Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Addict Biol ; 29(7): e13419, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38949209

RESUMEN

Substance use disorders (SUDs) are seen as a continuum ranging from goal-directed and hedonic drug use to loss of control over drug intake with aversive consequences for mental and physical health and social functioning. The main goals of our interdisciplinary German collaborative research centre on Losing and Regaining Control over Drug Intake (ReCoDe) are (i) to study triggers (drug cues, stressors, drug priming) and modifying factors (age, gender, physical activity, cognitive functions, childhood adversity, social factors, such as loneliness and social contact/interaction) that longitudinally modulate the trajectories of losing and regaining control over drug consumption under real-life conditions. (ii) To study underlying behavioural, cognitive and neurobiological mechanisms of disease trajectories and drug-related behaviours and (iii) to provide non-invasive mechanism-based interventions. These goals are achieved by: (A) using innovative mHealth (mobile health) tools to longitudinally monitor the effects of triggers and modifying factors on drug consumption patterns in real life in a cohort of 900 patients with alcohol use disorder. This approach will be complemented by animal models of addiction with 24/7 automated behavioural monitoring across an entire disease trajectory; i.e. from a naïve state to a drug-taking state to an addiction or resilience-like state. (B) The identification and, if applicable, computational modelling of key molecular, neurobiological and psychological mechanisms (e.g., reduced cognitive flexibility) mediating the effects of such triggers and modifying factors on disease trajectories. (C) Developing and testing non-invasive interventions (e.g., Just-In-Time-Adaptive-Interventions (JITAIs), various non-invasive brain stimulations (NIBS), individualized physical activity) that specifically target the underlying mechanisms for regaining control over drug intake. Here, we will report on the most important results of the first funding period and outline our future research strategy.


Asunto(s)
Trastornos Relacionados con Sustancias , Humanos , Animales , Alemania , Conducta Adictiva , Alcoholismo
2.
Neuroimage ; 275: 120187, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37230205

RESUMEN

Transcranial alternating current stimulation (tACS) can influence perception and behavior, with recent evidence also highlighting its potential impact in clinical settings, but its underlying mechanisms are poorly understood. Behavioral and indirect physiological evidence indicates that phase-dependent constructive and destructive interference between the applied electric field and brain oscillations at the stimulation frequency may play an important role, but in vivo validation during stimulation was unfeasible because stimulation artifacts impede single-trial assessment of brain oscillations during tACS. Here, we attenuated stimulation artifacts to provide evidence for phase-dependent enhancement and suppression of visually evoked steady state responses (SSR) during amplitude-modulated tACS (AM-tACS). We found that AM-tACS enhanced and suppressed SSR by 5.77 ± 2.95%, while it enhanced and suppressed corresponding visual perception by 7.99 ± 5.15%. While not designed to investigate the underlying mechanisms of this effect, our study suggests feasibility and superiority of phase-locked (closed-loop) AM-tACS over conventional (open-loop) AM-tACS to purposefully enhance or suppress brain oscillations at specific frequencies.


Asunto(s)
Estimulación Transcraneal de Corriente Directa , Humanos , Encéfalo/fisiología , Percepción Visual/fisiología , Artefactos
3.
J Neuroeng Rehabil ; 20(1): 17, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36707885

RESUMEN

BACKGROUND: Assistive hand exoskeletons are promising tools to restore hand function after cervical spinal cord injury (SCI) but assessing their specific impact on bimanual hand and arm function is limited due to lack of reliable and valid clinical tests. Here, we introduce the Berlin Bimanual Test for Tetraplegia (BeBiTT) and demonstrate its psychometric properties and sensitivity to assistive hand exoskeleton-related improvements in bimanual task performance. METHODS: Fourteen study participants with subacute cervical SCI performed the BeBiTT unassisted (baseline). Thereafter, participants repeated the BeBiTT while wearing a brain/neural hand exoskeleton (B/NHE) (intervention). Online control of the B/NHE was established via a hybrid sensorimotor rhythm-based brain-computer interface (BCI) translating electroencephalographic (EEG) and electrooculographic (EOG) signals into open/close commands. For reliability assessment, BeBiTT scores were obtained by four independent observers. Besides internal consistency analysis, construct validity was assessed by correlating baseline BeBiTT scores with the Spinal Cord Independence Measure III (SCIM III) and Quadriplegia Index of Function (QIF). Sensitivity to differences in bimanual task performance was assessed with a bootstrapped paired t-test. RESULTS: The BeBiTT showed excellent interrater reliability (intraclass correlation coefficients > 0.9) and internal consistency (α = 0.91). Validity of the BeBiTT was evidenced by strong correlations between BeBiTT scores and SCIM III as well as QIF. Wearing a B/NHE (intervention) improved the BeBiTT score significantly (p < 0.05) with high effect size (d = 1.063), documenting high sensitivity to intervention-related differences in bimanual task performance. CONCLUSION: The BeBiTT is a reliable and valid test for evaluating bimanual task performance in persons with tetraplegia, suitable to assess the impact of assistive hand exoskeletons on bimanual function.


Asunto(s)
Dispositivo Exoesqueleto , Traumatismos de la Médula Espinal , Humanos , Psicometría , Reproducibilidad de los Resultados , Berlin , Mano , Cuadriplejía/diagnóstico , Cuadriplejía/rehabilitación , Traumatismos de la Médula Espinal/rehabilitación
4.
J Neuroeng Rehabil ; 20(1): 61, 2023 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-37149621

RESUMEN

BACKGROUND: The aging of the population and the progressive increase of life expectancy in developed countries is leading to a high incidence of age-related cerebrovascular diseases, which affect people's motor and cognitive capabilities and might result in the loss of arm and hand functions. Such conditions have a detrimental impact on people's quality of life. Assistive robots have been developed to help people with motor or cognitive disabilities to perform activities of daily living (ADLs) independently. Most of the robotic systems for assisting on ADLs proposed in the state of the art are mainly external manipulators and exoskeletal devices. The main objective of this study is to compare the performance of an hybrid EEG/EOG interface to perform ADLs when the user is controlling an exoskeleton rather than using an external manipulator. METHODS: Ten impaired participants (5 males and 5 females, mean age 52 ± 16 years) were instructed to use both systems to perform a drinking task and a pouring task comprising multiple subtasks. For each device, two modes of operation were studied: synchronous mode (the user received a visual cue indicating the sub-tasks to be performed at each time) and asynchronous mode (the user started and finished each of the sub-tasks independently). Fluent control was assumed when the time for successful initializations ranged below 3 s and a reliable control in case it remained below 5 s. NASA-TLX questionnaire was used to evaluate the task workload. For the trials involving the use of the exoskeleton, a custom Likert-Scale questionnaire was used to evaluate the user's experience in terms of perceived comfort, safety, and reliability. RESULTS: All participants were able to control both systems fluently and reliably. However, results suggest better performances of the exoskeleton over the external manipulator (75% successful initializations remain below 3 s in case of the exoskeleton and bellow 5s in case of the external manipulator). CONCLUSIONS: Although the results of our study in terms of fluency and reliability of EEG control suggest better performances of the exoskeleton over the external manipulator, such results cannot be considered conclusive, due to the heterogeneity of the population under test and the relatively limited number of participants.


Asunto(s)
Actividades Cotidianas , Dispositivo Exoesqueleto , Masculino , Femenino , Humanos , Adulto , Persona de Mediana Edad , Anciano , Calidad de Vida , Reproducibilidad de los Resultados , Encéfalo
5.
Neuroimage ; 228: 117571, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33412281

RESUMEN

Brain oscillations, e.g. measured by electro- or magnetoencephalography (EEG/MEG), are causally linked to brain functions that are fundamental for perception, cognition and learning. Recent advances in neurotechnology provide means to non-invasively target these oscillations using frequency-tuned amplitude-modulated transcranial alternating current stimulation (AM-tACS). However, online adaptation of stimulation parameters to ongoing brain oscillations remains an unsolved problem due to stimulation artifacts that impede such adaptation, particularly at the target frequency. Here, we introduce a real-time compatible artifact rejection algorithm (Stimulation Artifact Source Separation, SASS) that overcomes this limitation. SASS is a spatial filter (linear projection) removing EEG signal components that are maximally different in the presence versus absence of stimulation. This enables the reliable removal of stimulation-specific signal components, while leaving physiological signal components unaffected. For validation of SASS, we evoked brain activity with known phase and amplitude using 10 Hz visual flickers across 7 healthy human volunteers. 64-channel EEG was recorded during and in absence of 10 Hz AM-tACS targeting the visual cortex. Phase differences between AM-tACS and the visual stimuli were randomized, so that steady-state visually evoked potentials (SSVEPs) were phase-locked to the visual stimuli but not to the AM-tACS signal. For validation, distributions of single-trial amplitude and phase of EEG signals recorded during and in absence of AM-tACS were compared for each participant. When no artifact rejection method was applied, AM-tACS stimulation artifacts impeded assessment of single-trial SSVEP amplitude and phase. Using SASS, amplitude and phase of single trials recorded during and in absence of AM-tACS were comparable. These results indicate that SASS can be used to establish adaptive (closed-loop) AM-tACS, a potentially powerful tool to target various brain functions, and to investigate how AM-tACS interacts with electric brain oscillations.


Asunto(s)
Algoritmos , Artefactos , Encéfalo/fisiología , Procesamiento de Señales Asistido por Computador , Estimulación Transcraneal de Corriente Directa/métodos , Adulto , Potenciales Evocados Visuales/fisiología , Femenino , Humanos , Masculino , Adulto Joven
6.
Brain ; 143(6): 1674-1685, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32176800

RESUMEN

Neurofeedback has begun to attract the attention and scrutiny of the scientific and medical mainstream. Here, neurofeedback researchers present a consensus-derived checklist that aims to improve the reporting and experimental design standards in the field.


Asunto(s)
Lista de Verificación/métodos , Neurorretroalimentación/métodos , Adulto , Consenso , Femenino , Humanos , Masculino , Persona de Mediana Edad , Revisión de la Investigación por Pares , Proyectos de Investigación/normas , Participación de los Interesados
7.
J Neuroeng Rehabil ; 16(1): 10, 2019 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-30646915

RESUMEN

BACKGROUND: Assistive technologies aim to increase quality of life, reduce dependence on care giver and on the long term care system. Several studies have demonstrated the effectiveness in the use of assistive technology for environment control and communication systems. The progress of brain-computer interfaces (BCI) research together with exoskeleton enable a person with motor impairment to interact with new elements in the environment. This paper aims to evaluate the environment control interface (ECI) developed under the AIDE project conditions, a multimodal interface able to analyze and extract relevant information from the environments as well as from the identification of residual abilities, behaviors, and intentions of the user. METHODS: This study evaluated the ECI in a simulated scenario using a two screen layout: one with the ECI and the other with a simulated home environment, developed for this purpose. The sensorimotor rhythms and the horizontal oculoversion, acquired through BCI2000, a multipurpose standard BCI platform, were used to online control the ECI after the user training and system calibration. Eight subjects with different neurological diseases and spinal cord injury participated in this study. The subjects performed simulated activities of daily living (ADLs), i.e. actions in the simulated environment as drink, switch on a lamp or raise the bed head, during ten minutes in two different modes, AIDE mode, using a prediction model, to recognize the user intention facilitating the scan, and Manual mode, without a prediction model. RESULTS: The results show that the mean task time spent in the AIDE mode was less than in the Manual, i.e the users were able to perform more tasks in the AIDE mode during the same time. The results showed a statistically significant differences with p<0.001. Regarding the steps, i.e the number of abstraction levels crossed in the ECI to perform an ADL, the users performed one step in the 90% of the tasks using the AIDE mode and three steps, at least, were necessary in the Manual mode. The user's intention prediction was performed through conditional random fields (CRF), with a global accuracy about 87%. CONCLUSIONS: The environment analysis and the identification of the user's behaviors can be used to predict the user intention opening a new paradigm in the design of the ECIs. Although the developed ECI was tested only in a simulated home environment, it can be easily adapted to a real environment increasing the user independence at home.


Asunto(s)
Interfaces Cerebro-Computador , Programas Informáticos , Traumatismos de la Médula Espinal , Actividades Cotidianas , Adulto , Electroencefalografía/métodos , Electrooculografía , Dispositivo Exoesqueleto , Femenino , Humanos , Masculino , Proyectos Piloto , Calidad de Vida , Interfaz Usuario-Computador
8.
Sensors (Basel) ; 19(22)2019 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-31726745

RESUMEN

When combined with assistive robotic devices, such as wearable robotics, brain/neural-computer interfaces (BNCI) have the potential to restore the capabilities of handicapped people to carry out activities of daily living. To improve applicability of such systems, workload and stress should be reduced to a minimal level. Here, we investigated the user's physiological reactions during the exhaustive use of the interfaces of a hybrid control interface. Eleven BNCI-naive healthy volunteers participated in the experiments. All participants sat in a comfortable chair in front of a desk and wore a whole-arm exoskeleton as well as wearable devices for monitoring physiological, electroencephalographic (EEG) and electrooculographic (EoG) signals. The experimental protocol consisted of three phases: (i) Set-up, calibration and BNCI training; (ii) Familiarization phase; and (iii) Experimental phase during which each subject had to perform EEG and EoG tasks. After completing each task, the NASA-TLX questionnaire and self-assessment manikin (SAM) were completed by the user. We found significant differences (p-value < 0.05) in heart rate variability (HRV) and skin conductance level (SCL) between participants during the use of the two different biosignal modalities (EEG, EoG) of the BNCI. This indicates that EEG control is associated with a higher level of stress (associated with a decrease in HRV) and mental work load (associated with a higher level of SCL) when compared to EoG control. In addition, HRV and SCL modulations correlated with the subject's workload perception and emotional responses assessed through NASA-TLX questionnaires and SAM.

10.
Camb Q Healthc Ethics ; 26(4): 555-576, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28937339

RESUMEN

Brain-computer interfaces (BCIs) can enable communication for persons in severe paralysis including locked-in syndrome (LIS); that is, being unable to move or speak while aware. In cases of complete loss of muscle control, termed "complete locked-in syndrome," a BCI may be the only viable solution to restore communication. However, a widespread ignorance regarding quality of life in LIS, current BCIs, and their potential as an assistive technology for persons in LIS, needlessly causes a harmful situation for this cohort. In addition to their medical condition, these persons also face social barriers often perceived as more impairing than their physical condition. Through social exclusion, stigmatization, and frequently being underestimated in their abilities, these persons are being locked out in addition to being locked-in. In this article, we (1) show how persons in LIS are being locked out, including how key issues addressed in the existing literature on ethics, LIS, and BCIs for communication, such as autonomy, quality of life, and advance directives, may reinforce these confinements; (2) show how these practices violate the United Nations Convention on the Rights of Persons with Disabilities, and suggest that we have a moral responsibility to prevent and stop this exclusion; and (3) discuss the role of BCIs for communication as one means to this end and suggest that a novel approach to BCI research is necessary to acknowledge the moral responsibility toward the end users and avoid violating the human rights of persons in LIS.


Asunto(s)
Interfaces Cerebro-Computador/ética , Comunicación , Cuadriplejía/psicología , Calidad de Vida , Aislamiento Social , Estigma Social , Personas con Discapacidad , Derechos Humanos , Humanos
11.
Neuroimage ; 140: 1-3, 2016 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-27633745

RESUMEN

Transcranial electric stimulation (tES) of the brain has attracted an increased interest in recent years. Yet, despite remarkable research efforts to date, the underlying neurobiological mechanisms of tES' effects are still incompletely understood. This Special Issue aims to provide a comprehensive and up-to-date overview of the state-of-the-art in studies combining tES and neuroimaging, while introducing most recent insights and outlining future prospects related to this new and rapidly growing field. The findings reported here combine methodological advancements with insights into the underlying mechanisms of tES itself. At the same time, they also point to the many caveats and specific challenges associated with such studies, which can arise from both technical and biological sources. Besides promising to advance basic neuroscience, combined tES and neuroimaging studies may also substantially change previous conceptions about the methods of action of electric or magnetic stimulation on the brain.


Asunto(s)
Mapeo Encefálico/tendencias , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Interpretación de Imagen Asistida por Computador/métodos , Neuroimagen/tendencias , Estimulación Transcraneal de Corriente Directa/tendencias , Animales , Medicina Basada en la Evidencia , Predicción , Humanos , Neurorretroalimentación/fisiología
12.
Neuroimage ; 140: 89-98, 2016 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26481671

RESUMEN

Transcranial alternating current stimulation (tACS), a non-invasive and well-tolerated form of electric brain stimulation, can influence perception, memory, as well as motor and cognitive function. While the exact underlying neurophysiological mechanisms are unknown, the effects of tACS are mainly attributed to frequency-specific entrainment of endogenous brain oscillations in brain areas close to the stimulation electrodes, and modulation of spike timing dependent plasticity reflected in gamma band oscillatory responses. tACS-related electromagnetic stimulator artifacts, however, impede investigation of these neurophysiological mechanisms. Here we introduce a novel approach combining amplitude-modulated tACS during whole-head magnetoencephalography (MEG) allowing for artifact-free source reconstruction and precise mapping of entrained brain oscillations underneath the stimulator electrodes. Using this approach, we show that reliable reconstruction of neuromagnetic low- and high-frequency oscillations including high gamma band activity in stimulated cortical areas is feasible opening a new window to unveil the mechanisms underlying the effects of stimulation protocols that entrain brain oscillatory activity.


Asunto(s)
Relojes Biológicos/fisiología , Mapeo Encefálico/métodos , Ondas Encefálicas/fisiología , Corteza Motora/fisiología , Movimiento/fisiología , Estimulación Transcraneal de Corriente Directa/métodos , Algoritmos , Potenciales Evocados Motores/fisiología , Femenino , Humanos , Magnetoencefalografía/métodos , Masculino , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Adulto Joven
13.
Neuroimage ; 140: 33-40, 2016 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26455796

RESUMEN

Transcranial direct current stimulation (tDCS) can influence cognitive, affective or motor brain functions. Whereas previous imaging studies demonstrated widespread tDCS effects on brain metabolism, direct impact of tDCS on electric or magnetic source activity in task-related brain areas could not be confirmed due to the difficulty to record such activity simultaneously during tDCS. The aim of this proof-of-principal study was to demonstrate the feasibility of whole-head source localization and reconstruction of neuromagnetic brain activity during tDCS and to confirm the direct effect of tDCS on ongoing neuromagnetic activity in task-related brain areas. Here we show for the first time that tDCS has an immediate impact on slow cortical magnetic fields (SCF, 0-4Hz) of task-related areas that are identical with brain regions previously described in metabolic neuroimaging studies. 14 healthy volunteers performed a choice reaction time (RT) task while whole-head magnetoencephalography (MEG) was recorded. Task-related source-activity of SCFs was calculated using synthetic aperture magnetometry (SAM) in absence of stimulation and while anodal, cathodal or sham tDCS was delivered over the right primary motor cortex (M1). Source reconstruction revealed task-related SCF modulations in brain regions that precisely matched prior metabolic neuroimaging studies. Anodal and cathodal tDCS had a polarity-dependent impact on RT and SCF in primary sensorimotor and medial centro-parietal cortices. Combining tDCS and whole-head MEG is a powerful approach to investigate the direct effects of transcranial electric currents on ongoing neuromagnetic source activity, brain function and behavior.


Asunto(s)
Ondas Encefálicas/fisiología , Potenciales Evocados Motores/fisiología , Magnetoencefalografía/métodos , Corteza Motora/fisiología , Estimulación Transcraneal de Corriente Directa/métodos , Adulto , Femenino , Humanos , Campos Magnéticos , Masculino , Red Nerviosa/fisiología , Dispersión de Radiación
14.
Cereb Cortex ; 25(9): 2409-15, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24626608

RESUMEN

Sensorimotor rhythms (SMR, 8-15 Hz) are brain oscillations associated with successful motor performance, imagery, and imitation. Voluntary modulation of SMR can be used to control brain-machine interfaces (BMI) in the absence of any physical movements. The mechanisms underlying acquisition of such skill are unknown. Here, we provide evidence for a causal link between function of the primary motor cortex (M1), active during motor skill learning and retention, and successful acquisition of abstract skills such as control over SMR. Thirty healthy participants were trained on 5 consecutive days to control SMR oscillations. Each participant was randomly assigned to one of 3 groups that received either 20 min of anodal, cathodal, or sham transcranial direct current stimulation (tDCS) over M1. Learning SMR control across training days was superior in the anodal tDCS group relative to the other 2. Cathodal tDCS blocked the beneficial effects of training, as evidenced with sham tDCS. One month later, the newly acquired skill remained superior in the anodal tDCS group. Thus, application of weak electric currents of opposite polarities over M1 differentially modulates learning SMR control, pointing to this primary cortical region as a common substrate for acquisition of physical motor skills and learning to control brain oscillatory activity.


Asunto(s)
Mapeo Encefálico , Aprendizaje/fisiología , Corteza Motora/fisiología , Destreza Motora/fisiología , Periodicidad , Adulto , Análisis de Varianza , Femenino , Humanos , Magnetoencefalografía , Masculino , Movimiento/fisiología , Distribución Aleatoria , Retención en Psicología , Factores de Tiempo , Estimulación Transcraneal de Corriente Directa , Adulto Joven
15.
Neurobiol Dis ; 83: 172-9, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25489973

RESUMEN

Stroke is among the leading causes of long-term disabilities leaving an increasing number of people with cognitive, affective and motor impairments depending on assistance in their daily life. While function after stroke can significantly improve in the first weeks and months, further recovery is often slow or non-existent in the more severe cases encompassing 30-50% of all stroke victims. The neurobiological mechanisms underlying recovery in those patients are incompletely understood. However, recent studies demonstrated the brain's remarkable capacity for functional and structural plasticity and recovery even in severe chronic stroke. As all established rehabilitation strategies require some remaining motor function, there is currently no standardized and accepted treatment for patients with complete chronic muscle paralysis. The development of brain-machine interfaces (BMIs) that translate brain activity into control signals of computers or external devices provides two new strategies to overcome stroke-related motor paralysis. First, BMIs can establish continuous high-dimensional brain-control of robotic devices or functional electric stimulation (FES) to assist in daily life activities (assistive BMI). Second, BMIs could facilitate neuroplasticity, thus enhancing motor learning and motor recovery (rehabilitative BMI). Advances in sensor technology, development of non-invasive and implantable wireless BMI-systems and their combination with brain stimulation, along with evidence for BMI systems' clinical efficacy suggest that BMI-related strategies will play an increasing role in neurorehabilitation of stroke.


Asunto(s)
Interfaces Cerebro-Computador/tendencias , Encéfalo/fisiopatología , Trastornos del Movimiento/rehabilitación , Rehabilitación Neurológica/tendencias , Rehabilitación de Accidente Cerebrovascular , Ondas Encefálicas , Terapia por Estimulación Eléctrica , Retroalimentación Sensorial , Humanos , Aprendizaje/fisiología , Trastornos del Movimiento/etiología , Neurorretroalimentación , Rehabilitación Neurológica/instrumentación , Rehabilitación Neurológica/métodos , Plasticidad Neuronal , Accidente Cerebrovascular/complicaciones
16.
Alzheimers Dement ; 11(5): 561-78, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25443858

RESUMEN

Current state-of-the-art diagnostic measures of Alzheimer's disease (AD) are invasive (cerebrospinal fluid analysis), expensive (neuroimaging) and time-consuming (neuropsychological assessment) and thus have limited accessibility as frontline screening and diagnostic tools for AD. Thus, there is an increasing need for additional noninvasive and/or cost-effective tools, allowing identification of subjects in the preclinical or early clinical stages of AD who could be suitable for further cognitive evaluation and dementia diagnostics. Implementation of such tests may facilitate early and potentially more effective therapeutic and preventative strategies for AD. Before applying them in clinical practice, these tools should be examined in ongoing large clinical trials. This review will summarize and highlight the most promising screening tools including neuropsychometric, clinical, blood, and neurophysiological tests.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico , Pruebas Diagnósticas de Rutina/métodos , Diagnóstico Precoz , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/complicaciones , Depresión/etiología , Pruebas Diagnósticas de Rutina/normas , Electrofisiología , Ojo/fisiopatología , Marcha/fisiología , Humanos , Trastornos de la Memoria/etiología
17.
Brain Topogr ; 27(1): 4-11, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23536247

RESUMEN

Despite considerable growth in the field of brain-computer or brain-machine interface (BCI/BMI) research reflected in several hundred publications each year, little progress was made to enable patients in complete locked-in state (CLIS) to reliably communicate using their brain activity. Independent of the invasiveness of the BCI systems tested, no sustained direct brain control and communication was demonstrated in a patient in CLIS so far. This suggested a more fundamental theoretical problem of learning and attention in brain communication with BCI/BMI, formulated in the extinction-of-thought hypothesis. While operant conditioning and goal-directed thinking seems impaired in complete paralysis, classical conditioning of brain responses might represent the only alternative. First experimental studies in CLIS using semantic conditioning support this assumption. Evidence that quality-of-life in locked-in-state is not as limited and poor as generally believed draise doubts that "patient wills" or "advanced directives"signed long-before the locked-in-state are useful. On the contrary, they might be used as an excuse to shorten anticipated long periods of care for these patients avoiding associated financial and social burdens. Current state and availability of BCI/BMI systems urge a broader societal discourse on the pressing ethical challenges associated with the advancements in neurotechnology and BCI/BMI research.


Asunto(s)
Interfaces Cerebro-Computador , Condicionamiento Psicológico , Parálisis/psicología , Parálisis/terapia , Cuadriplejía/psicología , Cuadriplejía/terapia , Interfaces Cerebro-Computador/ética , Humanos
20.
J Neuroeng Rehabil ; 11: 165, 2014 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-25510922

RESUMEN

BACKGROUND: Brain-machine interfaces (BMIs) allow direct translation of electric, magnetic or metabolic brain signals into control commands of external devices such as robots, prostheses or exoskeletons. However, non-stationarity of brain signals and susceptibility to biological or environmental artifacts impede reliable control and safety of BMIs, particularly in daily life environments. Here we introduce and tested a novel hybrid brain-neural computer interaction (BNCI) system fusing electroencephalography (EEG) and electrooculography (EOG) to enhance reliability and safety of continuous hand exoskeleton-driven grasping motions. FINDINGS: 12 healthy volunteers (8 male, mean age 28.1 ± 3.63y) used EEG (condition #1) and hybrid EEG/EOG (condition #2) signals to control a hand exoskeleton. Motor imagery-related brain activity was translated into exoskeleton-driven hand closing motions. Unintended motions could be interrupted by eye movement-related EOG signals. In order to evaluate BNCI control and safety, participants were instructed to follow a visual cue indicating either to move or not to move the hand exoskeleton in a random order. Movements exceeding 25% of a full grasping motion when the device was not supposed to be moved were defined as safety violation. While participants reached comparable control under both conditions, safety was frequently violated under condition #1 (EEG), but not under condition #2 (EEG/EOG). CONCLUSION: EEG/EOG biosignal fusion can substantially enhance safety of assistive BNCI systems improving their applicability in daily life environments.


Asunto(s)
Interfaces Cerebro-Computador , Electroencefalografía/métodos , Electrooculografía/métodos , Dispositivo Exoesqueleto , Mano/fisiología , Adulto , Artefactos , Encéfalo/fisiología , Movimientos Oculares/fisiología , Femenino , Humanos , Masculino , Movimiento/fisiología , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA