studies using chemical inducers. CONCLUSION: A green light-induced alcohol production system was successfully integrated into cyanobacteria to produce value-added chemicals without using expensive chemical inducers. The green light-regulated production of isobutanol and 3MB from CO2 is eco-friendly and cost-effective. This study demonstrates that light regulation is a potential tool for producing chemicals and increases the feasibility of cyanobacterial bioprocesses.


Asunto(s)
Butanoles/metabolismo , Ingeniería Metabólica , Pentanoles/metabolismo , Synechocystis/genética , Synechocystis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Luz , Fotorreceptores Microbianos/genética , Fotorreceptores Microbianos/metabolismo , Fotosíntesis , Regiones Promotoras Genéticas , Synechocystis/crecimiento & desarrollo
10.
Sensors (Basel) ; 22(5)2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35270906

RESUMEN

Electrochemical aptamer-based biosensors (E-ABs) are attractive candidates for use in biomarker detection systems due to their sensitivity, rapid response, and design flexibility. There are only several redox probes that were employed previously for this application, and a combination of redox probes affords some advantages in target detection. Thus, it would be advantageous to study new redox probes in an E-AB system. In this study, we report the use of amine-reactive phenazine ethosulfate (arPES) for E-AB through its conjugation to the terminus of thrombin-binding aptamer. The constructed E-AB can detect thrombin by square-wave voltammetry (SWV), showing peak current at -0.15 V vs. Ag/AgCl at pH 7, which differs from redox probes used previously for E-ABs. We also compared the characteristics of PES as a redox probe for E-AB to methylene blue (MB), which is widely used. arPES showed stable signal at physiological pH. Moreover, the pH profile of arPES modified thrombin-binding aptamer revealed the potential application of arPES for a simultaneous multianalyte detection system. This could be achieved using different aptamers with several redox probes in tandem that harbor various electrochemical peak potentials. Our findings present a great opportunity to improve the current standard of biological fluid monitoring using E-AB.


Asunto(s)
Aminas , Técnicas Biosensibles , Electroquímica , Oxidación-Reducción , Fenazinas
11.
Microb Cell Fact ; 20(1): 128, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34225717

RESUMEN

BACKGROUND: The development of multiple gene expression systems, especially those based on the physical signals, such as multiple color light irradiations, is challenging. Complementary chromatic acclimation (CCA), a photoreversible process that facilitates the control of cellular expression using light of different wavelengths in cyanobacteria, is one example. In this study, an artificial CCA systems, inspired by type III CCA light-regulated gene expression, was designed by employing a single photosensor system, the CcaS/CcaR green light gene expression system derived from Synechocystis sp. PCC6803, combined with G-box (the regulator recognized by activated CcaR), the cognate cpcG2 promoter, and the constitutively transcribed promoter, the PtrcΔLacO promoter. RESULTS: One G-box was inserted upstream of the cpcG2 promoter and a reporter gene, the rfp gene (green light-induced gene expression), and the other G-box was inserted between the PtrcΔLacO promoter and a reporter gene, the bfp gene (red light-induced gene expression). The Escherichia coli transformants with plasmid-encoded genes were evaluated at the transcriptional and translational levels under red or green light illumination. Under green light illumination, the transcription and translation of the rfp gene were observed, whereas the expression of the bfp gene was repressed. Under red light illumination, the transcription and translation of the bfp gene were observed, whereas the expression of the rfp gene was repressed. During the red and green light exposure cycles at every 6 h, BFP expression increased under red light exposure while RFP expression was repressed, and RFP expression increased under green light exposure while BFP expression was repressed. CONCLUSION: An artificial CCA system was developed to realize a multiple gene expression system, which was regulated by two colors, red and green lights, using a single photosensor system, the CcaS/CcaR system derived from Synechocystis sp. PCC6803, in E. coli. The artificial CCA system functioned repeatedly during red and green light exposure cycles. These results demonstrate the potential application of this CCA gene expression system for the production of multiple metabolites in a variety of microorganisms, such as cyanobacteria.


Asunto(s)
Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Expresión Génica , Luz , Escherichia coli/metabolismo , Genes Reporteros , Proteínas Luminiscentes/genética , Ficobilinas/biosíntesis , Ficobilinas/genética , Ficocianina/biosíntesis , Ficocianina/genética , Regiones Promotoras Genéticas , Synechocystis/genética , Synechocystis/metabolismo , Transcripción Genética , Transformación Bacteriana , Proteína Fluorescente Roja
12.
Molecules ; 26(3)2021 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-33572552

RESUMEN

Glycated albumin (GA) is an important glycemic control marker for diabetes mellitus. This study aimed to develop a highly sensitive disposable enzyme sensor strip for GA measurement by using an interdigitated electrode (IDE) as an electrode platform. The superior characteristics of IDE were demonstrated using one microelectrode of the IDE pair as the working electrode (WE) and the other as the counter electrode, and by measuring ferrocyanide/ferricyanide redox couple. The oxidation current was immediately reached at the steady state when the oxidation potential was applied to the WE. Then, an IDE enzyme sensor strip for GA measurement was prepared. The measurement of fructosyl lysine, the protease digestion product of GA, exhibited a high, steady current immediately after potential application, revealing the highly reproducible measurement. The sensitivity (2.8 nA µM-1) and the limit of detection (1.2 µM) obtained with IDE enzyme sensor strip were superior compared with our previously reported sensor using screen printed electrode. Two GA samples, 15 or 30% GA, corresponding to healthy and diabetic levels, respectively, were measured after protease digestion with high resolution. This study demonstrated that the application of an IDE will realize the development of highly sensitive disposable-type amperometric enzyme sensors with high reproducibility.


Asunto(s)
Técnicas Biosensibles/instrumentación , Equipos Desechables , Enzimas/metabolismo , Albúmina Sérica/análisis , Electrodos , Productos Finales de Glicación Avanzada , Reproducibilidad de los Resultados , Albúmina Sérica Glicada
13.
Biochem Biophys Res Commun ; 530(1): 82-86, 2020 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-32828319

RESUMEN

Fungi-derived flavin adenine dinucleotide (FAD)-dependent glucose dehydrogenases (FADGDHs) are the most popular and advanced enzymes for SMBG sensors because of their high substrate specificity toward glucose and oxygen insensitivity. However, this type of FADGDH hardly shows direct electron transfer (DET) ability. In this study, we developed a new DET-type FADGDH by harboring Cytochrome b562 (cyt b562) derived from Escherichia coli as the electron transfer domain. The structural genes encoding fusion enzymes composed of cyt b562 at either the N- or C-terminus of fungal FADGDH, (cyt b562-GDH or GDH-cyt b562), were constructed, recombinantly expressed, and characteristics of the fusion proteins were investigated. Both constructed fusion enzymes were successfully expressed in E. coli, as the soluble and GDH active proteins, showing cyt b562 specific redox properties. Thusconstructed fusion proteins showed internal electron transfer between FAD in FADGDH and fused cyt b562. Consequently, both cyt b562-GDH and GDH-cyt b562 showed DET abilities toward electrode. Interestingly, cyt b562-GDH showed much rapid internal electron transfer and higher DET ability than GDH-cyt b562. Thus, we demonstrated the construction and production of a new DET-type FADGDH using E.coli as the host cells, which is advantageous for future industrial application and further engineering.


Asunto(s)
Botrytis/genética , Grupo Citocromo b/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Glucosa 1-Deshidrogenasa/genética , Botrytis/metabolismo , Grupo Citocromo b/metabolismo , Transporte de Electrón , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Glucosa 1-Deshidrogenasa/metabolismo , Ingeniería de Proteínas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Especificidad por Sustrato
14.
Sensors (Basel) ; 20(14)2020 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-32664558

RESUMEN

Aptamer-based electrochemical sensors have gained attention in the context of developing a diagnostic biomarker detection method because of their rapid response, miniaturization ability, stability, and design flexibility. In such detection systems, enzymes are often used as labels to amplify the electrochemical signal. We have focused on glucose dehydrogenase (GDH) as a labeling enzyme for electrochemical detection owing to its high enzymatic activity, availability, and well-established electrochemical principle and platform. However, it is difficult and laborious to obtain one to one labeling of a GDH-aptamer complex with conventional chemical conjugation methods. In this study, we used GDH that was genetically fused to a DNA binding protein, i.e., zinc finger protein (ZF). Fused GDH can be attached to an aptamer spontaneously and site specifically in a buffer by exploiting the sequence-specific binding ability of ZF. Using such a fusion protein, we labeled a vascular endothelial growth factor (VEGF)-binding aptamer with GDH and detected the target electrochemically. As a result, upon the addition of glucose, the GDH labeled on the aptamer generated an amperometric signal, and the current response increased dependent on the VEGF concentration. Eventually, the developed electrochemical sensor proved to detect VEGF levels as low as 105 pM, thereby successfully demonstrating the concept of using ZF-fused GDH to enzymatically label aptamers.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Técnicas Electroquímicas , Glucosa 1-Deshidrogenasa , Factor A de Crecimiento Endotelial Vascular/análisis , Humanos , Dedos de Zinc
15.
Sensors (Basel) ; 20(10)2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32429321

RESUMEN

In this paper, a novel electron mediator, 1-methoxy-5-ethyl phenazinium ethyl sulfate (mPES), was introduced as a versatile mediator for disposable enzyme sensor strips, employing representative flavin oxidoreductases, lactate oxidase (LOx), glucose dehydrogenase (GDH), and fructosyl peptide oxidase (FPOx). A disposable lactate enzyme sensor with oxygen insensitive Aerococcus viridans-derived engineered LOx (AvLOx), with A96L mutant as the enzyme, was constructed. The constructed lactate sensor exhibited a high sensitivity (0.73 ± 0.12 µA/mM) and wide linear range (0-50 mM lactate), showings that mPES functions as an effective mediator for AvLOx. Employing mPES as mediator allowed this amperometric lactate sensor to be operated at a relatively low potential of +0.2 V to 0 V vs. Ag/AgCl, thus avoiding interference from uric acid and acetaminophen. The lactate sensors were adequately stable for at least 48 days of storage at 25 °C. These results indicated that mPES can be replaced with 1-methoxy-5-methyl phenazinium methyl sulfate (mPMS), which we previously reported as the best mediator for AvLOx-based lactate sensors. Furthermore, this study revealed that mPES can be used as an effective electron mediator for the enzyme sensors employing representative flavin oxidoreductases, GDH-based glucose sensors, and FPOx-based hemoglobin A1c (HbA1c) sensors.


Asunto(s)
Aerococcus/enzimología , Aminoácido Oxidorreductasas/química , Técnicas Biosensibles , Electrones , Glucosa Deshidrogenasas/química , Oxigenasas de Función Mixta/química , Ésteres del Ácido Sulfúrico/química
16.
Int J Mol Sci ; 21(11)2020 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-32471202

RESUMEN

In this review, recent progress in the engineering of the oxidative half-reaction of flavin-dependent oxidases and dehydrogenases is discussed, considering their current and future applications in bioelectrochemical studies, such as for the development of biosensors and biofuel cells. There have been two approaches in the studies of oxidative half-reaction: engineering of the oxidative half-reaction with oxygen, and engineering of the preference for artificial electron acceptors. The challenges for engineering oxidative half-reactions with oxygen are further categorized into the following approaches: (1) mutation to the putative residues that compose the cavity where oxygen may be located, (2) investigation of the vicinities where the reaction with oxygen may take place, and (3) investigation of possible oxygen access routes to the isoalloxazine ring. Among these approaches, introducing a mutation at the oxygen access route to the isoalloxazine ring represents the most versatile and effective strategy. Studies to engineer the preference of artificial electron acceptors are categorized into three different approaches: (1) engineering of the charge at the residues around the substrate entrance, (2) engineering of a cavity in the vicinity of flavin, and (3) decreasing the glycosylation degree of enzymes. Among these approaches, altering the charge in the vicinity where the electron acceptor may be accessed will be most relevant.


Asunto(s)
Transporte de Electrón , Flavoproteínas/química , Oxidorreductasas/química , Animales , Flavinas/química , Flavinas/metabolismo , Flavoproteínas/metabolismo , Humanos , Oxidorreductasas/metabolismo , Oxígeno/química , Oxígeno/metabolismo
17.
Int J Mol Sci ; 21(3)2020 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-32046321

RESUMEN

Glucose oxidase (GOx) has been widely utilized for monitoring glycemic levels due to its availability, high activity, and specificity toward glucose. Among the three generations of electrochemical glucose sensor principles, direct electron transfer (DET)-based third-generation sensors are considered the ideal principle since the measurements can be carried out in the absence of a free redox mediator in the solution without the impact of oxygen and at a low enough potential for amperometric measurement to avoid the effect of electrochemically active interferences. However, natural GOx is not capable of DET. Therefore, a simple and rapid strategy to create DET-capable GOx is desired. In this study, we designed engineered GOx, which was made readily available for single-step modification with a redox mediator (phenazine ethosulfate, PES) on its surface via a lysine residue rationally introduced into the enzyme. Thus, PES-modified engineered GOx showed a quasi-DET response upon the addition of glucose. This strategy and the obtained results will contribute to the further development of quasi-DET GOx-based glucose monitoring dedicated to precise and accurate glycemic control for diabetic patient care.


Asunto(s)
Técnicas Biosensibles/métodos , Glucemia/análisis , Glucosa Oxidasa/metabolismo , Fenazinas/metabolismo , Ingeniería de Proteínas , Aspergillus niger/enzimología , Técnicas Electroquímicas , Proteínas Fúngicas/metabolismo , Glucosa/metabolismo , Glucosa Oxidasa/genética
18.
Anal Chem ; 90(24): 14500-14506, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30427170

RESUMEN

Antibody-enzyme complexes (AECs) are ideal sensing elements, especially when oxidoreductases are used as the enzymes in the complex, with the potential to carry out rapid electrochemical measurements. However, conventional methods for the fabrication of AECs, including direct fusion and chemical conjugation, are associated with issues regarding the generation of insoluble aggregates and production of homogeneous AECs. Here, we developed a convenient and universal method for the fabrication of homogeneous AECs using the SpyCatcher/SpyTag system. We used an anti-epidermal growth factor receptor (EGFR) variable domain of a heavy chain antibody (VHH) and a glucose dehydrogenase (GDH) derived from Aspergillus flavus ( AfGDH) as the model antibody and enzyme, respectively. Both SpyTag-fused VHH and SpyCatcher-fused AfGDH were successfully prepared using an Escherichia coli expression system, whereas anti-EGFR AECs were produced by simply mixing the two fusion proteins. A bivalent AEC, AfGDH with two VHH at both terminals, was also prepared and exhibited an increased affinity. A soluble EGFR was successfully detected in a dose-dependent manner using immobilized anti-EGFR immunoglobulin G (IgG) and bivalent AEC. We also confirmed the universality of this AEC fabricating method by applying it to another VHH. This method results in the convenient and universal preparation of sensing elements with the potential for electrochemical measurement.


Asunto(s)
Complejo Antígeno-Anticuerpo/metabolismo , Glucosa Deshidrogenasas/metabolismo , Cadenas Pesadas de Inmunoglobulina/metabolismo , Complejo Antígeno-Anticuerpo/genética , Aspergillus/enzimología , Técnicas Biosensibles , Receptores ErbB/análisis , Receptores ErbB/inmunología , Escherichia coli/metabolismo , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Glucosa Deshidrogenasas/genética , Cadenas Pesadas de Inmunoglobulina/genética , Cadenas Pesadas de Inmunoglobulina/inmunología , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética , Resonancia por Plasmón de Superficie
19.
RNA Biol ; 15(3): 353-358, 2018 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-29303421

RESUMEN

Cyanobacteria are ideal cellular factories for biochemical production because of their ability to fix CO2 by photosynthesis and convert this molecule into biochemicals. Previously, we engineered a riboregulator that enables post-transcriptional gene regulation in the cyanobacterium Synechocystis sp. PCC 6803. Here, we improved the riboregulator by designing two RNA species, taRNA and crRNA, to enhance its induction fold. We inserted nucleotides into the crRNA loop to enhance intermolecular hybridization and successfully improved its induction fold. The engineered riboregulator exhibited a higher induction fold than the previously engineered riboregulator in both Escherichia coli and Synechocystis sp. PCC 6803. This improved riboregulator can be used to control gene expression over a wide dynamic range in cyanobacteria.


Asunto(s)
Ingeniería Genética/métodos , ARN/genética , Synechocystis/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica , Modelos Moleculares , Conformación de Ácido Nucleico , Regiones Promotoras Genéticas , ARN/química , Synechocystis/genética , Activación Transcripcional
20.
Int J Mol Sci ; 19(4)2018 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-29561779

RESUMEN

The FAD-dependent glucose dehydrogenase from Burkholderia cepacia (FADGDH) is a hetero-oligomeric enzyme that is capable of direct electron transfer (DET) with an electrode. The cytochrome c (cyt c) subunit, which possesses three hemes (heme 1, heme 2, and heme 3, from the N-terminal sequence), is known to enable DET; however, details of the electron transfer pathway remain unknown. A mutagenesis investigation of the heme axial ligands was carried out to elucidate the electron transfer pathway to the electron mediators and/or the electrode. The sixth axial ligand for each of the three heme irons, Met109, Met263, and Met386 were substituted with His. The catalytic activities of the wild-type (WT) and mutant enzymes were compared by investigating their dye-mediated dehydrogenase activities and their DET abilities toward the electrode. The results suggested that (1) heme 1 with Met109 as an axial ligand is mainly responsible for the electron transfer with electron acceptors in the solution, but not for the DET with the electrode; (2) heme 2 with Met263 is responsible for the DET-type reaction with the electrode; and (3) heme 3 with Met386 seemed to be the electron acceptor from the catalytic subunit. From these results, two electron transfer pathways were proposed depending on the electron acceptors. Electrons are transferred from the catalytic subunit to heme 3, then to heme 2, to heme 1 and, finally, to electron acceptors in solution. However, if the enzyme complex is immobilized on the electrode and is used as electron acceptors, electrons are passed to the electrode from heme 2.


Asunto(s)
Biocatálisis , Dominio Catalítico/genética , Citocromos c/genética , Electrones , Flavina-Adenina Dinucleótido/metabolismo , Glucosa 1-Deshidrogenasa/metabolismo , Mutagénesis/genética , Secuencia de Aminoácidos , Citocromos c/química , Electrodos , Pruebas de Enzimas , Proteínas Mutantes/metabolismo , Soluciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA