Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(32): 22724-22735, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39090816

RESUMEN

Electrochemiluminescence (ECL) is typically confined to a micrometric region from the electrode surface. This study demonstrates that ECL emission can extend up to several millimeters away from the electrode employing electrogenerated chlorine bubbles. The mechanism behind this bubble-enhanced ECL was investigated using an Au microelectrode in chloride-containing and chloride-free electrolyte solutions. We discovered that ECL emission at the gas/solution interface is driven by two parallel effects. First, the bubble corona effect facilitates the generation of hydroxyl radicals capable of oxidizing luminol while the bubble is attached to the surface. Second, hypochlorite generated from chlorine sustains luminol emission for over 200 s and extends the emission range up to 5 mm into the solution, following bubble detachment. The new approach can increase the emission intensity of luminol-based assays 5-fold compared to the conventional method. This is demonstrated through a glucose bioassay, using a midrange mobile phone camera for detection. These findings significantly expand the potential applications of ECL by extending its effective range in time and space.

2.
Small ; 20(14): e2308023, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37988641

RESUMEN

Electrochemiluminescence (ECL) is the generation of light induced by an electrochemical reaction, driven by electricity. Here, an all-optical ECL (AO-ECL) system is developped, which triggers ECL by the illumination of electrically autonomous "integrated" photoelectrochemical devices immersed in the electrolyte. Because these systems are made using small and cheap devices, they can be easily prepared and readily used by any laboratories. They are based on commercially available p-i-n Si photodiodes (≈1 € unit-1), coupled with well-established ECL-active and catalytic materials, directly coated onto the component leads by simple and fast wet processes. Here, a Pt coating (known for its high activity for reduction reactions) and carbon paint (known for its optimal ECL emission properties) are deposited at cathode and anode leads, respectively. In addition to its optimized light absorption properties, using the commercial p-i-n Si photodiode eliminates the need for a complicated manufacturing process. It is shown that the device can emit AO-ECL by illumination with polychromatic (simulated sunlight) or monochromatic (near IR) light sources to produce visible photons (425 nm) that can be easily observed by the naked eye or recorded with a smartphone camera. These low-cost off-grid AO-ECL devices open broad opportunities for remote photodetection and portable bioanalytical tools.

3.
Chemistry ; 30(29): e202400078, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38470292

RESUMEN

Water splitting has become a sustainable and clean alternative for hydrogen production. Commonly, the efficiency of such reactions is intimately related to the physico-chemical properties of the catalysts that constitute the electrolyzer. Thus, the development of simple and fast methods to evaluate the electrocatalytic efficiency of an electrolyzer is highly required. In this work, we present an unconventional method based on the combination of bipolar electrochemistry and light-emitting diodes, which allows the evaluation of the electrocatalytic performance of the two types of catalysts, composing an electrolyzer, namely for oxygen and hydrogen evolution reactions, respectively. The integrated light emission of the diode acts as an optical readout of the electrocatalytic information, which simultaneously depends on the composition of the anode and the cathode. The electrocatalytic activity of Au, Pt, and Ni electrodes, connected to the LED in multiple anode/cathode configurations, towards the water splitting reactions has been evaluated. The efficiency of the electrolyzer can be represented in terms of the onset electric field (ϵonset) for light emission, obtaining variations that are in agreement with data reported with conventional electrochemistry. This work introduces a straightforward method for evaluating electrocatalysts and underscores the importance of material characterization in developing efficient electrolyzers for hydrogen production.

4.
Chemphyschem ; 25(12): e202400133, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38624189

RESUMEN

Electrochemistry-based light-emitting devices have gained considerable attention in different applications such as sensing and optical imaging. In particular, such systems are an interesting alternative for the development of multimodal light-emitting platforms. Herein we designed a multicolor light-emitting array, based on the electrochemical switch-on of light-emitting diodes (LEDs) with a different intrinsic threshold voltage. Thermodynamically and kinetically favored coupled redox reactions, i. e. the oxidation of Mg and the reduction of protons on Pt, act as driving force to power the diodes. Moreover, this system enables to trigger an additional light emission based on the interfacial reductive-oxidation electrochemiluminescence (ECL) mechanism of the Ru(bpy)3 2+/S2O8 2- system. The synergy between these light-emission pathways offers a multimodal platform for the straightforward optical readout of physico-chemical information based on composition changes of the solution.

5.
Analyst ; 149(9): 2756-2761, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38563766

RESUMEN

New dynamic, wireless and cost-effective analytical devices are developing rapidly in biochemical analysis. Here, we report on a remotely-controlled rotating electrochemiluminescence (ECL) sensing system for enzymatic detection of a model analyte, glucose, on both polarized sides of an iron wire acting as a bipolar electrode. The iron wire is controlled by double contactless mode, involving remote electric field polarization, and magnetic field-induced rotational motion. The former triggers the interfacial polarization of both extremities of the wire by bipolar electrochemistry, which generates ECL emission of the luminol derivative (L-012) with the enzymatically produced hydrogen peroxide in presence of glucose, at both anodic and cathodic poles, simultaneously. The latter generates a convective flow, leading to an increase in mass transfer and amplifying the corresponding ECL signals. Quantitative glucose detection in human serum samples is achieved. The ECL signals were found to be a linear function of the glucose concentration within the range of 10-1000 µM and with a limit of detection of 10 µM. The dynamic bipolar ECL system simultaneously generates light emissions at both anodic and cathodic poles for glucose detection, which can be further applied to biosensing and imaging in autonomous devices.


Asunto(s)
Técnicas Electroquímicas , Mediciones Luminiscentes , Mediciones Luminiscentes/métodos , Humanos , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Electrodos , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , Límite de Detección , Glucemia/análisis , Tecnología Inalámbrica , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/análisis , Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo , Luminol/química
6.
Analyst ; 149(12): 3317-3324, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38742381

RESUMEN

In this work, the release of giant liposome (∼100 µm in diameter) content was imaged by shadow electrochemiluminescence (ECL) microscopy. Giant unilamellar liposomes were pre-loaded with a sucrose solution and allowed to sediment at an ITO electrode surface immersed in a solution containing a luminophore ([Ru(bpy)3]2+) and a sacrificial co-reactant (tri-n-propylamine). Upon polarization, the electrode exhibited illumination over its entire surface thanks to the oxidation of ECL reagents. However, as soon as liposomes reached the electrode surface, dark spots appeared and then spread over time on the surface. This observation reflected a blockage of the electrode surface at the contact point between the liposome and the electrode surface, followed by the dilution of ECL reagents after the rupture of the liposome membrane and release of its internal ECL-inactive solution. Interestingly, ECL reappeared in areas where it initially faded, indicating back-diffusion of ECL reagents towards the previously diluted area and thus confirming liposome permeabilization. The whole process was analyzed qualitatively and quantitatively within the defined region of interest. Two mass transport regimes were identified: a gravity-driven spreading process when the liposome releases its content leading to ECL vanishing and a diffusive regime when ECL recovers. The reported shadow ECL microscopy should find promising applications for the imaging of transient events such as molecular species released by artificial or biological vesicles.


Asunto(s)
Electrodos , Mediciones Luminiscentes , Mediciones Luminiscentes/métodos , Liposomas/química , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Propilaminas/química , Liposomas Unilamelares/química , Sacarosa/química , Compuestos de Estaño
7.
Anal Bioanal Chem ; 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38227016

RESUMEN

Herein, transient releases either from NADH-loaded liposomes or enzymatic reactions confined in giant liposomes were imaged by electrochemiluminescence (ECL). NADH was first encapsulated with the [Ru(bpy)3]2+ luminophore inside giant liposomes (around 100 µm in diameter) made of DOPC/DOPG phospholipids (i.e., 1,2-dioleolyl-sn-glycero-3-phosphocholine/1,2-dioleoyl-sn-glycerol-3-phospho-(1'-rac-glycerol) sodium salt) on their inner- and outer-leaflet, respectively. Then, membrane permeabilization triggered upon contact between the liposome and a polarized ITO electrode surface and ECL was locally generated. Combination of amperometry, photoluminescence, and ECL provided a comprehensive monitoring of a single liposome opening and content release. In a second part, the work is focused on the ECL characterization of NADH produced by glucose dehydrogenase (GDH)-catalyzed oxidation of glucose in the confined environment delimited by the liposome membrane. This was achieved by encapsulating both the ECL and catalytic reagents (i.e., the GDH, glucose, NAD+, and [Ru(bpy)3]2+) in the liposome. In accordance with the results obtained, NADH can be used as a biologically compatible ECL co-reactant to image membrane permeabilization events of giant liposomes. Under these conditions, the ECL signal duration was rather long (around 10 s). Since many enzymatic reactions involve the NADH/NAD+ redox couple, this work opens up interesting prospects for the characterization of enzymatic reactions taking place notably in artificial cells and in confined environments.

8.
Angew Chem Int Ed Engl ; 63(29): e202407588, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38742673

RESUMEN

Electrochemiluminescence (ECL) is rapidly evolving from an analytical method into an optical microscopy. The orthogonality of the electrochemical trigger and the optical readout distinguishes it from classic microscopy and electrochemical techniques, owing to its near-zero background, remarkable sensitivity, and absence of photobleaching and phototoxicity. In this minireview, we summarize the recent advances in ECL imaging technology, emphasizing original configurations which enable the imaging of biological entities and the improvement of the analytical properties by increasing the complexity and multiplexing of bioassays. Additionally, mapping the (electro)chemical reactivity in space provides valuable information on nanomaterials and facilitates deciphering ECL mechanisms for improving their performances in diagnostics and (electro)catalysis. Finally, we highlight the recent achievements in imaging at the ultimate limits of single molecules, single photons or single chemical reactions, and the current challenges to translate the ECL imaging advances to other fields such as material science, catalysis and biology.

9.
Angew Chem Int Ed Engl ; : e202411764, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39048514

RESUMEN

In almost all electrochemical systems for electrochemiluminescence (ECL) analysis, electrodes are connected with an external power source, either directly or via wireless energy transfer circuit. That is inconvenient and makes some applications impossible. Herein, we both use galvanized iron with two different metals as both power source and electrodes to achieve a self-powered ECL and exploit ECL for the imaging of the corrosion of protective coating of widely used metal (e.g. galvanized iron) for the first time. The self-powered ECL enables the visualization of the deterioration of galvanic coating on iron using a smartphone and the detection of ascorbic acid with a linear range of 0.5-100 µM and a limit of detection of 0.31 µM. The devices based on self-powered approach do not require external power supply, thus effectively reducing their volume and cost. The self-powered ECL holds great promise for metal corrosion imaging and analytical applications.

10.
Angew Chem Int Ed Engl ; : e202412097, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136339

RESUMEN

A sulfonated tris(1-phenylpyrazolato)iridium(III) complex ([Ir(sppz)3]3-) serves as a proof-of-concept non-emissive enhancer of the widely used ECL detection system of tris(2,2'-bipyridine)ruthenium(II) ([Ru(bpy)3]2+) with tri-n-propylamine (TPrA) co-reactant, acting through electrocatalysis of TPrA oxidation and efficient chemi-excitation of the luminophore. Using self-interference ECL spectroscopy, we show that the enhancer extends diffusion of the required electrogenerated precursors from the electrode surface. Previously reported enhancement through these pathways has been confounded by the inherent ECL of the enhancer, but the increase in [Ru(bpy)3]2+ ECL intensity using [Ir(sppz)3]3- was obtained without its concomitant emission. The most prominent enhancement (11-fold) occurred at low potentials associated with the 'indirect' co-reactant ECL pathway, which translated to between 2- and 6-fold enhancement when the luminophore was immobilised on microbeads as a general model for enhanced ECL assays.

11.
J Am Chem Soc ; 145(31): 17420-17426, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37498003

RESUMEN

Electrochemiluminescence (ECL) is widely employed for medical diagnosis and imaging. Despite its remarkable analytical performances, the technique remains intrinsically limited by the essential need for an external power supply and electrical wires for electrode connections. Here, we report an electrically autonomous solution leading to a paradigm change by designing a fully integrated all-optical wireless monolithic photoelectrochemical device based on a nanostructured Si photovoltaic junction modified with catalytic coatings. Under illumination with light ranging from visible to near-infrared, photogenerated holes induce the oxidation of the ECL reagents and thus the emission of visible ECL photons. The blue ECL emission is easily viewed with naked eyes and recorded with a smartphone. A new light emission scheme is thus introduced where the ECL emission energy (2.82 eV) is higher than the excitation energy (1.18 eV) via an intermediate electrochemical process. In addition, the mapping of the photoelectrochemical activity by optical microscopy reveals the minority carrier interfacial transfer mechanism at the nanoscale. This breakthrough provides an all-optical strategy for generalizing ECL without the need for electrochemical setups, electrodes, wiring constraints, and specific electrochemical knowledge. This simplest ECL configuration reported so far opens new opportunities to develop imaging and wireless bioanalytical systems such as portable point-of-care sensing devices.

12.
Anal Chem ; 95(18): 7372-7378, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37098243

RESUMEN

Electrochemiluminescence (ECL) microscopy is an emerging technique with new applications such as imaging of single entities and cells. Herein, we have developed a bimodal and bicolor approach to record both positive ECL (PECL: light-emitting object on dark background) and shadow label-free ECL (SECL: nonemissive object shadowing the background luminescence) images of single cells. This bimodal approach is the result of the simultaneous emissions of [Ru(bpy)3]2+ used to label the cellular membrane (PECL) and [Ir(sppy)3]3- dissolved in solution (SECL). By spectrally resolving the ECL emission wavelengths, we recorded the images of the same cells in both PECL and SECL modes using the [Ru(bpy)3]2+ (λmax = 620 nm) and [Ir(sppy)3]3- (λmax = 515 nm) luminescence, respectively. PECL shows the distribution of the [Ru(bpy)3]2+ labels attached to the cellular membrane, whereas SECL reflects the local diffusional hindrance of the ECL reagents by each cell. The high sensitivity and surface-confined features of the reported approach are demonstrated by imaging cell-cell contacts during the mitosis process. Furthermore, the comparison of PECL and SECL images demonstrates the differential diffusion of tri-n-propylamine and [Ir(sppy)3]3- through the permeabilized cell membranes. Consequently, this dual approach enables the imaging of the morphology of the cell adhering on the surface and can significantly contribute to multimodal ECL imaging and bioassays with different luminescent systems.


Asunto(s)
Mediciones Luminiscentes , Microscopía , Mediciones Luminiscentes/métodos , Fotometría , Luminiscencia , Membrana Celular
13.
Anal Chem ; 95(42): 15700-15706, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37815364

RESUMEN

As an electrochemical technique offering an optical readout, electrochemiluminescence (ECL) evolved recently into a powerful microscopy technique with the visualization of a wide range of microscopic entities. However, the dynamic imaging of transient ECL events did not receive intensive attention due to the limited number of electrogenerated photons. Here, the reaction kinetics of the model ECL bioassay system was revealed by dynamic imaging of single [Ru(bpy)3]2+-functionalized beads in the presence of the efficient tripropylamine coreactant. The time profile behavior of ECL emission, the variations of the ECL layer thickness, and the position of maximum ECL intensity over time were investigated, which were not achieved by static imaging in previous studies. Moreover, the dynamics of the ECL emission were confronted with the simulation. The reported dynamic ECL imaging allows the investigation of the ECL kinetics and mechanisms operating in bioassays and cell microscopy.


Asunto(s)
Luminiscencia , Fotometría , Mediciones Luminiscentes , Microscopía , Técnicas Electroquímicas/métodos
14.
Anal Bioanal Chem ; 415(24): 5875-5898, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37507465

RESUMEN

In recent years, electrochemiluminescence (ECL) has received enormous attention and has emerged as one of the most successful tools in the field of analytical science. Compared with homogeneous ECL, the heterogeneous (or solid-state) ECL has enhanced the rate of the electron transfer kinetics and offers rapid response time, which is highly beneficial in point-of-care and clinical applications. In ECL, the luminophore is the key element, which dictates the overall performance of the ECL-based sensors in various analytical applications. Tris(2,2'-bipyridyl)ruthenium (II) complex, Ru(bpy)32+, is a coordination compound, which is the gold-standard luminophore in ECL. It has played a key role in translating ECL from a "laboratory curiosity" to a commercial analytical instrument for diagnosis. The aim of the present review is to provide the principles of ECL and classical reaction mechanisms-particularly involving the heterogeneous Ru(bpy)32+/co-reactant ECL systems, as well as the fabrication methods and its importance over solution-phase Ru(bpy)32+ ECL. Then, we discussed the emerging technology in solid-state Ru(bpy)32+ ECL-sensing platforms and their recent potential analytical applications such as in immunoassay sensors, DNA sensors, aptasensors, bio-imaging, latent fingerprint detection, point-of-care testing, and detection of non-biomolecules. Finally, we also briefly cover the recent advances in solid-state Ru(bpy)32+ ECL coupled with the hyphenated techniques.

15.
Angew Chem Int Ed Engl ; 62(16): e202218574, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36811514

RESUMEN

Here we report on a label-free electrochemiluminescence (ECL) microscopy using exceptionally low concentrations of the [Ru(bpy)3 ]2+ luminophore. This work addresses the central point of the minimal concentration of the ECL luminophore required to image single entities. We demonstrate the possibility to record ECL images of cells and mitochondria at concentrations down to nM and pM. This is 7 orders of magnitude lower than classically-used concentrations and corresponds to a few hundreds of luminophores diffusing around the biological entities. Yet, it produces remarkably sharp negative optical contrast ECL images, as demonstrated by structural similarity index metric analyses and supported by predictions of the ECL image covering time. Finally, we show that the reported approach is a simple, fast, and highly sensitive method, which opens new avenues for ultrasensitive ECL imaging and ECL reactivity at the single molecule level.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Técnicas Electroquímicas/métodos , Mediciones Luminiscentes/métodos , Técnicas Biosensibles/métodos
16.
Angew Chem Int Ed Engl ; 62(6): e202215078, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36478505

RESUMEN

Nanoconfinement in mesoporous nanoarchitectures could dramatically change molecular transport and reaction kinetics during electrochemical process. A molecular-level understanding of nanoconfinement and mass transport is critical for the applications, but a proper route to study it is lacking. Herein, we develop a single nanoreactor electrochemiluminescence (SNECL) microscopy based on Ru(bpy)3 2+ -loaded mesoporous silica nanoparticle to directly visualize in situ nanoconfinement-enhanced electrochemical reactions at the single molecule level. Meanwhile, mass transport capability of single nanoreactor, reflected as long decay time and recovery ability, is monitored and simulated with a high spatial resolution. The nanoconfinement effects in our system also enable imaging single proteins on cellular membrane. Our SNECL approach may pave the way to decipher the nanoconfinement effects during electrochemical process, and build bridges between mesoporous nanoarchitectures and potential electrochemical applications.

17.
Anal Chem ; 94(3): 1686-1696, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-34995073

RESUMEN

In this work, the characterization of release events from liposomes has been addressed quantitatively by an electrochemiluminescence (ECL) imaging strategy. First, ECL reagents ([Ru(bpy)3]2+ and tripropylamine) were encapsulated in sealed giant asymmetrical liposomes (100 µm in diameter) made of DOPG/DOPC phospholipids. After sedimentation on an indium tin oxide electrode material, the opening of liposomes was triggered by polarization of the surface. Under these conditions, amperometry, epifluorescence imaging, and ECL imaging were combined and synchronized to monitor and image the rupture of giant liposomes during the release and subsequent ECL emission of their redox content. Amperometry allowed the quantification of the content released from single liposomes. The location and status of liposomes (closed or opened) were assessed by epifluorescence imaging. ECL provided the image of the efflux of matter after liposome opening. This original ECL imaging approach favorably compares with strictly photoluminescent or electrochemical techniques and appears to be adapted for the investigation of membrane rupture/permeation events.


Asunto(s)
Liposomas , Mediciones Luminiscentes , Técnicas Electroquímicas/métodos , Electrodos , Mediciones Luminiscentes/métodos , Fotometría
18.
Acc Chem Res ; 54(14): 2936-2945, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34165296

RESUMEN

Electrochemiluminescence (ECL) is a light-emitting process which combines the intriguing merits of both electrochemical and chemiluminescent methods. It is an extensively used method especially in clinical analysis and biological research due to its high sensitivity, wide dynamic range, and good reliability. ECL devices are critical for the development and applications of ECL. Much effort has been expended to improve the sensitivity, portability, affordability, and throughput of new ECL devices, which allow ECL to adapt broad usage scenarios.In this Account, we summarize our efforts on the recent development of ECL devices including new electrodes, ECL devices based on a wireless power transfer (WPT) technique, and novel bipolar electrochemistry. As the essential components in the ECL devices, electrodes play an important role in ECL detection. We have significantly improved the sensitivity of luminol ECL detection of H2O2 by using a stainless steel electrode. By using semiconductor materials (e.g., silicon and BiVO4), we have exploited photoinduced ECL to generate intense emission at much lower potentials upon illumination. For convenience, portability, and disposability, ECL devices based on cheap WPT devices have been designed. A small diode has been employed to rectify alternating current into direct current to dramatically enhance ECL intensity, enabling sensitive ECL detection using a smart phone as a detector. Finally, we have developed several ECL devices based on bipolar electrochemistry in view of the convenience of multiplex ECL sensing using a bipolar electrode (BPE). On the basis of the wireless feature of BPE, we have employed movable BPEs (e.g., BPE swimmers and magnetic rotating BPE) for deep exploration of the motional and ECL properties of dynamic BPE systems. To make full use of the ECL solution, we have dispersed numerous micro-/nano-BPEs in solution to produce intense 3D ECL in the entire solution, instead of 2D ECL in conventional ECL devices. In addition, the interference of ECL noise from driving electrodes was minimized by introducing the stainless steel with a passivation layer as the driving electrode. To eliminate the need for the fabrication of electrode arrays and the interference from the driving electrode and to decrease the applied voltage, we develop a new-type BPE device consisting of a single-electrode electrochemical system (SEES) based on a resistance-induced potential difference. The SEES is fabricated easily by attaching a multiperforated plate to a single film electrode. It enables the simultaneous detection of many samples and analytes using only a single film electrode (e.g., screen-printed electrode) instead of electrode arrays. It is of great potential in clinical analysis especially for multiple-biomarker detection, drug screening, and biological studies. Looking forward, we believe that more ECL devices and related ECL materials and detection methods will be developed for a wide range of applications, such as in vitro diagnosis, point-of-care testing, high-throughput analysis, drug screening, biological study, and mechanism investigation.

19.
Anal Bioanal Chem ; 414(29-30): 8309-8315, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36239751

RESUMEN

Electrochemiluminescence (ECL) of luminol is a well-established methodology in analytical chemistry and bioimaging. Developing novel strategies to enhance the ECL signal of this model emitter is a challenging but rewarding task. In this work, we introduced the high-intensity focused ultrasound (HIFU), as a pretreatment means and a non-invasive way to trigger and boost the ECL signal with a 40-fold significant enhancement in the luminol-O2 system without the addition of exogenous co-reactants. The superoxide anion (O2-•) generated in situ by HIFU was the key initiator for boosting the ECL emission as demonstrated in this study for the first time. This promising co-reactant-free strategy could find potential applications for ultrasensitive ECL detection in the analysis of complex biological entities.


Asunto(s)
Técnicas Biosensibles , Luminol , Técnicas Electroquímicas/métodos , Técnicas Biosensibles/métodos , Mediciones Luminiscentes/métodos , Límite de Detección
20.
Nature ; 596(7871): 194-195, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34381228

Asunto(s)
Microscopía , Oscuridad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA