Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 147(1): 173-84, 2011 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-21962514

RESUMEN

Saturated fatty acids (FA) exert adverse health effects and are more likely to cause insulin resistance and type 2 diabetes than unsaturated FA, some of which exert protective and beneficial effects. Saturated FA, but not unsaturated FA, activate Jun N-terminal kinase (JNK), which has been linked to obesity and insulin resistance in mice and humans. However, it is unknown how saturated and unsaturated FA are discriminated. We now demonstrate that saturated FA activate JNK and inhibit insulin signaling through c-Src activation. FA alter the membrane distribution of c-Src, causing it to partition into intracellular membrane subdomains, where it likely becomes activated. Conversely, unsaturated FA with known beneficial effects on glucose metabolism prevent c-Src membrane partitioning and activation, which are dependent on its myristoylation, and block JNK activation. Consumption of a diabetogenic high-fat diet causes the partitioning and activation of c-Src within detergent insoluble membrane subdomains of murine adipocytes.


Asunto(s)
Adipocitos/metabolismo , Ácidos Grasos/metabolismo , Resistencia a la Insulina , Membranas Intracelulares/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Proteínas Proto-Oncogénicas pp60(c-src)/metabolismo , Adipocitos/química , Animales , Diabetes Mellitus Tipo 2/metabolismo , Dieta , Ácidos Grasos Insaturados/metabolismo , Fibroblastos/metabolismo , Ratones , Ratones Endogámicos C57BL , Obesidad/metabolismo , Proteínas Proto-Oncogénicas pp60(c-src)/análisis , Transducción de Señal
2.
Curr Top Microbiol Immunol ; 436: 311-336, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36243850

RESUMEN

The PI3K/AKT signaling module is recruited by several receptors implicated in maintaining tissue and metabolic homeostasis and signaling pathways controlling immune responses. Constitutive activation of PI3K/AKT signaling leads to tissue overgrowth and is frequently observed in cancer cells, whereas reduced PI3K/AKT signaling is associated with diabetes and growth defects. Thus, a critical roadblock to effective PI3K-targeted therapy comes from the crucial role of PI3K/AKT signaling in systemic metabolic homeostasis. This chapter describes the role of PI3K/AKT in insulin signaling and metabolic homeostasis and the interplay between insulin action and metabolic feedback loops that cause resistance to PI3K-targeted therapies. Furthermore, we provide examples of insulin-independent roles for PI3K/AKT in metabolic homeostasis, and some generalizations on the action of PI3K/AKT signaling at the interface of signaling and metabolism are derived. Finally, the specific roles for different class I PI3K isoforms in controlling systemic metabolic homeostasis and energy balance are discussed. We conclude that defining the functional specificities and redundancies of different class I PI3K isoforms in pathways driving disease and controlling metabolic homeostasis is fundamental to develop novel PI3K-targeted therapies.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Insulina/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
3.
FASEB J ; 36(9): e22512, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36001064

RESUMEN

The kinase IKKß controls pro-inflammatory gene expression, and its activity in the liver and leukocytes was shown to drive metabolic inflammation and insulin resistance in obesity. However, it was also proposed that liver IKKß signaling protects obese mice from insulin resistance and endoplasmic reticulum (ER) stress by increasing XBP1s protein stability. Furthermore, mice lacking IKKß in leukocytes display increased lethality to lipopolysaccharides. This study aims at improving our understanding of the role of IKKß signaling in obesity. We induced IKKß deletion in hematopoietic cells and liver of obese mice by Cre-LoxP recombination, using an INF-inducible system, or a liver-specific IKKß deletion in obese mice by adenovirus delivery of the Cre recombinase. The histopathological, immune, and metabolic phenotype of the mice was characterized. IKKß deletion in the liver and hematopoietic cells was not tolerated in mice with established obesity exposed to the TLR3 agonist poly(I:C) and exacerbated liver damage and ER-stress despite elevated XBP1s. By contrast, liver-specific ablation of IKKß in obese mice reduced steatosis and improved insulin sensitivity in association with increased XBP1s protein abundance and reduced expression of de-novo lipogenesis genes. We conclude that IKKß blockage in liver and leukocytes is not tolerated in obese mice exposed to TLR3 agonists. However, selective hepatic IKKß ablation improves fatty liver and insulin sensitivity in association with increased XBP1s protein abundance and reduced expression of lipogenic genes.


Asunto(s)
Hígado Graso , Resistencia a la Insulina , Animales , Hígado Graso/metabolismo , Quinasa I-kappa B/genética , Quinasa I-kappa B/metabolismo , Leucocitos/metabolismo , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/metabolismo , Receptor Toll-Like 3/metabolismo
4.
Int J Mol Sci ; 23(17)2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36077596

RESUMEN

Acute kidney injury (AKI) is a common renal injury leading to relevant morbidity and mortality worldwide. Most of the clinical cases of AKI are caused by ischemia reperfusion (I/R) injury with renal ischemia injury followed by reperfusion injury and activation of the innate immune response converging to NF-ĸB pathway induction. Despite the clear role of NF-ĸB in inflammation, it has recently been acknowledged that NF-ĸB may impact other cell functions. To identify NF-ĸB function with respect to metabolism, vascular function and oxidative stress after I/R injury and to decipher in detail the underlying mechanism, we generated a transgenic mouse model with targeted deletion of IKKß along the tubule and applied I/R injury followed by its analysis after 2 and 14 days after I/R injury. Tubular IKKß deletion ameliorated renal function and reduced tissue damage. RNAseq data together with immunohistochemical, biochemical and morphometric analysis demonstrated an ameliorated vascular organization and mRNA expression profile for increased angiogenesis in mice with tubular IKKß deletion at 2 days after I/R injury. RNAseq and protein analysis indicate an ameliorated metabolism, oxidative species handling and timely-adapted cell proliferation and apoptosis as well as reduced fibrosis in mice with tubular IKKß deletion at 14 days after I/R injury. In conclusion, mice with tubular IKKß deletion upon I/R injury display improved renal function and reduced tissue damage and fibrosis in association with improved vascularization, metabolism, reactive species disposal and fine-tuned cell proliferation.


Asunto(s)
Lesión Renal Aguda , Daño por Reperfusión , Lesión Renal Aguda/genética , Lesión Renal Aguda/metabolismo , Animales , Apoptosis/genética , Fibrosis , Quinasa I-kappa B/genética , Isquemia , Riñón/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , FN-kappa B/metabolismo , Daño por Reperfusión/genética
5.
J Struct Biol ; 206(3): 349-360, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30959108

RESUMEN

Membrane bound O-acyltransferase domain- containing 7 (MBOAT7, also known as LPIAT1) is a protein involved in the acyl chain remodeling of phospholipids via the Lands' cycle. The MBOAT7 is a susceptibility risk genetic locus for non-alcoholic fatty liver disease (NAFLD) and mental retardation. Although it has been shown that MBOAT7 is associated to membranes, the MBOAT7 topology remains unknown. To solve the topological organization of MBOAT7, we performed: A) solubilization of the total membrane fraction of cells overexpressing the recombinant MBOAT7-V5, which revealed MBOAT7 is an integral protein strongly attached to endomembranes; B) in silico analysis by using 22 computational methods, which predicted the number and localization of transmembrane domains of MBOAT7 with a range between 5 and 12; C) in vitro analysis of living cells transfected with GFP-tagged MBOAT7 full length and truncated forms, using a combination of Western Blotting, co-immunofluorescence and Fluorescence Protease Protection (FPP) assay; D) in vitro analysis of living cells transfected with FLAG-tagged MBOAT7 full length forms, using a combination of Western Blotting, selective membrane permeabilization followed by indirect immunofluorescence. All together, these data revealed that MBOAT7 is a multispanning transmembrane protein with six transmembrane domains. Based on our model, the predicted catalytic dyad of the protein, composed of the conserved asparagine in position 321 (Asn-321) and the preserved histidine in position 356 (His-356), has a lumenal localization. These data are compatible with the role of MBOAT7 in remodeling the acyl chain composition of endomembranes.


Asunto(s)
Aciltransferasas/ultraestructura , Membrana Celular/ultraestructura , Proteínas de la Membrana/ultraestructura , Proteínas Recombinantes/ultraestructura , Aciltransferasas/genética , Membrana Celular/química , Membrana Celular/genética , Simulación por Computador , Regulación de la Expresión Génica , Humanos , Proteínas de la Membrana/genética , Enfermedad del Hígado Graso no Alcohólico/genética , Dominios Proteicos/genética , Proteínas Recombinantes/genética
6.
FASEB J ; 32(1): 319-329, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28904022

RESUMEN

PI3Kγ has emerged as a promising target for the treatment of obesity and insulin resistance; however, previous studies have indicated that PI3Kγ activity in pancreatic ß cells is required for normal insulin secretion in response to glucose. Hence, a possible deterioration of insulin secretion capacity in patients who are predisposed to the failure of pancreatic ß-cell function is a major concern for the pharmacologic inhibition of PI3Kγ. To address this issue, we investigated the effects of PI3Kγ ablation in db/db diabetic mice, a genetic model of obesity-driven ß-cell failure and diabetes. Mice that lacked PI3Kγ were backcrossed into db/+ mice C57BL/KS (>10 generations) to obtain db/db-PI3Kγ-/- mice. db/db-PI3Kγ-/- mice and control db/db mice were phenotyped for glucose homeostasis, insulin sensitivity, insulin secretion, steatosis, metabolic inflammation, pancreatic islet morphometry, islet cellular composition, and inflammation. Pancreatic ß-cell apoptosis and proliferation were also evaluated. db/db-PI3Kγ -/- mice and control db/db mice developed similar body weight, steatosis, glycemia, and insulin levels after a glucose load; however, db/db-PI3Kγ-/- mice displayed improved insulin tolerance, higher levels of fasting serum insulin, and lower pancreatic insulin content. In db/db-PI3Kγ-/- mice, the number of adipose tissue macrophages was similar to control, but displayed reduced adipose tissue neutrophils and M2-polarized adipose tissue gene expression. Finally, db/db-PI3Kγ-/- mice have more pancreatic ß cells and larger islets than db/db mice, despite displaying similar islet inflammation. This phenotype could be explained by reduced ß-cell apoptosis in db/db-PI3Kγ-/- mice compared with control db/db mice. Our results are consistent with the concept that the beneficial action of PI3Kγ ablation in obesity-driven glucose intolerance is largely a result of its leptin-dependent effects on adiposity and, to a lesser extent, the promotion of adipose tissue neutrophil recruitment and M1 polarization of gene expression. Of importance, our data challenge the concept that PI3Kγ is required for insulin secretion in response to glucose in vivo, and indicate that PI3Kγ ablation protects db/db mice from ß-cell apoptosis and improves fasting insulin levels. We conclude that PI3Kγ inhibition in obese patients who are predisposed to ß-cell failure is not expected to produce adverse effects on insulin secretion.-Breasson, L., Sardi, C., Becattini, B., Zani, F., Solinas, G. PI3Kγ ablation does not promote diabetes in db/db mice, but improves insulin sensitivity and reduces pancreatic ß-cell apoptosis.


Asunto(s)
Diabetes Mellitus Experimental/etiología , Inhibidores de las Quinasa Fosfoinosítidos-3 , Tejido Adiposo/patología , Animales , Apoptosis , Glucemia/metabolismo , Fosfatidilinositol 3-Quinasa Clase Ib/deficiencia , Fosfatidilinositol 3-Quinasa Clase Ib/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Expresión Génica , Transportador de Glucosa de Tipo 2/genética , Insulina/sangre , Insulina/genética , Resistencia a la Insulina/genética , Resistencia a la Insulina/fisiología , Células Secretoras de Insulina/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Mutantes , Neutrófilos/patología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Obesidad/metabolismo , Obesidad/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo
7.
Breast Cancer Res ; 20(1): 104, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30180888

RESUMEN

BACKGROUND: Obesity is a strong predictor of poor prognosis in breast cancer, especially in postmenopausal women. In particular, tumors in obese patients tend to seed more distant metastases, although the biology behind this observation remains poorly understood. METHODS: To elucidate the effects of the obese microenvironment on metastatic spread, we ovariectomized C57BL/6 J female mice and fed them either a regular diet (RD) or a high-fat diet (HFD) to generate a postmenopausal diet-induced obesity model. We then studied tumor progression to metastasis of Py230 and EO771 grafts. We analyzed and phenotyped the RD and HFD tumors and the surrounding adipose tissue by flow cytometry, qPCR, immunohistochemistry (IHC) and western blot. The influence of the microenvironment on tumor cells was assessed by performing cross-transplantation of RD and HFD tumor cells into other RD and HFD mice. The results were analyzed using the unpaired Student t test when comparing two variables, otherwise we used one-way or two-way analysis of variance. The relationship between two variables was calculated using correlation coefficients. RESULTS: Our results show that tumors in obese mice grow faster, are also less vascularized, more hypoxic, of higher grade and enriched in CD11b+Ly6G+ neutrophils. Collectively, this favors induction of the epithelial-to-mesenchymal transition and progression to claudin-low breast cancer, a subtype of triple-negative breast cancer that is enriched in cancer stem cells. Interestingly, transplanting HFD-derived tumor cells in RD mice transfers enhanced tumor growth and lung metastasis formation. CONCLUSIONS: These data indicate that a pro-metastatic effect of obesity is acquired by the tumor cells in the primary tumor independently of the microenvironment of the secondary site. Effects of postmenopausal obesity on primary breast cancer tumoursᅟ.


Asunto(s)
Proliferación Celular , Neoplasias Mamarias Experimentales/metabolismo , Células Madre Neoplásicas/metabolismo , Obesidad/metabolismo , Tejido Adiposo/metabolismo , Animales , Línea Celular Tumoral , Dieta Alta en Grasa/efectos adversos , Progresión de la Enfermedad , Transición Epitelial-Mesenquimal , Femenino , Humanos , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Metástasis de la Neoplasia , Células Madre Neoplásicas/patología , Obesidad/etiología , Obesidad/genética , Ovariectomía
8.
FASEB J ; 30(9): 3124-32, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27230858

RESUMEN

Obesity and insulin resistance are associated with oxidative stress, which may be implicated in the progression of obesity-related diseases. The kinase JNK1 has emerged as a promising drug target for the treatment of obesity and type 2 diabetes. JNK1 is also a key mediator of the oxidative stress response, which can promote cell death or survival, depending on the magnitude and context of its activation. In this article, we describe a study in which the long-term effects of JNK1 inactivation on glucose homeostasis and oxidative stress in obese mice were investigated for the first time. Mice lacking JNK1 (JNK1(-/-)) were fed an obesogenic high-fat diet (HFD) for a long period. JNK1(-/-) mice fed an HFD for the long term had reduced expression of antioxidant genes in their skin, more skin oxidative damage, and increased epidermal thickness and inflammation compared with the effects in control wild-type mice. However, we also observed that the protection from obesity, adipose tissue inflammation, steatosis, and insulin resistance, conferred by JNK1 ablation, was sustained over a long period and was paralleled by decreased oxidative damage in fat and liver. We conclude that compounds targeting JNK1 activity in brain and adipose tissue, which do not accumulate in the skin, may be safer and most effective.-Becattini, B., Zani, F., Breasson, L., Sardi, C., D'Agostino, V. G., Choo, M.-K., Provenzani, A., Park, J. M., Solinas, G. JNK1 ablation in mice confers long-term metabolic protection from diet-induced obesity at the cost of moderate skin oxidative damage.


Asunto(s)
Grasas de la Dieta/efectos adversos , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Obesidad/inducido químicamente , Piel/patología , Envejecimiento , Animales , Grasas de la Dieta/administración & dosificación , Hígado Graso/inducido químicamente , Hígado Graso/metabolismo , Inflamación/metabolismo , Ratones , Ratones Noqueados , Proteína Quinasa 8 Activada por Mitógenos/genética , Estrés Oxidativo
9.
Proc Natl Acad Sci U S A ; 108(42): E854-63, 2011 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-21949398

RESUMEN

Obesity is associated with a chronic low-grade inflammation, and specific antiinflammatory interventions may be beneficial for the treatment of type 2 diabetes and other obesity-related diseases. The lipid kinase PI3Kγ is a central proinflammatory signal transducer that plays a major role in leukocyte chemotaxis, mast cell degranulation, and endothelial cell activation. It was also reported that PI3Kγ activity within hematopoietic cells plays an important role in obesity-induced inflammation and insulin resistance. Here, we show that protection from insulin resistance, metabolic inflammation, and fatty liver in mice lacking functional PI3Kγ is largely consequent to their leaner phenotype. We also show that this phenotype is largely based on decreased fat gain, despite normal caloric intake, consequent to increased energy expenditure. Furthermore, our data show that PI3Kγ action on diet-induced obesity depends on PI3Kγ activity within a nonhematopoietic compartment, where it promotes energetic efficiency for fat mass gain. We also show that metabolic modulation by PI3Kγ depends on its lipid kinase activity and might involve kinase-independent signaling. Thus, PI3Kγ is an unexpected but promising drug target for the treatment of obesity and its complications.


Asunto(s)
Tejido Adiposo Blanco/enzimología , Fosfatidilinositol 3-Quinasa Clase Ib/metabolismo , Resistencia a la Insulina/fisiología , Obesidad/enzimología , Termogénesis/fisiología , Animales , Fosfatidilinositol 3-Quinasa Clase Ib/deficiencia , Fosfatidilinositol 3-Quinasa Clase Ib/genética , Dieta Alta en Grasa/efectos adversos , Hígado Graso/enzimología , Hígado Graso/etiología , Hígado Graso/prevención & control , Inflamación/enzimología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Biológicos , Obesidad/etiología , Obesidad/prevención & control , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , Esterol Esterasa/metabolismo , Delgadez/enzimología
10.
Trends Endocrinol Metab ; 35(6): 466-477, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38861922

RESUMEN

The current paradigm for the insulin system focuses on the phenomenon of glucose-stimulated insulin secretion and insulin action on blood glucose control. This historical glucose-centric perspective may have introduced a conceptual bias in our understanding of insulin regulation. A body of evidence demonstrating that in vivo variations in blood glucose and insulin secretion can be largely dissociated motivated us to reconsider the fundamental design of the insulin system as a control system for metabolic homeostasis. Here, we propose that a minimal glucose-centric model does not accurately describe the physiological behavior of the insulin system and propose a new paradigm focusing on the effects of incretins, arguing that under fasting conditions, insulin is regulated by an adipoincretin effect.


Asunto(s)
Secreción de Insulina , Insulina , Humanos , Secreción de Insulina/fisiología , Insulina/metabolismo , Animales , Homeostasis/fisiología , Incretinas/metabolismo , Glucemia/metabolismo
11.
Cell Rep ; 43(5): 114132, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38656871

RESUMEN

Insulin-PI3K signaling controls insulin secretion. Understanding this feedback mechanism is crucial for comprehending how insulin functions. However, the role of adipocyte insulin-PI3K signaling in controlling insulin secretion in vivo remains unclear. Using adipocyte-specific PI3Kα knockout mice (PI3KαAdQ) and a panel of isoform-selective PI3K inhibitors, we show that PI3Kα and PI3Kß activities are functionally redundant in adipocyte insulin signaling. PI3Kß-selective inhibitors have no effect on adipocyte AKT phosphorylation in control mice but blunt it in adipocytes of PI3KαAdQ mice, demonstrating adipocyte-selective pharmacological PI3K inhibition in the latter. Acute adipocyte-selective PI3K inhibition increases serum free fatty acid (FFA) and potently induces insulin secretion. We name this phenomenon the adipoincretin effect. The adipoincretin effect operates in fasted mice with increasing FFA and decreasing glycemia, indicating that it is not primarily a control system for blood glucose. This feedback control system defines the rates of adipose tissue lipolysis and chiefly controls basal insulin secretion during fasting.


Asunto(s)
Adipocitos , Ayuno , Secreción de Insulina , Insulina , Ratones Noqueados , Fosfatidilinositol 3-Quinasas , Animales , Adipocitos/metabolismo , Insulina/metabolismo , Ratones , Ayuno/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Ácidos Grasos no Esterificados/metabolismo , Ácidos Grasos no Esterificados/sangre , Lipólisis , Masculino , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratones Endogámicos C57BL , Fosforilación , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología
12.
Cell Rep ; 43(4): 113960, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38507407

RESUMEN

GFRAL-expressing neurons actuate aversion and nausea, are targets for obesity treatment, and may mediate metformin effects by long-term GDF15-GFRAL agonism. Whether GFRAL+ neurons acutely regulate glucose and energy homeostasis is, however, underexplored. Here, we report that cell-specific activation of GFRAL+ neurons using a variety of techniques causes a torpor-like state, including hypothermia, the release of stress hormones, a shift from glucose to lipid oxidation, and impaired insulin sensitivity, glucose tolerance, and skeletal muscle glucose uptake but augmented glucose uptake in visceral fat. Metabolomic analysis of blood and transcriptomics of muscle and fat indicate alterations in ketogenesis, insulin signaling, adipose tissue differentiation and mitogenesis, and energy fluxes. Our findings indicate that acute GFRAL+ neuron activation induces endocrine and gluco- and thermoregulatory responses associated with nausea and torpor. While chronic activation of GFRAL signaling promotes weight loss in obesity, these results show that acute activation of GFRAL+ neurons causes hypothermia and hyperglycemia.


Asunto(s)
Glucosa , Hipotermia , Náusea , Neuronas , Letargo , Animales , Neuronas/metabolismo , Náusea/metabolismo , Hipotermia/metabolismo , Letargo/fisiología , Glucosa/metabolismo , Ratones , Masculino , Músculo Esquelético/metabolismo , Ratones Endogámicos C57BL , Insulina/metabolismo , Resistencia a la Insulina , Transducción de Señal
13.
Cell Metab ; 6(5): 386-97, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17983584

RESUMEN

Obesity-induced insulin resistance is a major factor in the etiology of type 2 diabetes, and Jun kinases (JNKs) are key negative regulators of insulin sensitivity in the obese state. Activation of JNKs (mainly JNK1) in insulin target cells results in phosphorylation of insulin receptor substrates (IRSs) at serine and threonine residues that inhibit insulin signaling. JNK1 activation is also required for accumulation of visceral fat. Here we used reciprocal adoptive transfer experiments to determine whether JNK1 in myeloid cells, such as macrophages, also contributes to insulin resistance and central adiposity. Our results show that deletion of Jnk1 in the nonhematopoietic compartment protects mice from high-fat diet (HFD)-induced insulin resistance, in part through decreased adiposity. By contrast, Jnk1 removal from hematopoietic cells has no effect on adiposity but confers protection against HFD-induced insulin resistance by decreasing obesity-induced inflammation.


Asunto(s)
Células Madre Hematopoyéticas/metabolismo , Inflamación/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Animales , Células Cultivadas , Citocinas/metabolismo , Grasas de la Dieta/administración & dosificación , Metabolismo Energético , Citometría de Flujo , Células Madre Hematopoyéticas/enzimología , Inflamación/inducido químicamente , Inflamación/fisiopatología , Resistencia a la Insulina , Interleucina-6/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Imagen por Resonancia Magnética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Biológicos , Obesidad/inducido químicamente , Obesidad/metabolismo , Obesidad/fisiopatología , Palmitatos/farmacología , Factor de Necrosis Tumoral alfa/metabolismo
14.
J Proteome Res ; 11(5): 2819-27, 2012 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-22424378

RESUMEN

Mass spectrometry-based neuropeptidomics is one of the most powerful approaches for identification of endogenous neuropeptides in the brain. Until now, however, the identification rate of neuropeptides in neuropeptidomics is relatively low and this severely restricts insights into their biological function. In the present study, we developed a high accuracy mass spectrometry-based approach to enhance the identification rates of neuropeptides from brain tissue. Our integrated approach used mixing on column for loading aqueous and organic extracts to reduce the loss of peptides during sample treatment and used charge state-directed tandem mass spectrometry to increase the number of peptides subjected to high mass accuracy fragmentation. This approach allowed 206 peptides on average to be identified from a single mouse brain sample that was prepared using 15 µL of solutions per 1 mg of tissue. In total, we identified more than 500 endogenous peptides from mouse hypothalamus and whole brain samples. Our identification rate is about two to four times higher compared to previously reported studies conducted on mice or other species. The hydrophobic peptides, such as neuropeptide Y and galanin, could be presented and detected with hydrophilic peptides in the same LC-MS run, allowing a high coverage of peptide characterization over an organism. This will advance our understanding of the roles of diverse peptides and their links in the brain functions.


Asunto(s)
Encéfalo/metabolismo , Espectrometría de Masas/métodos , Neuropéptido Y/aislamiento & purificación , Proteómica/métodos , Secuencia de Aminoácidos , Animales , Cromatografía Liquida , Interacciones Hidrofóbicas e Hidrofílicas , Masculino , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Neuropéptido Y/metabolismo , Fosforilación , Procesamiento Proteico-Postraduccional , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
15.
FASEB J ; 24(8): 2596-611, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20371626

RESUMEN

Inflammation is thought to underlie the pathogenesis of many chronic diseases. It is now established that obesity results in a state of chronic low-grade inflammation thought to contribute to several metabolic disorders, including insulin resistance and pancreatic islet dysfunction. The protein kinases JNK1 and IKKbeta have been found to serve as critical molecular links between obesity, metabolic inflammation, and disorders of glucose homeostasis. The precise mechanisms of these linkages are still being investigated. However, as we discuss here, JNK1 and IKKbeta are activated by almost all forms of metabolic stress that have been implicated in insulin resistance or islet dysfunction. Furthermore, both JNK1 and IKKbeta are critically involved in the promotion of diet-induced obesity, metabolic inflammation, insulin resistance, and beta-cell dysfunction. Understanding the molecular mechanisms by which JNK1 and IKKbeta mediate obesity-induced metabolic stress is likely to be of importance for the development of new treatments for a variety of obesity-associated diseases.


Asunto(s)
Quinasa I-kappa B/fisiología , Enfermedades Metabólicas/etiología , Proteína Quinasa 8 Activada por Mitógenos/fisiología , Obesidad/etiología , Humanos , Inflamación , Obesidad/complicaciones , Obesidad/patología
16.
Proc Natl Acad Sci U S A ; 105(43): 16809-13, 2008 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-18922779

RESUMEN

JNK is a stress-activated protein kinase that modulates pathways implicated in a variety of disease states. JNK-interacting protein-1 (JIP1) is a scaffolding protein that enhances JNK signaling by creating a proximity effect between JNK and upstream kinases. A minimal peptide region derived from JIP1 is able to inhibit JNK activity both in vitro and in cell. We report here a series of small molecules JIP1 mimics that function as substrate competitive inhibitors of JNK. One such compound, BI-78D3, dose-dependently inhibits the phosphorylation of JNK substrates both in vitro and in cell. In animal studies, BI-78D3 not only blocks JNK dependent Con A-induced liver damage but also restores insulin sensitivity in mouse models of type 2 diabetes. Our findings open the way for the development of protein kinase inhibitors targeting substrate specific docking sites, rather than the highly conserved ATP binding sites. In view of its favorable inhibition profile, selectivity, and ability to function in the cellular milieu and in vivo, BI-78D3 represents not only a JNK inhibitor, but also a promising stepping stone toward the development of an innovative class of therapeutics.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Dioxanos/farmacología , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Tiazoles/farmacología , Animales , Unión Competitiva , Enfermedad Hepática Inducida por Sustancias y Drogas , Diabetes Mellitus Experimental/tratamiento farmacológico , Resistencia a la Insulina , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Hepatopatías/prevención & control , Ratones , Imitación Molecular , Fosforilación/efectos de los fármacos , Unión Proteica , Transducción de Señal
17.
JHEP Rep ; 3(6): 100359, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34704005

RESUMEN

BACKGROUND & AIMS: Phosphatidylinositides-3 kinases (PI3Ks) are promising drug targets for cancer therapy, but blockage of PI3K-AKT signalling causes hyperglycaemia, hyperinsulinaemia, and liver damage in patients, and hepatocellular carcinoma (HCC) in mice. There are 4 PI3Ks: PI3Kα, PI3Kß, PI3Kδ, and PI3Kγ. The role of PI3Kγ in HCC is unknown. METHODS: We performed histopathological, metabolic, and molecular phenotyping of mice with genetic ablation of PI3Kγ using models where HCC was initiated by the carcinogen diethylnitrosamine (DEN) and promoted by dietary or genetic obesity (ob/ob). The role of PI3Kγ in leucocytes was investigated in mice lacking PI3Kγ in haematopoietic and endothelial cells. RESULTS: Loss of PI3Kγ had no effects on the development of DEN-induced HCC in lean mice. However, in mice injected with DEN and placed on an obesogenic diet, PI3Kγ ablation reduced tumour growth, which was associated with reduced insulinaemia, steatosis, and expression of inflammatory cytokines. ob/ob mice lacking PI3Kγ, and mice with diet-induced obesity lacking PI3Kγ in leucocytes and endothelial cells did not display improved insulin sensitivity, steatosis, metabolic inflammation, or reduced tumour growth. However, these mice showed a reduced number of tumours, reduced liver infiltration by neutrophils, and reduced hepatocyte proliferation acutely induced by DEN. CONCLUSIONS: Loss of PI3Kγ reduces tumour development in obesity-promoted HCC through multiple cell types and mechanisms that include improved insulinaemia, steatosis, and metabolic inflammation as well as the regulation of acute neutrophil infiltration and compensatory hepatocyte proliferation. PI3Kγ-selective inhibition may represent a novel therapeutic approach to reduce HCC initiation and slow HCC progression. LAY SUMMARY: Class-1 phosphatidylinositides-3 kinases (PI3Ks) are critical targets in cancer therapy, but complete inhibition of all isoforms causes liver damage, hyperglycaemia, and insulinaemia. Here we show that selective ablation of the PI3Kγ isoform dampens tumour initiation and growth in a mouse model of carcinogen-initiated and obesity-promoted hepatocellular carcinoma (HCC). The effect of PI3Kγ ablation on reduced tumour growth was explained by reduced tumour cell proliferation, which was associated with reduced insulin levels, liver lipids, and reduced expression of tumour-promoting cytokines. PI3Kγ ablation in leucocytes of obese mice had no effects on tumour size. However, it reduced tumour number in association with reduced carcinogen-induced neutrophil infiltration and hepatocyte proliferation in livers of obese mice. Inhibition of PI3Kγ may thus reduce HCC initiation and growth in obese subjects by a mechanism involving reduced metabolic stress and insulinaemia and reduced carcinogen-induced neutrophil infiltration to the fatty liver.

18.
FASEB Bioadv ; 3(2): 94-107, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33615154

RESUMEN

The cJun N-terminal Kinases (JNK) emerged as a major link between obesity and insulin resistance, but their role in the loss of pancreatic ß-cell mass and function driving the progression from insulin resistance to type-2 diabetes and in the complications of diabetes was not investigated to the same extent. Furthermore, it was shown that pan-JNK inhibition exacerbates kidney damage in the db/db model of obesity-driven diabetes. Here we investigate the role of JNK1 in the db/db model of obesity-driven type-2 diabetes. Mice with systemic ablation of JNK1 (JNK1-/-) were backcrossed for more than 10 generations in db/+ C57BL/KS mice to generate db/db-JNK1-/- mice and db/db control mice. To define the role of JNK1 in the loss of ß-cell mass and function occurring during obesity-driven diabetes we performed comprehensive metabolic phenotyping, evaluated steatosis and metabolic inflammation, performed morphometric and cellular composition analysis of pancreatic islets, and evaluated kidney function in db/db-JNK1-/- mice and db/db controls. db/db-JNK1-/- mice and db/db control mice developed insulin resistance, fatty liver, and metabolic inflammation to a similar extent. However, db/db-JNK1-/- mice displayed better glucose tolerance and improved insulin levels during glucose tolerance test, higher pancreatic insulin content, and larger pancreatic islets with more ß-cells than db/db mice. Finally, albuminuria, kidney histopathology, kidney inflammation and oxidative stress in db/db-JNK1-/- mice and in db/db mice were similar. Our data indicate that selective JNK1 ablation improves glucose tolerance in db/db mice by reducing the loss of functional ß-cells occurring in the db/db mouse model of obesity-driven diabetes, without significantly affecting metabolic inflammation, steatosis, and insulin sensitivity. Furthermore, we have found that, differently from what previously reported for pan-JNK inhibitors, selective JNK1 ablation does not exacerbate kidney dysfunction in db/db mice. We conclude that selective JNK1 inactivation may have a superior therapeutic index than pan-JNK inhibition in obesity-driven diabetes.

19.
EBioMedicine ; 65: 103264, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33712379

RESUMEN

BACKGROUND: It is commonly accepted that in obesity free fatty acids (FFA) cause insulin resistance and hyperglycemia, which drives hyperinsulinemia. However, hyperinsulinemia is observed in subjects with normoglycaemia and thus the paradigm above should be reevaluated. METHODS: We describe two studies: MD-Lipolysis, a case control study investigating the mechanisms of obesity-driven insulin resistance by a systemic metabolic analysis, measurements of adipose tissue lipolysis by microdialysis, and adipose tissue genomics; and POEM, a cohort study used for validating differences in circulating metabolites in relation to adiposity and insulin resistance observed in the MD-Lipolysis study. FINDINGS: In insulin-resistant obese with normal glycaemia from the MD-Lipolysis study, hyperinsulinemia was associated with elevated FFA. Lipolysis, assessed by glycerol release per adipose tissue mass or adipocyte surface, was similar between obese and lean individuals. Adipose tissue from obese subjects showed reduced expression of genes mediating catecholamine-driven lipolysis, lipid storage, and increased expression of genes driving hyperplastic growth. In the POEM study, FFA levels were specifically elevated in obese-overweight subjects with normal fasting glucose and high fasting levels of insulin and C-peptide. INTERPRETATION: In obese subjects with normal glycaemia elevated circulating levels of FFA at fasting are the major metabolic derangement candidate driving fasting hyperinsulinemia. Elevated FFA in obese with normal glycaemia were better explained by increased fat mass rather than by adipose tissue insulin resistance. These results support the idea that hyperinsulinemia and insulin resistance may develop as part of a homeostatic adaptive response to increased adiposity and FFA. FUNDING: Swedish-Research-Council (2016-02660); Diabetesfonden (DIA2017-250; DIA2018-384; DIA2020-564); Novo-Nordisk-Foundation (NNF17OC0027458; NNF19OC0057174); Cancerfonden (CAN2017/472; 200840PjF); Swedish-ALF-agreement (2018-74560).


Asunto(s)
Ácidos Grasos no Esterificados/metabolismo , Hiperinsulinismo/patología , Obesidad/patología , Tejido Adiposo/metabolismo , Estudios de Casos y Controles , Estudios de Cohortes , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/patología , Ácidos Grasos no Esterificados/sangre , Femenino , Regulación de la Expresión Génica , Glicerol/sangre , Glicerol/metabolismo , Humanos , Hiperinsulinismo/complicaciones , Insulina/sangre , Resistencia a la Insulina , Lipólisis , Masculino , Persona de Mediana Edad , Obesidad/complicaciones , Análisis de Componente Principal
20.
Sci Rep ; 10(1): 12031, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32694512

RESUMEN

Hepatoma cell lines are widely used to model the hepatocyte for insulin signaling and fatty liver disease. However, a direct comparison of insulin action in primary hepatocytes and in hepatoma cell lines is needed to validate this model and to better understand liver cancer. Here we have investigated insulin signaling, gluconeogenic gene expression, glucose production, and fatty acid synthase abundance in primary hepatocytes and in HepG2, Hepa 1-6, and McARH7777 hepatoma cell lines. Differences in the electrophoretic profiles of protein extracts from human and mouse primary hepatocytes and the hepatoma cells lines are shown. Compared to primary hepatocytes, hepatoma cells showed high basal phosphorylation of AKT at Thr 308 and constitutively activated RAS-MAPK signaling, which were resistant to the dominant negative Ras mutant H-Ras17N. Hepatoma cell lines also showed defective expression of gluconeogenic enzymes, insulin unresponsive GSK phosphorylation, and marginal glucose production. Hepatoma cells also showed lower protein levels of fatty acid synthase and a largely distinct protein electrophoresis profile from hepatocytes but similar between different hepatoma lines. We conclude that hepatoma cell lines do not accurately model the hepatocyte for insulin action but may be valuable tools to investigate the proteomic changes conferring to hepatocellular carcinoma its peculiar metabolisms.


Asunto(s)
Glucosa/metabolismo , Hepatocitos/metabolismo , Insulina/metabolismo , Fenotipo , Animales , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Humanos , Neoplasias Hepáticas/metabolismo , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Proteínas ras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA