Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Clin Periodontol ; 50(3): 316-330, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36281629

RESUMEN

AIM: To assess the effects of scaling and root planing (SRP) on the dynamics of gene expression by the host and the microbiome in subgingival plaque samples. MATERIALS AND METHODS: Fourteen periodontitis patients were closely monitored in the absence of periodontal treatment for 12 months. During this period, comprehensive periodontal examination and subgingival biofilm sample collection were performed bi-monthly. After 12 months, clinical attachment level (CAL) data were compiled and analysed using linear mixed models (LMM) fitted to longitudinal CAL measurements for each tooth site. LMM classified the sites as stable (S), progressing (P), or fluctuating (F). After the 12-month visit, subjects received SRP, and at 15 months they received comprehensive examination and supportive periodontal therapy. Those procedures were repeated at the 18-month visit, when patients were also sampled. Each patient contributed with one S, one P, and one F site collected at the 12- and 18-month visits. Samples were analysed using Dual RNA-Sequencing to capture host and bacterial transcriptomes simultaneously. RESULTS: Microbiome and host response behaviour were specific to the site's progression classification (i.e., S, P, or F). Microbial profiles of pre- and post-treatment samples exhibited specific microbiome changes, with progressing sites showing the most significant changes. Among them, Porphyromonas gingivalis was reduced after treatment, while Fusobacterium nucleatum showed an increase in proportion. Transcriptome analysis of the host response showed that interleukin (IL)-17, TNF signalling pathways, and neutrophil extracellular trap formation were the primary immune response activities impacted by periodontal treatment. CONCLUSIONS: SRP resulted in a significant "rewiring" of host and microbial activities in the progressing sites, while restructuring of the microbiome was minor in stable and fluctuating sites.


Asunto(s)
Microbiota , Periodontitis , Humanos , Aplanamiento de la Raíz/métodos , Bolsa Periodontal/terapia , Bolsa Periodontal/microbiología , Periodontitis/terapia , Periodontitis/microbiología , Raspado Dental/métodos , Porphyromonas gingivalis , Microbiota/genética
2.
BMC Biol ; 19(1): 240, 2021 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-34742306

RESUMEN

BACKGROUND: Oral microbiome dysbiosis is linked to overt inflammation of tooth-supporting tissues, leading to periodontitis, an oral condition that can cause tooth and bone loss. Microbiome dysbiosis has been described as a disruption in the symbiotic microbiota composition's stability that could adversely affect the host's health status. However, the precise microbiome dynamics that lead to dysbiosis and the progression of the disease are largely unknown. The objective of our study was to investigate the long-term dynamics of periodontitis progression and its connection to dysbiosis. RESULTS: We studied three different teeth groups: sites that showed disease progression, sites that remained stable during the study, and sites that exhibited a cyclic deepening followed by spontaneous recovery. Time-series analysis revealed that communities followed a characteristic succession of bacteria clusters. Stable and fluctuating sites showed high asynchrony in the communities (i.e., different species responding dissimilarly through time) and a reordering of the communities where directional changes dominated (i.e., sample distance increases over time) in the stable sites but not in the fluctuating sites. Progressing sites exhibited low asynchrony and convergence (i.e., samples distance decreases over time). Moreover, new species were more likely to be recruited in stable samples if a close relative was not recruited previously. In contrast, progressing and fluctuating sites followed a neutral recruitment model, indicating that competition between closely related species is a significant component of species-species interactions in stable samples. Finally, periodontal treatment did not select similar communities but stabilized α-diversity, centered the abundance of different clusters to the mean, and increased community rearrangement. CONCLUSIONS: Here, we show that ecological principles can define dysbiosis and explain the evolution and outcomes of specific microbial communities of the oral microbiome in periodontitis progression. All sites showed an ecological succession in community composition. Stable sites were characterized by high asynchrony, a reordering of the communities where directional changes dominated, and new species were more likely to be recruited if a close relative was not recruited previously. Progressing sites were characterized by low asynchrony, community convergence, and a neutral model of recruitment. Finally, fluctuating sites were characterized by high asynchrony, community convergence, and a neutral recruitment model.


Asunto(s)
Microbiota , Periodontitis , Bacterias , Progresión de la Enfermedad , Disbiosis , Humanos
3.
Proc Natl Acad Sci U S A ; 113(29): E4161-9, 2016 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-27402745

RESUMEN

Using a large-scale "genomic enzymology" approach, we (i) assigned novel ATP-dependent four-carbon acid sugar kinase functions to members of the DUF1537 protein family (domain of unknown function; Pfam families PF07005 and PF17042) and (ii) discovered novel catabolic pathways for d-threonate, l-threonate, and d-erythronate. The experimentally determined ligand specificities of several solute binding proteins (SBPs) for TRAP (tripartite ATP-independent permease) transporters for four-carbon acids, including d-erythronate and l-erythronate, were used to constrain the substrates for the catabolic pathways that degrade the SBP ligands to intermediates in central carbon metabolism. Sequence similarity networks and genome neighborhood networks were used to identify the enzyme components of the pathways. Conserved genome neighborhoods encoded SBPs as well as permease components of the TRAP transporters, members of the DUF1537 family, and a member of the 4-hydroxy-l-threonine 4-phosphate dehydrogenase (PdxA) oxidative decarboxylase, class II aldolase, or ribulose 1,5-bisphosphate carboxylase/oxygenase, large subunit (RuBisCO) superfamily. Because the characterized substrates of members of the PdxA, class II aldolase, and RuBisCO superfamilies are phosphorylated, we postulated that the members of the DUF1537 family are novel ATP-dependent kinases that participate in catabolic pathways for four-carbon acid sugars. We determined that (i) the DUF1537/PdxA pair participates in a pathway for the conversion of d-threonate to dihydroxyacetone phosphate and CO2 and (ii) the DUF1537/class II aldolase pair participates in pathways for the conversion of d-erythronate and l-threonate (epimers at carbon-3) to dihydroxyacetone phosphate and CO2 The physiological importance of these pathways was demonstrated in vivo by phenotypic and genetic analyses.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Bacterias/enzimología , Bacterias/aislamiento & purificación , Butiratos/metabolismo , Fructosa-Bifosfato Aldolasa/metabolismo , Oxidorreductasas/metabolismo , Fosfatos/metabolismo , Dominios Proteicos
4.
Biochemistry ; 54(3): 909-31, 2015 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-25540822

RESUMEN

The rate at which genome sequencing data is accruing demands enhanced methods for functional annotation and metabolism discovery. Solute binding proteins (SBPs) facilitate the transport of the first reactant in a metabolic pathway, thereby constraining the regions of chemical space and the chemistries that must be considered for pathway reconstruction. We describe high-throughput protein production and differential scanning fluorimetry platforms, which enabled the screening of 158 SBPs against a 189 component library specifically tailored for this class of proteins. Like all screening efforts, this approach is limited by the practical constraints imposed by construction of the library, i.e., we can study only those metabolites that are known to exist and which can be made in sufficient quantities for experimentation. To move beyond these inherent limitations, we illustrate the promise of crystallographic- and mass spectrometric-based approaches for the unbiased use of entire metabolomes as screening libraries. Together, our approaches identified 40 new SBP ligands, generated experiment-based annotations for 2084 SBPs in 71 isofunctional clusters, and defined numerous metabolic pathways, including novel catabolic pathways for the utilization of ethanolamine as sole nitrogen source and the use of d-Ala-d-Ala as sole carbon source. These efforts begin to define an integrated strategy for realizing the full value of amassing genome sequence data.


Asunto(s)
Proteínas Portadoras/metabolismo , Redes y Vías Metabólicas , Metaboloma , Metabolómica/métodos , Anotación de Secuencia Molecular , Bacillus/metabolismo , Carbohidratos/química , Clonación Molecular , Cristalografía por Rayos X , Fluorometría , Cinética , Ligandos , Reproducibilidad de los Resultados , Homología de Secuencia de Aminoácido
5.
Biochemistry ; 53(24): 4047-58, 2014 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-24870309

RESUMEN

Laccases (EC 1.10.3.2) are multicopper oxidases that can oxidize a range of substrates, including phenols, aromatic amines, and nonphenolic substrates. To investigate the involvement of the small Streptomyces laccases in lignin degradation, we generated acid-precipitable polymeric lignin obtained in the presence of wild-type Streptomyces coelicolor A3(2) (SCWT) and its laccase-less mutant (SCΔLAC) in the presence of Miscanthus x giganteus lignocellulose. The results showed that strain SCΔLAC was inefficient in degrading lignin compared to strain SCWT, thereby supporting the importance of laccase for lignin degradation by S. coelicolor A3(2). We also studied the lignin degradation activity of laccases from S. coelicolor A3(2), Streptomyces lividans TK24, Streptomyces viridosporus T7A, and Amycolatopsis sp. 75iv2 using both lignin model compounds and ethanosolv lignin. All four laccases degraded a phenolic model compound (LM-OH) but were able to oxidize a nonphenolic model compound only in the presence of redox mediators. Their activities are highest at pH 8.0 with a low krel/Kapp for LM-OH, suggesting that the enzymes' natural substrates must be different in shape or chemical nature. Crystal structures of the laccases from S. viridosporus T7A (SVLAC) and Amycolatopsis sp. 75iv2 were determined both with and without bound substrate. This is the first report of a crystal structure for any laccase bound to a nonphenolic ß-O-4 lignin model compound. An additional zinc metal binding site in SVLAC was also identified. The ability to oxidize and/or rearrange ethanosolv lignin provides further evidence of the utility of laccase activity for lignin degradation and/or modification.


Asunto(s)
Lacasa/metabolismo , Lignina/metabolismo , Cristalografía por Rayos X , Cinética , Lacasa/aislamiento & purificación , Fenoles/metabolismo , Streptomyces/enzimología , Streptomyces/metabolismo , Streptomyces coelicolor/metabolismo , Especificidad por Sustrato
6.
mSystems ; 9(3): e0123123, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38323815

RESUMEN

The ability of many human pathogens to infect requires their ability to adhere to the host surfaces as a first step in the process. Porphyromonas gingivalis, a keystone oral pathogen, uses adhesins to adhere to the surface of the gingival epithelium and other members of the oral microbiome. In a previous study, we identified several proteins potentially linked to virulence whose mRNA levels are regulated by CRISPR-Cas type I-C. Among those, PGN_1547 was highly upregulated in the CRISPR-Cas 3 mutant. PGN_1547 is annotated as a hypothetical protein. Employing homology searching, our data support that PGN_1547 resembles an auto-transporter adhesin of P. gingivalis based on containing the DUF2807 domain. To begin to characterize the function of PGN_1547, we found that a deletion mutant displayed a significant decrease in virulence using a Galleria mellonela model. Furthermore, this mutant was significantly impaired in forming biofilms and attaching to the macrophage-like cell THP-1. Luminex revealed that the PGN_1547 mutant elicited a less robust cytokine and chemokine response from THP-1 cells, and TLR2 predominantly sensed that recombinant PGN_1547. Taken together, these findings broaden our understanding of the toolbox of virulence factors possessed by P. gingivalis. Importantly, PGN_1547, a hypothetical protein, has homologs in another member of the order Bacteroidales whose function is unknown, and our results could shed light on the role of this family of proteins as auto-transport adhesins in this phylogenetic group.IMPORTANCEPeriodontal diseases are among humans' most common infections, and besides their effect on the oral cavity, they have been associated with systemic inflammatory conditions. Among members of the oral microbiome implicated in the development of periodontitis, Porphyromonas gingivalis is considered a keystone pathogen. We have identified a new adhesin that acts as a virulence factor, PGN_1547, which contains the DUF2807 domain, which belongs to the putative auto-transporter adhesin, head GIN domain family. Deletion of this gene lowers the virulence of P. gingivalis and impacts the ability of P. gingivalis to form biofilm and attach to host cells. Furthermore, the broad distribution of these receptors in the order Bacteroidales suggests their importance in colonization by this important group of organisms.


Asunto(s)
Sistemas CRISPR-Cas , Porphyromonas gingivalis , Humanos , Virulencia/genética , Porphyromonas gingivalis/genética , Sistemas CRISPR-Cas/genética , Filogenia , Adhesinas Bacterianas/genética , Factores de Virulencia/genética
7.
Adv Appl Microbiol ; 82: 1-28, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23415151

RESUMEN

Lignocellulose is an abundant biomass that provides an alternative source for the production of renewable fuels and chemicals. The depolymerization of the carbohydrate polymers in lignocellulosic biomass is hindered by lignin, which is recalcitrant to chemical and biological degradation due to its complex chemical structure and linkage heterogeneity. The role of fungi in delignification due to the production of extracellular oxidative enzymes has been studied more extensively than that of bacteria. The two major groups of enzymes that are involved in lignin degradation are heme peroxidases and laccases. Lignin-degrading peroxidases include lignin peroxidase (LiP), manganese peroxidase (MnP), versatile peroxidase (VP), and dye-decolorizing peroxidase (DyP). LiP, MnP, and VP are class II extracellular fungal peroxidases that belong to the plant and microbial peroxidases superfamily. LiPs are strong oxidants with high-redox potential that oxidize the major non-phenolic structures of lignin. MnP is an Mn-dependent enzyme that catalyzes the oxidation of various phenolic substrates but is not capable of oxidizing the more recalcitrant non-phenolic lignin. VP enzymes combine the catalytic activities of both MnP and LiP and are able to oxidize Mn(2+) like MnP, and non-phenolic compounds like LiP. DyPs occur in both fungi and bacteria and are members of a new superfamily of heme peroxidases called DyPs. DyP enzymes oxidize high-redox potential anthraquinone dyes and were recently reported to oxidize lignin model compounds. The second major group of lignin-degrading enzymes, laccases, are found in plants, fungi, and bacteria and belong to the multicopper oxidase superfamily. They catalyze a one-electron oxidation with the concomitant four-electron reduction of molecular oxygen to water. Fungal laccases can oxidize phenolic lignin model compounds and have higher redox potential than bacterial laccases. In the presence of redox mediators, fungal laccases can oxidize non-phenolic lignin model compounds. In addition to the peroxidases and laccases, fungi produce other accessory oxidases such as aryl-alcohol oxidase and the glyoxal oxidase that generate the hydrogen peroxide required by the peroxidases. Lignin-degrading enzymes have attracted the attention for their valuable biotechnological applications especially in the pretreatment of recalcitrant lignocellulosic biomass for biofuel production. The use of lignin-degrading enzymes has been studied in various applications such as paper industry, textile industry, wastewater treatment and the degradation of herbicides.


Asunto(s)
Lacasa , Lignina , Basidiomycota/metabolismo , Proteínas Fúngicas/metabolismo , Hongos/metabolismo , Lignina/metabolismo , Oxidación-Reducción , Peroxidasa
8.
mSystems ; 5(5)2020 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-32994292

RESUMEN

The CRISPR (clustered regularly interspaced short palindromic repeat)-Cas system is a unique genomic entity that provides prokaryotic cells with adaptive and heritable immunity. Initial studies identified CRISPRs as central elements used by bacteria to protect against foreign nucleic acids; however, emerging evidence points to CRISPR involvement in bacterial virulence. The present study aimed to identify the participation of one CRISPR-Cas protein, Cas3, in the virulence of the oral pathogen Porphyromonas gingivalis, an organism highly associated with periodontitis. Our results show that compared to the wild type, a mutant with a deletion of the Cas3 gene, an essential nuclease part of the class 1 type I CRISPR-Cas system, increased the virulence of P. gingivalis In vitro infection modeling revealed only mildly enhanced production of proinflammatory cytokines by THP-1 cells when infected with the mutant strain. Dual transcriptome sequencing (RNA-seq) analysis of infected THP-1 cells showed an increase in expression of genes associated with pathogenesis in response to Δcas3 mutant infection, with the target of Cas3 activities in neutrophil chemotaxis and gene silencing. The importance of cas3 in controlling virulence was corroborated in a Galleria mellonella infection model, where the presence of the Δcas3 mutant resulted in a statistically significant increase in mortality of G. mellonella A time-series analysis of transcription patterning during infection showed that G. mellonella elicited very different immune responses to the wild-type and the Δcas3 mutant strains and revealed a rearrangement of association in coexpression networks. Together, these observations show for the first time that Cas3 plays a significant role in regulating the virulence of P. gingivalis IMPORTANCE Porphyromonas gingivalis is a key pathogen of periodontitis, a polymicrobial disease characterized by a chronic inflammation that destroys the tissues supporting the teeth. Thus, understanding the virulence potential of P. gingivalis is essential to maintaining a healthy oral microbiome. In nonoral organisms, CRISPR-Cas systems have been shown to modulate a variety of microbial processes, including protection from exogenous nucleic acids, and, more recently, have been implicated in bacterial virulence. Previously, our clinical findings identified activation of the CRISPR-Cas system in patient samples at the transition to disease; however, the mechanism of contribution to disease remained unknown. The importance of the present study resides in that it is becoming increasingly clear that CRISPR-associated proteins have broader functions than initially thought and that those functions now include their role in the virulence of periodontal pathogens. Studying a P. gingivalis cas3 mutant, we demonstrate that at least one of the CRISPR-Cas systems is involved in the regulation of virulence during infection.

9.
Artículo en Inglés | MEDLINE | ID: mdl-30345066

RESUMEN

Imbalances of the microbiome, also referred to as microbial dysbiosis, could lead to a series of different diseases. One factor that has been shown to lead to dysbiosis of the microbiome is exposure to psychological stressors. Throughout evolution microorganisms of the human microbiome have developed systems for sensing host-associated signals such as hormones associated with those stressors, enabling them to recognize essential changes in their environment, thus changing their expression gene profile to fit the needs of the new environment. The most widely accepted theory explaining the ability of hormones to affect the outcome of an infection involves the suppression of the immune system. Commensal microbiota is involved in stressor-induced immunomodulation, but other biological effects are not yet known. Here we present the impact that cortisol had on the community-wide transcriptome of the oral community. We used a metatranscriptomic approach to obtain first insights into the metabolic changes induced by this stress hormone as well as which members of the oral microbiome respond to the presence of cortisol in the environment. Our findings show that the stress hormone cortisol directly induces shifts in the gene expression profiles of the oral microbiome that reproduce results found in the profiles of expression of periodontal disease and its progression.

10.
Sci Rep ; 6: 25680, 2016 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-27161258

RESUMEN

Biotin protein ligase (BPL) is widespread in the three domains of the life. The paradigm BPL is the Escherichia coli BirA protein, which also functions as a repressor for the biotin biosynthesis pathway. Here we report that Lactococcus lactis possesses two different orthologues of birA (birA1_LL and birA2_LL). Unlike the scenario in E. coli, L. lactis appears to be auxotrophic for biotin in that it lacks a full biotin biosynthesis pathway. In contrast, it retains two biotin transporter-encoding genes (bioY1_LL and bioY2_LL), suggesting the use of a scavenging strategy to obtain biotin from the environment. The in vivo function of the two L. lactis birA genes was judged by their abilities to complement the conditional lethal E. coli birA mutant. Thin-layer chromatography and mass spectroscopy assays demonstrated that these two recombinant BirA proteins catalyze the biotinylation reaction of the acceptor biotin carboxyl carrier protein (BCCP), through the expected biotinoyl-AMP intermediate. Gel shift assays were used to characterize bioY1_LL and BirA1_LL. We also determined the ability to uptake (3)H-biotin by L. lactis. Taken together, our results deciphered a unique biotin scavenging pathway with redundant genes present in the probiotic bacterium L. lactis.


Asunto(s)
Biotina/metabolismo , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Probióticos/metabolismo , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Biotinilación , Ligasas de Carbono-Nitrógeno/genética , Ligasas de Carbono-Nitrógeno/metabolismo , Acido Graso Sintasa Tipo II/genética , Acido Graso Sintasa Tipo II/metabolismo , Modelos Moleculares , Conformación Proteica , Homología de Secuencia de Aminoácido
11.
ACS Cent Sci ; 1(2): 77-82, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26258173

RESUMEN

Squalene (SQ) is an intermediate in the biosynthesis of sterols in eukaryotes and a few bacteria and of hopanoids in bacteria where they promote membrane stability and the formation of lipid rafts in their hosts. The genes for hopanoid biosynthesis are typically located on clusters that consist of four highly conserved genes-hpnC, hpnD, hpnE, and hpnF-for conversion of farnesyl diphosphate (FPP) to hopene or related pentacyclic metabolites. While hpnF is known to encode a squalene cyclase, the functions for hpnC, hpnD, and hpnE are not rigorously established. The hpnC, hpnD, and hpnE genes from Zymomonas mobilis and Rhodopseudomonas palustris were cloned into Escherichia coli, a bacterium that does not contain genes homologous to hpnC, hpnD, and hpnE, and their functions were established in vitro and in vivo. HpnD catalyzes formation of presqualene diphosphate (PSPP) from two molecules of FPP; HpnC converts PSPP to hydroxysqualene (HSQ); and HpnE, a member of the amine oxidoreductase family, reduces HSQ to SQ. Collectively the reactions catalyzed by these three enzymes constitute a new pathway for biosynthesis of SQ in bacteria.

12.
mBio ; 5(1): e00933-13, 2014 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-24520058

RESUMEN

UNLABELLED: Through the use of genetic, enzymatic, metabolomic, and structural analyses, we have discovered the catabolic pathway for proline betaine, an osmoprotectant, in Paracoccus denitrificans and Rhodobacter sphaeroides. Genetic and enzymatic analyses showed that several of the key enzymes of the hydroxyproline betaine degradation pathway also function in proline betaine degradation. Metabolomic analyses detected each of the metabolic intermediates of the pathway. The proline betaine catabolic pathway was repressed by osmotic stress and cold stress, and a regulatory transcription factor was identified. We also report crystal structure complexes of the P. denitrificans HpbD hydroxyproline betaine epimerase/proline betaine racemase with l-proline betaine and cis-hydroxyproline betaine. IMPORTANCE: At least half of the extant protein annotations are incorrect, and the errors propagate as the number of genome sequences increases exponentially. A large-scale, multidisciplinary sequence- and structure-based strategy for functional assignment of bacterial enzymes of unknown function has demonstrated the pathway for catabolism of the osmoprotectant proline betaine.


Asunto(s)
Redes y Vías Metabólicas/genética , Paracoccus denitrificans/genética , Paracoccus denitrificans/metabolismo , Prolina/análogos & derivados , Rhodobacter sphaeroides/genética , Rhodobacter sphaeroides/metabolismo , Isomerasas de Aminoácido/química , Frío , Cristalografía por Rayos X , Regulación Bacteriana de la Expresión Génica , Metaboloma , Presión Osmótica , Paracoccus denitrificans/efectos de los fármacos , Paracoccus denitrificans/efectos de la radiación , Prolina/metabolismo , Conformación Proteica , Rhodobacter sphaeroides/efectos de los fármacos , Rhodobacter sphaeroides/efectos de la radiación , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
13.
Elife ; 32014 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-24980702

RESUMEN

Metabolic pathways in eubacteria and archaea often are encoded by operons and/or gene clusters (genome neighborhoods) that provide important clues for assignment of both enzyme functions and metabolic pathways. We describe a bioinformatic approach (genome neighborhood network; GNN) that enables large scale prediction of the in vitro enzymatic activities and in vivo physiological functions (metabolic pathways) of uncharacterized enzymes in protein families. We demonstrate the utility of the GNN approach by predicting in vitro activities and in vivo functions in the proline racemase superfamily (PRS; InterPro IPR008794). The predictions were verified by measuring in vitro activities for 51 proteins in 12 families in the PRS that represent ∼85% of the sequences; in vitro activities of pathway enzymes, carbon/nitrogen source phenotypes, and/or transcriptomic studies confirmed the predicted pathways. The synergistic use of sequence similarity networks3 and GNNs will facilitate the discovery of the components of novel, uncharacterized metabolic pathways in sequenced genomes.


Asunto(s)
Isomerasas de Aminoácido/química , Biología Computacional/métodos , Genoma Bacteriano , Algoritmos , Cristalografía por Rayos X , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Redes y Vías Metabólicas , Conformación Molecular , Datos de Secuencia Molecular , Familia de Multigenes , Plásmidos/metabolismo , ARN/química , Espectrometría de Masa por Ionización de Electrospray , Transcripción Genética
14.
Chem Biol ; 17(1): 11-7, 2010 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-20142036

RESUMEN

Transcription of the Escherichia coli biotin (bio) operon is regulated by BirA, a protein that is not only the repressor that regulates bio operon expression by DNA binding but also the enzyme that covalently attaches biotin to its cognate acceptor proteins. Binding of BirA to the bio operator requires dimerization of the protein that is triggered by BirA-catalyzed synthesis of biotinoyl-adenylate (bio-AMP), the obligatory intermediate of the attachment reaction. The current model postulates that the unmodified acceptor protein binds the monomeric BirA:bio-AMP complex and thereby blocks assembly (dimerization) of the form of BirA that binds DNA. We report that expression of fusion proteins that carry synthetic biotin-accepting peptide sequences was as effective as the natural acceptor protein in derepression of bio operon transcription. These peptide sequences have sequences that are remarkably dissimilar to that of the natural acceptor protein, and our data thus argue that the regulatory switch does not require the extensive protein-protein interactions postulated in the current model.


Asunto(s)
Biotina/genética , Ligasas de Carbono-Nitrógeno/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Regiones Operadoras Genéticas , Proteínas Represoras/metabolismo , Secuencia de Aminoácidos , Biotina/metabolismo , Ligasas de Carbono-Nitrógeno/química , Dimerización , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Modelos Genéticos , Datos de Secuencia Molecular , Unión Proteica , Proteínas Represoras/química , Alineación de Secuencia , Transcripción Genética
15.
FEMS Microbiol Lett ; 300(1): 90-6, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19758327

RESUMEN

Escherichia coli microcin J25 (MccJ25) is a lasso-peptide antibiotic comprising 21 L-amino acid residues (G(1)-G-A-G-H(5)-V-P-E-Y-F(10)-V-G-I-G-T(15)-P-I-S-F-Y(20)-G). MccJ25 has two independent substrates: RNA-polymerase (RNAP) and the membrane respiratory chain. The latter is mediated by oxygen consumption inhibition together with an increase of superoxide production. In the present paper, the antibiotic MccJ25 was engineered by substituting Tyr(9) or Tyr(20) with phenylalanine. Both mutants were well transported into the cells and remained active on RNAP. Only the Y9F mutant lost the ability to overproduce superoxide and inhibit oxygen consumption. The last results confirm that the Tyr(9), and not Tyr(20), is involved in the MccJ25 action on the respiratory chain target.


Asunto(s)
Antibacterianos/química , Bacteriocinas/química , Escherichia coli/metabolismo , Superóxidos/metabolismo , Tirosina/química , Antibacterianos/metabolismo , Bacteriocinas/genética , Bacteriocinas/metabolismo , Escherichia coli/química , Escherichia coli/genética , Tirosina/genética , Tirosina/metabolismo
16.
J Bacteriol ; 188(9): 3324-8, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16621826

RESUMEN

Escherichia coli microcin J25 (MccJ25) is a plasmid-encoded antibiotic peptide consisting of 21 L-amino acid residues (G1-G-A-G-H5-V-P-E-Y-F10-V-G-I-G-T15-P-I-S-F-Y20-G). E. coli RNA polymerase (RNAP) is the intracellular target of MccJ25. MccJ25 enters cells after binding to specific membrane transporters: FhuA in the outer membrane and SbmA in the inner membrane. Here, we studied MccJ25 mutants carrying a substitution of His5 by Lys, Arg, or Ala. The inhibitory effects on cellular growth and in vitro RNAP activity were determined for each mutant microcin. The results show that all mutants inhibited RNAP in vitro. However, the mutants were defective in their ability to inhibit cellular growth. Experiments in which the FhuA protein was bypassed showed that substitutions of MccJ25 His5 affected the SbmA-dependent transport. Our results thus suggest that MccJ25 His5 located in the lariat ring is involved, directly or indirectly, in specific interaction with SbmA and is not required for MccJ25 inhibition of RNAP.


Asunto(s)
Antibacterianos/metabolismo , Bacteriocinas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Histidina/fisiología , Proteínas de la Membrana/metabolismo , Sustitución de Aminoácidos , Antibacterianos/farmacología , Bacteriocinas/genética , Bacteriocinas/farmacología , Transporte Biológico , ARN Polimerasas Dirigidas por ADN/antagonistas & inhibidores , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Histidina/genética , Mutación , ARN Bacteriano/biosíntesis
17.
J Biol Chem ; 277(24): 21604-9, 2002 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-11943781

RESUMEN

We previously reported (Chapman-Smith, A., Forbes, B. E., Wallace, J. C., and Cronan, J. E., Jr. (1997) J. Biol. Chem. 272, 26017-26022) that the biotinylated (holo) species of the biotin carboxyl carrier protein (BCCP) biotinoyl domain is much more resistant to chemical modification and proteolysis than the unbiotinylated (apo) form. We hypothesized that the increased stability was due to a conformational change engendered by interaction of the domain with biotin protein ligase, the enzyme that attaches the biotin moiety. We now report that a BCCP-87 species to which the biotin moiety was attached by chemical acylation rather than by biotin protein ligase showed the characteristically greater stability of the holo biotinoyl domain. This result demonstrates that our hypothesis was incorrect; the attached biotin is solely responsible for the increased stability. The bacterial and chloroplast multisubunit acetyl-CoA carboxylases are unusual in that the highly symmetrical and conserved structure of the biotinoyl domain of the BCCP subunit is disrupted by a structured loop called the "thumb" that protrudes from body of the domain. Prior structural work showed that the thumb interacts with uriedo ring of the attached biotin moiety. We have tested whether the thumb-biotin interactions are responsible for the greater holo form stability by examination of two BCCP-87 species that lack the thumb. These BCCP species were produced in both the apo and holo forms, and their sensitivities to trypsin digestion were compared. The holo forms of these proteins were found to be only marginally more stable than their apo forms and much more sensitive to trypsin digestion than the wild type holo-BCCP-87. Therefore, removal of the thumb has an effect similar to lack of biotinylation, indicating that thumb-biotin interactions are responsible for most (but not all) of the increased stability of the holo biotinoyl domain. In the course of these experiments we demonstrated that treatment of Escherichia coli with the peptide deformylase inhibitor, actinonin, results in the expected (but previously unreported) accumulation of an N-formylated protein species.


Asunto(s)
Acetil-CoA Carboxilasa/química , Biotina/química , Biotinilación , Escherichia coli/enzimología , Acetil-CoA Carboxilasa/metabolismo , Escherichia coli/metabolismo , Modelos Moleculares , Plásmidos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Espectrometría de Masa por Ionización de Electrospray , Factores de Tiempo , Tripsina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA