Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Transl Med ; 22(1): 467, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755685

RESUMEN

BACKGROUND: Osteoarthritis (OA) is a chronic degenerative joint disease causing limited mobility and pain, with no curative treatment available. Recent in vivo studies suggested autonomic alterations during OA progression in patients, yet clinical evidence is scarce. Therefore, autonomic tone was analyzed in OA patients via heart rate variability (HRV) measurements. METHODS: Time-domain (SDRR, RMSSD, pRR50) and frequency-domain (LF, HF, LF/HF) HRV indices were determined to quantify sympathetic and parasympathetic activities. In addition, perceived stress, WOMAC pain as well as serum catecholamines, cortisol and dehydroepiandrosterone-sulphate (DHEA-S) were analyzed. The impact of the grade of disease (GoD) was evaluated by linear regression analysis and correlations with clinical data were performed. RESULTS: GoD significantly impacted the autonomic tone in OA patients. All time-domain parameters reflected slightly decreased HRV in early OA patients and significantly reduced HRV in late OA patients. Moreover, frequency-domain analysis revealed decreased HF and LF power in all OA patients, reflecting diminished parasympathetic and sympathetic activities. However, LF/HF ratio was significantly higher in early OA patients compared to late OA patients and implied a clear sympathetic dominance. Furthermore, OA patients perceived significantly higher chronic stress and WOMAC pain levels compared to healthy controls. Serum cortisol and cortisol/DHEA-S ratio significantly increased with GoD and positively correlated with WOMAC pain. In contrast, serum catecholamines only trended to increase with GoD and pain level. CONCLUSIONS: This prospective study provides compelling evidence of an autonomic dysfunction with indirect sympathetic dominance in early and late knee OA patients for the first time based on HRV analyses and further confirmed by serum stress hormone measurements. Increased sympathetic activity and chronic low-grade inflammation in OA as well as in its major comorbidities reinforce each other and might therefore create a vicious cycle. The observed autonomic alterations coupled with increased stress and pain levels highlight the potential of HRV as a prognostic marker. In addition, modulation of autonomic activity represents an attractive future therapeutic option.


Asunto(s)
Frecuencia Cardíaca , Osteoartritis , Sistema Nervioso Simpático , Humanos , Masculino , Femenino , Osteoartritis/fisiopatología , Osteoartritis/sangre , Osteoartritis/complicaciones , Persona de Mediana Edad , Anciano , Sistema Nervioso Simpático/fisiopatología , Hidrocortisona/sangre , Dolor/fisiopatología , Dolor/sangre
2.
Neuroimmunomodulation ; 30(1): 143-166, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37429263

RESUMEN

The sympathetic nervous system (SNS) is a major regulatory mediator connecting the brain and the immune system that influences accordingly inflammatory processes within the entire body. In the periphery, the SNS exerts its effects mainly via its neurotransmitters norepinephrine (NE) and epinephrine (E), which are released by peripheral nerve endings in lymphatic organs and other tissues. Depending on their concentration, NE and E bind to specific α- and ß-adrenergic receptor subtypes and can cause both pro- and anti-inflammatory cellular responses. The co-transmitter neuropeptide Y, adenosine triphosphate, or its metabolite adenosine are also mediators of the SNS. Local pro-inflammatory processes due to injury or pathogens lead to an activation of the SNS, which in turn induces several immunoregulatory mechanisms with either pro- or anti-inflammatory effects depending on neurotransmitter concentration or pathological context. In chronic inflammatory diseases, the activity of the SNS is persistently elevated and can trigger detrimental pathological processes. Recently, the sympathetic contribution to mild chronic inflammatory diseases like osteoarthritis (OA) has attracted growing interest. OA is a whole-joint disease and is characterized by mild chronic inflammation in the joint. In this narrative article, we summarize the underlying mechanisms behind the sympathetic influence on inflammation during OA pathogenesis. In addition, OA comorbidities also accompanied by mild chronic inflammation, such as hypertension, obesity, diabetes, and depression, will be reviewed. Finally, the potential of SNS-based therapeutic options for the treatment of OA will be discussed.


Asunto(s)
Osteoartritis , Sistema Nervioso Simpático , Humanos , Norepinefrina/metabolismo , Inflamación , Antiinflamatorios
3.
Int J Mol Sci ; 22(16)2021 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-34445661

RESUMEN

Exogenous adenosine and its metabolite inosine exert anti-inflammatory effects in synoviocytes of osteoarthritis (OA) and rheumatoid arthritis (RA) patients. We analyzed whether these cells are able to synthesize adenosine/inosine and which adenosine receptors (ARs) contribute to anti-inflammatory effects. The functionality of synthesizing enzymes and ARs was tested using agonists/antagonists. Both OA and RA cells expressed CD39 (converts ATP to AMP), CD73 (converts AMP to adenosine), ADA (converts adenosine to inosine), ENT1/2 (adenosine transporters), all AR subtypes (A1, A2A, A2B and A3) and synthesized predominantly adenosine. The CD73 inhibitor AMPCP significantly increased IL-6 and decreased IL-10 in both cell types, while TNF only increased in RA cells. The ADA inhibitor DAA significantly reduced IL-6 and induced IL-10 in both OA and RA cells. The A2AAR agonist CGS 21680 significantly inhibited IL-6 and induced TNF and IL-10 only in RA, while the A2BAR agonist BAY 60-6583 had the same effect in both OA and RA. Taken together, OA and RA synoviocytes express the complete enzymatic machinery to synthesize adenosine/inosine; however, mainly adenosine is responsible for the anti- (IL-6 and IL-10) or pro-inflammatory (TNF) effects mediated by A2A- and A2BAR. Stimulating CD39/CD73 with simultaneous ADA blockage in addition to TNF inhibition might represent a promising therapeutic strategy.


Asunto(s)
Adenosina/farmacología , Antiinflamatorios/farmacología , Artritis Reumatoide/tratamiento farmacológico , Osteoartritis/tratamiento farmacológico , Membrana Sinovial/efectos de los fármacos , Sinoviocitos/efectos de los fármacos , Vasodilatadores/farmacología , Anciano , Anciano de 80 o más Años , Artritis Reumatoide/metabolismo , Artritis Reumatoide/patología , Citocinas/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Osteoartritis/metabolismo , Osteoartritis/patología , Sinoviocitos/metabolismo , Sinoviocitos/patología
4.
Lab Invest ; 94(8): 881-92, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24955893

RESUMEN

Vascular endothelial cells (ECs) are ideal gene therapy targets as they provide widespread tissue access and are the first contact surfaces following intravenous vector administration. Human recombinant adenovirus serotype 5 (Ad5) is the most frequently used gene transfer system because of its appreciable transgene payload capacity and lack of somatic mutation risk. However, standard Ad5 vectors predominantly transduce liver but not the vasculature following intravenous administration. We recently developed an Ad5 vector with a myeloid cell-binding peptide (MBP) incorporated into the knob-deleted, T4 fibritin chimeric fiber (Ad.MBP). This vector was shown to transduce pulmonary ECs presumably via a vector handoff mechanism. Here we tested the body-wide tropism of the Ad.MBP vector, its myeloid cell necessity, and vector-EC expression dose response. Using comprehensive multi-organ co-immunofluorescence analysis, we discovered that Ad.MBP produced widespread EC transduction in the lung, heart, kidney, skeletal muscle, pancreas, small bowel, and brain. Surprisingly, Ad.MBP retained hepatocyte tropism albeit at a reduced frequency compared with the standard Ad5. While binding specifically to myeloid cells ex vivo, multi-organ Ad.MBP expression was not dependent on circulating monocytes or macrophages. Ad.MBP dose de-escalation maintained full lung-targeting capacity but drastically reduced transgene expression in other organs. Swapping the EC-specific ROBO4 for the CMV promoter/enhancer abrogated hepatocyte expression but also reduced gene expression in other organs. Collectively, our multilevel targeting strategy could enable therapeutic biological production in previously inaccessible organs that pertain to the most debilitating or lethal human diseases.


Asunto(s)
Adenoviridae/genética , Endotelio Vascular/metabolismo , Técnicas de Transferencia de Gen , Vectores Genéticos/fisiología , Receptores de Superficie Celular/administración & dosificación , Tropismo Viral , Adenoviridae/fisiología , Animales , Citomegalovirus/genética , Endotelio Vascular/citología , Endotelio Vascular/virología , Vectores Genéticos/administración & dosificación , Proteínas Fluorescentes Verdes/administración & dosificación , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Hepatocitos/citología , Hepatocitos/metabolismo , Hepatocitos/virología , Humanos , Inyecciones Intravenosas , Ratones , Ratones Endogámicos C57BL , Células Mieloides/citología , Células Mieloides/metabolismo , Células Mieloides/virología , Péptidos/administración & dosificación , Péptidos/metabolismo , Regiones Promotoras Genéticas , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Proteínas Recombinantes de Fusión/administración & dosificación , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Virales/administración & dosificación , Proteínas Virales/genética , Proteínas Virales/metabolismo , Virión/fisiología
5.
Proc Natl Acad Sci U S A ; 108(32): 13264-9, 2011 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-21784979

RESUMEN

Although our understanding of the molecular regulation of adult neovascularization has advanced tremendously, vascular-targeted therapies for tissue ischemia remain suboptimal. The master regulatory transcription factors of the hypoxia-inducible factor (HIF) family are attractive therapeutic targets because they coordinately up-regulate multiple genes controlling neovascularization. Here, we used an inducible model of epithelial HIF-1 activation, the TetON-HIF-1 mouse, to test the requirement for VEGF in HIF-1 mediated neovascularization. TetON-HIF-1, K14-Cre, and VEGF(flox/flox) alleles were combined to create TetON-HIF-1:VEGF(Δ) mice to activate HIF-1 and its target genes in adult basal keratinocytes in the absence of concomitant VEGF. HIF-1 induction failed to produce neovascularization in TetON-HIF-1:VEGF(Δ) mice despite robust up-regulation of multiple proangiogenic HIF targets, including PlGF, adrenomedullin, angiogenin, and PAI-1. In contrast, endothelial sprouting was preserved, enhanced, and more persistent, consistent with marked reduction in Dll4-Notch-1 signaling. Optical-resolution photoacoustic microscopy, which provides noninvasive, label-free, high resolution, and wide-field vascular imaging, revealed the absence of both capillary expansion and arteriovenous remodeling in serially imaged individual TetON-HIF-1:VEGF(Δ) mice. Impaired TetON-HIF-1:VEGF(Δ) neovascularization could be partially rescued by 12-O-tetradecanoylphorbol-13-acetate skin treatment. These data suggest that therapeutic angiogenesis for ischemic cardiovascular disease may require treatment with both HIF-1 and VEGF.


Asunto(s)
Células Endoteliales/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neovascularización Patológica/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Eliminación de Gen , Integrasas/metabolismo , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Ratones , Microvasos/efectos de los fármacos , Microvasos/patología , Células Mieloides/metabolismo , Células Mieloides/patología , Neovascularización Patológica/genética , Tetraciclina/farmacología , Acetato de Tetradecanoilforbol/farmacología
6.
J Imaging ; 10(2)2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38392082

RESUMEN

Collaborative manual image analysis by multiple experts in different locations is an essential workflow in biomedical science. However, sharing the images and writing down results by hand or merging results from separate spreadsheets can be error-prone. Moreover, blinding and anonymization are essential to address subjectivity and bias. Here, we propose a new workflow for collaborative image analysis using a lightweight online tool named Tyche. The new workflow allows experts to access images via temporarily valid URLs and analyze them blind in a random order inside a web browser with the means to store the results in the same window. The results are then immediately computed and visible to the project master. The new workflow could be used for multi-center studies, inter- and intraobserver studies, and score validations.

7.
PLoS One ; 18(7): e0289298, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37498905

RESUMEN

PURPOSE: Risk factors for the development of pain in the context of knee osteoarthritis (KOA) remain unclear. Radiological findings often do not correlate with clinical findings, so other pathomechanisms in the development and perception of pain must play a role. The purpose of this study is to investigate the correlation of increased sympathetic nervous system (SNS) activity (measured by subjective and objective chronic stress parameters) with KOA severity, patellofemoral malalignment, and pain. METHODS: 47 patients with KOA were assessed. Radiological measurements of tibiofemoral and patellofemoral parameters (Kellgren-Lawrence-score, patellar tilt (PT), Caton-Deschamps-Index and Hepp´s classification) were performed and correlated with knee-specific questionnaires (WOMAC®, KSS©) and chronic stress questionnaires (PSQ-20). Additionally, parameters associated with chronic stress were quantified in synovial fluid and serum samples from patients. RESULTS: PT correlated significantly with Caton-Deschamps-Index (r = 0.394,p = 0.006) and with medial patellofemoral joint space (r = 0.516,p<0.001). In addition, asymmetric trochlear groove (Hepp's classification > II) was associated with significantly higher PT values (p = 0.014). A negative correlation between PT and KSS©-symptoms subgroup was found (r = -0.340,p = 0.024). Patients with PT<5° had significantly higher scores in the Knee Society Score©-symptoms subgroup (p = 0.038). A positive and significant correlation between synovial aldosterone levels and PT was observed (r = 0.548,p = 0.042). CONCLUSION: The results of this study indicate that patellar malalignment might correlate with increased pain. The previous specification of standard PT values must be reconsidered as even low PT values seem to play a role in the occurrence of patellofemoral osteoarthritis symptoms. Lower PT values might lead to aggravated symptoms in patients with KOA due to a narrow medial patellofemoral joint space. In addition, PT might induce the release of synovial stress biomarkers and thus contribute to the progression of KOA.


Asunto(s)
Osteoartritis de la Rodilla , Articulación Patelofemoral , Humanos , Estudios Transversales , Articulación de la Rodilla/diagnóstico por imagen , Osteoartritis de la Rodilla/diagnóstico por imagen , Rótula/diagnóstico por imagen , Dolor , Hormonas
8.
Biomedicines ; 10(5)2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35625808

RESUMEN

In recent years, the infrapatellar fat pad (IFP) has gained increasing research interest. The contribution of the IFP to the development and progression of knee osteoarthritis (OA) through extensive interactions with the synovium, articular cartilage, and subchondral bone is being considered. As part of the initiation process of OA, IFP secretes abundant pro-inflammatory mediators among many other factors. Today, the IFP is (partially) resected in most total knee arthroplasties (TKA) allowing better visualization during surgical procedures. Currently, there is no clear guideline providing evidence in favor of or against IFP resection. With increasing numbers of TKAs, there is a focus on preventing adverse postoperative outcomes. Therefore, anatomic features, role in the development of knee OA, and consequences of resecting versus preserving the IFP during TKA are reviewed in the following article.

9.
Sci Rep ; 12(1): 5551, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35365729

RESUMEN

In recent years, 3D cell culture has been gaining a more widespread following across many fields of biology. Tissue clearing enables optical analysis of intact 3D samples and investigation of molecular and structural mechanisms by homogenizing the refractive indices of tissues to make them nearly transparent. Here, we describe and quantify that common clearing solutions including benzyl alcohol/benzyl benzoate (BABB), PEG-associated solvent system (PEGASOS), immunolabeling-enabled imaging of solvent-cleared organs (iDISCO), clear, unobstructed brain/body imaging cocktails and computational analysis (CUBIC), and ScaleS4 alter the emission spectra of Alexa Fluor fluorophores and fluorescent dyes. Clearing modifies not only the emitted light intensity but also alters the absorption and emission peaks, at times to several tens of nanometers. The resulting shifts depend on the interplay of solvent, fluorophore, and the presence of cells. For biological applications, this increases the risk for unexpected channel crosstalk, as filter sets are usually not optimized for altered fluorophore emission spectra in clearing solutions. This becomes especially problematic in high throughput/high content campaigns, which often rely on multiband excitation to increase acquisition speed. Consequently, researchers relying on clearing in quantitative multiband excitation experiments should crosscheck their fluorescent signal after clearing in order to inform the proper selection of filter sets and fluorophores for analysis.


Asunto(s)
Colorantes Fluorescentes , Imagenología Tridimensional , Encéfalo/diagnóstico por imagen , Colorantes Fluorescentes/química , Imagenología Tridimensional/métodos , Ionóforos , Solventes
10.
Cell Signal ; 82: 109948, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33571663

RESUMEN

Adrenoceptors (ARs) mediate the effects of the sympathetic neurotransmitters norepinephrine (NE) and epinephrine (E) in the human body and play a central role in physiologic and pathologic processes. Therefore, ARs have long been recognized as targets for therapeutic agents, especially in the field of cardiovascular medicine. During the past decades, the contribution of the sympathetic nervous system (SNS) and particularly of its major peripheral catecholamine NE to the pathogenesis of osteoarthritis (OA) attracted growing interest. OA is the most common degenerative joint disorder worldwide and a disease of the whole joint. It is characterized by progressive degradation of articular cartilage, synovial inflammation, osteophyte formation, and subchondral bone sclerosis mostly resulting in chronic pain. The subchondral bone marrow, the periosteum, the synovium, the vascular meniscus and numerous tendons and ligaments are innervated by tyrosine hydroxylase-positive (TH+) sympathetic nerve fibers that release NE into the synovial fluid and cells of all abovementioned joint tissues express at least one out of nine AR subtypes. During the past decades, several in vitro studies explored the AR-mediated effects of NE on different cell types in the joint. So far, only a few studies used animal OA models to investigate the contribution of distinct AR subtypes to OA pathogenesis in vivo. This narrative review shortly summarizes the current background knowledge about ARs and their signalling pathways at first. In the second part, we focus on recent findings in the field of NE-induced AR-mediated signalling in different joint tissues during OA pathogenesis and at the end, we will delineate the potential of targeting the adrenergic signalling for OA prevention or treatment. We used the PubMed bibliographic database to search for keywords such as 'joint' or 'cartilage' or 'synovium' or 'bone' and 'osteoarthritis' and/or 'trauma' and 'sympathetic nerve fibers' and/or 'norepinephrine' and 'adrenergic receptors / adrenoceptors' as well as 'adrenergic therapy'.


Asunto(s)
Cartílago Articular , Inflamación/metabolismo , Norepinefrina/metabolismo , Osteoartritis/metabolismo , Receptores Adrenérgicos/metabolismo , Animales , Cartílago Articular/metabolismo , Cartílago Articular/patología , Humanos , Transducción de Señal
11.
Oncotarget ; 8(7): 12272-12289, 2017 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-28103576

RESUMEN

While modern therapies for metastatic prostate cancer (PCa) have improved survival they are associated with an increasingly prevalent entity, aggressive variant PCa (AVPCa), lacking androgen receptor (AR) expression, enriched for cancer stem cells (CSCs), and evidencing epithelial-mesenchymal plasticity with a varying extent of neuroendocrine transdifferentiation. Parallel work revealed that endothelial cells (ECs) create a perivascular CSC niche mediated by juxtacrine and membrane tethered signaling. There is increasing interest in pharmacological metastatic niche targeting, however, targeted access has been impossible. Here, we discovered that the Gleason 7 derived, androgen receptor negative, IGR-CaP1 cell line possessed some but not all of the molecular features of AVPCa. Intracardiac injection into NOD/SCID/IL2Rg -/- (NSG) mice produced a completely penetrant bone, liver, adrenal, and brain metastatic phenotype; noninvasively and histologically detectable at 2 weeks, and necessitating sacrifice 4-5 weeks post injection. Bone metastases were osteoblastic, and osteolytic. IGR-CaP1 cells expressed the neuroendocrine marker synaptophysin, near equivalent levels of vimentin and e-cadherin, all of the EMT transcription factors, and activation of NOTCH and WNT pathways. In parallel, we created a new triple-targeted adenoviral vector containing a fiber knob RGD peptide, a hexon mutation, and an EC specific ROBO4 promoter (Ad.RGD.H5/3.ROBO4). This vector was expressed in metastatic microvessels tightly juxtaposed to IGR-CaP1 cells in bone and visceral niches. Thus, the combination of IGR-CaP1 cells and NSG mice produces a completely penetrant metastatic PCa model emulating end-stage human disease. In addition, the metastatic niche access provided by our novel Ad vector could be therapeutically leveraged for future disease control or cure.


Asunto(s)
Adenoviridae/genética , Neoplasias Óseas/genética , Células Endoteliales/metabolismo , Células Madre Neoplásicas/metabolismo , Neoplasias de la Próstata/genética , Vísceras/metabolismo , Animales , Western Blotting , Neoplasias Óseas/secundario , Cadherinas , Línea Celular Tumoral , Modelos Animales de Enfermedad , Vectores Genéticos/genética , Humanos , Inmunohistoquímica , Subunidad gamma Común de Receptores de Interleucina/deficiencia , Subunidad gamma Común de Receptores de Interleucina/genética , Masculino , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Células Madre Neoplásicas/patología , Neoplasias de la Próstata/patología , Nicho de Células Madre , Trasplante Heterólogo , Vimentina/metabolismo , Vísceras/patología
12.
J Biomed Opt ; 21(2): 20501, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26882446

RESUMEN

Angiogenesis in a tumor region creates arteriovenous (AV) shunts that cause an abnormal venous blood oxygen saturation ( sO2 ) distribution. Here, we applied optical-resolution photoacoustic microscopy to study the AV shunting in vivo. First, we built a phantom to image sO2 distribution in a vessel containing converged flows from two upstream blood vessels with different sO2 values. The phantom experiment showed that the blood from the two upstream vessels maintained a clear sO2 boundary for hundreds of seconds, which is consistent with our theoretical analysis using a diffusion model. Next, we xenotransplanted O-786 tumor cells in mouse ears and observed abnormal sO2 distribution in the downstream vein from the AV shunts in vivo. Finally, we identified the tumor location by tracing the sO2 distribution. Our study suggests that abnormal sO2 distribution induced by the AV shunts in the vessel network may be used as a new functional benchmark for early tumor detection.


Asunto(s)
Microscopía/métodos , Neovascularización Patológica/fisiopatología , Oximetría/métodos , Oxígeno/sangre , Técnicas Fotoacústicas/métodos , Animales , Difusión , Oído/irrigación sanguínea , Diseño de Equipo , Ratones , Neoplasias , Fantasmas de Imagen
13.
PLoS One ; 8(3): e58949, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23516584

RESUMEN

The importance of neovascularization for primary and metastatic tumor growth fostered numerous clinical trials of angiogenesis inhibitors either alone or in combination with conventional antineoplastic therapies. One challenge with the use of molecularly targeted agents has been the disconnection between size reduction and tumor biologic behavior, either when the drug is efficacious or when tumor resistance emerges. Here, we report the synthesis and characterization of (64)Cu-NOTA-bevacizumab as a PET imaging agent for imaging intratumoral VEGF content in vivo. (64)Cu-NOTA-bevacizumab avidly accumulated in 786-O renal carcinoma xenografts with lower levels in host organs. RAD001 (everolimus) markedly attenuated (64)Cu-NOTA-bevacizumab accumulation within 786-O renal carcinoma xenografts. Tumor tissue and cellular molecular analysis validated PET imaging, demonstrating decreases in total and secreted VEGF content and VEGFR2 activation. Notably, (64)Cu-NOTA-bevacizumab PET imaging was concordant with the growth arrest of RAD001 tumors. These data suggest that immunoPET targeting of angiogenic factors such as VEGF could be a new class of surrogate markers complementing the RECIST criteria in patients receiving molecularly targeted therapies.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Transformación Celular Neoplásica , Radioisótopos de Cobre , Inmunoconjugados , Neoplasias Renales/patología , Tomografía de Emisión de Positrones , Sirolimus/farmacología , Animales , Anticuerpos Monoclonales Humanizados/química , Anticuerpos Monoclonales Humanizados/metabolismo , Anticuerpos Monoclonales Humanizados/farmacocinética , Bevacizumab , Línea Celular Tumoral , Everolimus , Compuestos Heterocíclicos/química , Compuestos Heterocíclicos con 1 Anillo , Humanos , Neoplasias Renales/irrigación sanguínea , Neoplasias Renales/diagnóstico por imagen , Neoplasias Renales/terapia , Ratones , Neovascularización Patológica , Fosforilación/efectos de los fármacos , Sirolimus/análogos & derivados , Sirolimus/química , Resultado del Tratamiento , Factor A de Crecimiento Endotelial Vascular/metabolismo
14.
PLoS One ; 8(12): e83933, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24376772

RESUMEN

New approaches targeting metastatic neovasculature are needed. Payload capacity, cellular transduction efficiency, and first-pass cellular uptake following systemic vector administration, motivates persistent interest in tumor vascular endothelial cell (EC) adenoviral (Ad) vector targeting. While EC transductional and transcriptional targeting has been accomplished, vector administration approaches of limited clinical utility, lack of tumor-wide EC expression quantification, and failure to address avid liver sequestration, challenged prior work. Here, we intravenously injected an Ad vector containing 3 kb of the human roundabout4 (ROBO4) enhancer/promoter transcriptionally regulating an enhanced green fluorescent protein (EGFP) reporter into immunodeficient mice bearing 786-O renal cell carcinoma subcutaneous (SC) xenografts and kidney orthotopic (KO) tumors. Initial experiments performed in human coxsackie virus and adenovirus receptor (hCAR) transgenic:Rag2 knockout mice revealed multiple ECs with high-level Ad5ROBO4-EGFP expression throughout KO and SC tumors. In contrast, Ad5CMV-EGFP was sporadically expressed in a few tumor vascular ECs and stromal cells. As the hCAR transgene also facilitated Ad5ROBO4 and control Ad5CMV vector EC expression in multiple host organs, follow-on experiments engaged warfarin-mediated liver vector detargeting in hCAR non-transgenic mice. Ad5ROBO4-mediated EC expression was undetectable in most host organs, while the frequencies of vector expressing intratumoral vessels and whole tumor EGFP protein levels remained elevated. In contrast, AdCMV vector expression was only detectable in one or two stromal cells throughout the whole tumor. The Ad5ROBO4 vector, in conjunction with liver detargeting, provides tractable genetic access for in-vivo EC genetic engineering in malignancies.


Asunto(s)
Adenoviridae/genética , Terapia Genética/métodos , Vectores Genéticos/genética , Neoplasias Renales/terapia , Neovascularización Patológica , Receptores de Superficie Celular/genética , Transcripción Genética/genética , Animales , Línea Celular Tumoral , Transformación Celular Neoplásica , Proteína de la Membrana Similar al Receptor de Coxsackie y Adenovirus/genética , Células Endoteliales/metabolismo , Células Endoteliales/patología , Humanos , Neoplasias Renales/irrigación sanguínea , Neoplasias Renales/genética , Neoplasias Renales/patología , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones , Metástasis de la Neoplasia , Transgenes/genética , Warfarina/farmacología
15.
J Biomed Opt ; 17(7): 076012, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22894495

RESUMEN

With the increasing use of small animals for human disease studies, small-animal whole-body molecular imaging plays an important role in biomedical research. Currently, none of the existing imaging modalities can provide both anatomical and glucose molecular information, leading to higher costs of building dual-modality systems. Even with image co-registration, the spatial resolution of the molecular imaging modality is not improved. Utilizing a ring-shaped confocal photoacoustic computed tomography system, we demonstrate, for the first time, that both anatomy and glucose uptake can be imaged in a single modality. Anatomy was imaged with the endogenous hemoglobin contrast, and glucose metabolism was imaged with a near-infrared dye-labeled 2-deoxyglucose.


Asunto(s)
Glucosa/metabolismo , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Técnicas Fotoacústicas/métodos , Tomografía Computarizada por Rayos X/métodos , Imagen de Cuerpo Entero/métodos , Animales , Línea Celular Tumoral , Ratones , Ratones Desnudos , Imagen Molecular , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA