Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Molecules ; 29(10)2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38792252

RESUMEN

Sorption technologies are essential for various industries because they provide product quality and process efficiency. New encapsulated microspherical composite sorbents have been developed for resource-saving contact drying of thermolabile materials, particularly grain and seeds of crops. Magnesium sulfate, known for its high water capacity, fast sorption kinetics, and easy regeneration, was used as an active moisture sorption component. To localize the active component, porous carriers with an accessible internal volume and a perforated glass-crystalline shell were used. These carriers were created by acid etching of cenospheres with different structures isolated from fly ash. The amount of magnesium sulfate included in the internal volume of the microspherical carrier was 38 wt % for cenospheres with ring structures and 26 wt % for cenospheres with network structures. Studies of the moisture sorption properties of composite sorbents on wheat seeds have shown that after 4 h of contact drying the moisture content of wheat decreases from 22.5 to 14.9-15.5 wt %. Wheat seed germination after sorption drying was 95 ± 2%. The advantage of composite sorbents is the encapsulation of the desiccant in the inner volume of perforated cenospheres, which prevents its entrainment and contamination and provides easy separation and stable sorption capacity in several cycles.

2.
Int J Mol Sci ; 23(20)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36293295

RESUMEN

We report on the novel heterometallic quaternary sulfides SrLnCuS3 (Ln = La, Nd, Tm), obtained as both single crystals and powdered samples. The structures of both the single crystal and powdered samples of SrLaCuS3 and SrNdCuS3 belong to the orthorhombic space group Pnma but are of different structural types, while both samples of SrTmCuS3 crystallize in the orthorhombic space group Cmcm with the structural type KZrCuS3. Three-dimensional crystal structures of SrLaCuS3 and SrNdCuS3 are formed from the (Sr/Ln)S7 capped trigonal prisms and CuS4 tetrahedra. In SrLaCuS3, alternating 2D layers are stacked, while the main backbone of the structure of SrNdCuS3 is a polymeric 3D framework [(Sr/Ln)S7]n, strengthened by 1D polymeric chains (CuS4)n with 1D channels, filled by the other Sr2+/Ln3+ cations, which, in turn, form 1D dimeric ribbons. A 3D crystal structure of SrTmCuS3 is constructed from the SrS6 trigonal prisms, TmS6 octahedra and CuS4 tetrahedra. The latter two polyhedra are packed together into 2D layers, which are separated by 1D chains (SrS6)n and 1D free channels. In both crystal structures of SrLaCuS3 obtained in this work, the crystallographic positions of strontium and lanthanum were partially mixed, while only in the structure of SrNdCuS3, solved from the powder X-ray diffraction data, were the crystallographic positions of strontium and neodymium partially mixed. Band gaps of SrLnCuS3 (Ln = La, Nd, Tm) were found to be 1.86, 1.94 and 2.57 eV, respectively. Both SrNdCuS3 and SrTmCuS3 were found to be paramagnetic at 20-300 K, with the experimental magnetic characteristics being in good agreement with the corresponding calculated parameters.


Asunto(s)
Elementos de la Serie de los Lantanoides , Elementos de la Serie de los Lantanoides/química , Cristalografía por Rayos X , Sulfuros , Neodimio , Lantano , Polvos , Cationes/química , Estroncio
3.
Int J Mol Sci ; 23(3)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35163428

RESUMEN

In this work, we report on the synthesis, in-depth crystal structure studies as well as optical and magnetic properties of newly synthesized heterometallic quaternary selenides of the Eu+2Ln+3Cu+1Se3 composition. Crystal structures of the obtained compounds were refined by the derivative difference minimization (DDM) method from the powder X-ray diffraction data. The structures are found to belong to orthorhombic space groups Pnma (structure type Ba2MnS3 for EuLaCuSe3 and structure type Eu2CuS3 for EuLnCuSe3, where Ln = Sm, Gd, Tb, Dy, Ho and Y) and Cmcm (structure type KZrCuS3 for EuLnCuSe3, where Ln = Tm, Yb and Lu). Space groups Pnma and Cmcm were delimited based on the tolerance factor t', and vibrational spectroscopy additionally confirmed the formation of three structural types. With a decrease in the ionic radius of Ln3+ in the reported structures, the distortion of the (LnCuSe3) layers decreases, and a gradual formation of the more symmetric structure occurs in the sequence Ba2MnS3 → Eu2CuS3 → KZrCuS3. According to magnetic studies, compounds EuLnCuSe3 (Ln = Tb, Dy, Ho and Tm) each exhibit ferrimagnetic properties with transition temperatures ranging from 4.7 to 6.3 K. A negative magnetization effect is observed for compound EuHoCuSe3 at temperatures below 4.8 K. The magnetic properties of the discussed selenides and isostructural sulfides were compared. The direct optical band gaps for EuLnCuSe3, subtracted from the corresponding diffuse reflectance spectra, were found to be 1.87-2.09 eV. Deviation between experimental and calculated band gaps is ascribed to lower d states of Eu2+ in the crystal field of EuLnCuSe3, while anomalous narrowing of the band gap of EuYbCuSe3 is explained by the low-lying charge-transfer state. Ab initio calculations of the crystal structures, elastic properties and phonon spectra of the reported compounds were performed.


Asunto(s)
Elementos de la Serie de los Lantanoides/química , Compuestos Organometálicos/síntesis química , Selenio/química , Cristalografía por Rayos X , Modelos Moleculares , Estructura Molecular , Compuestos Organometálicos/química , Difracción de Polvo , Difracción de Rayos X
4.
Molecules ; 25(6)2020 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-32178469

RESUMEN

The structural, magnetic, electrical, and dilatation properties of the rare-earth NdCoO3 and SmCoO3 cobaltites were investigated. Their comparative analysis was carried out and the effect of multiplicity fluctuations on physical properties of the studied cobaltites was considered. Correlations between the spin state change of cobalt ions and the temperature dependence anomalies of the lattice parameters, magnetic susceptibility, volume thermal expansion coefficient, and electrical resistance have been revealed. A comparison of the results with well-studied GdCoO3 allows one to single out both the general tendencies inherent in all rare-earth cobaltites taking into account the lanthanide contraction and peculiar properties of the samples containing Nd and Sm.


Asunto(s)
Cobalto/química , Estructura Molecular , Neodimio/química , Óxidos/química , Samario/química , Cristalografía por Rayos X , Fenómenos Electromagnéticos , Iones/química , Magnetismo
5.
Langmuir ; 30(1): 297-307, 2014 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-24359449

RESUMEN

An ordered microporous carbon material was prepared by the nanocasting process using the EMC-2 zeolite (EMT structure type) as a hard template. X-ray diffraction (XRD) and transmission electron microscopy (TEM) revealed long-range ordering in the material that resulted from the negative replication of the host template. The carbon porous network replicating the zeolite structure was modeled by overlapped spherical voids with diameters determined from the XRD pattern that displayed up to six distinct peaks. The surface delimiting the 3D interconnected porosity of the solid has a complex morphology. The pore size distribution calculated from the XRD-derived structural model is characterized by a maximum at 1.04 nm related to the long-range-ordered microporous network. Complementary studies by immersion calorimetry revealed that most of the porosity was characterized by a size above 1.5 nm. These porous features were compared to data resulting from classical analysis (DR, DFT, BET, etc.) of the N2 (77 K) and CO2 (low and high pressure, 273 K) physisorption isotherms. The limitations of these approaches are discussed in light of the pore size distribution consistently determined by XRD and immersion calorimetry measurements.

6.
Chem Soc Rev ; 42(9): 3708-20, 2013 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-23038418

RESUMEN

Ordered mesostructured mesoporous materials, combining nano-organization with atomic disorder, are both attractive and challenging objects of investigation by X-ray and neutron diffraction. The development of diffraction mesostructure analysis methods and their applications in studies on structural characterization, formation processes and physisorption phenomena in these advanced materials are summarized in this tutorial review. The focus here is on the techniques that allow extracting mesostructure parameters and peculiarities of density distribution in the materials from the Bragg reflection positions and intensities. The investigations of mesoporous silicates, their nonsilica replicas and composites are discussed including the combined use of diffraction with electron microscopy and physisorption. The small-angle scattering curve analysis, which is also an important methodology in the field, is out of the scope of this review.

7.
Materials (Basel) ; 16(21)2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37959509

RESUMEN

Membrane technology is a promising method for gas separation. Due to its low energy consumption, environmental safety, and ease of operation, membrane separation has a distinct advantage over the cryogenic distillation conventionally used to capture light inert gases. For efficient gas recovery and purification, membrane materials should be highly selective, highly permeable, thermally stable, and low-cost. Currently, many studies are focused on the development of high-tech materials with specific properties using industrial waste. One of the promising waste products that can be recycled into membrane materials with improved microstructure is cenospheres-hollow aluminosilicate spherical particles that are formed in fly ash from coal combustion during power generation. For this purpose, based on narrow fractions of fly ash cenospheres containing single-ring and network structure globules, silicate glass/mullite composites were prepared, characterized, and tested for helium-neon mixture separation. The results indicate that the fragmented structure of the cenosphere shells with areas enriched in SiO2 without modifier oxides, formed due to the crystallization of defective phases of mullite, quartz, cristobalite, and anorthite, significantly facilitates the gas transport process. The permeability coefficients He and Ne exceed similar values for silicate glasses; the selectivity corresponds to a high level even at a high temperature: αHe/Ne-22 and 174 at 280 °C.

8.
Nanomaterials (Basel) ; 13(22)2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37999279

RESUMEN

The effect of the aluminum layer on the kinetics and mechanism of aluminum-induced crystallization (AIC) of amorphous silicon (a-Si) in (Al/a-Si)n multilayered films was studied using a complex of in situ methods (simultaneous thermal analysis, transmission electron microscopy, electron diffraction, and four-point probe resistance measurement) and ex situ methods (X-ray diffraction and optical microscopy). An increase in the thickness of the aluminum layer from 10 to 80 nm was found to result in a decrease in the value of the apparent activation energy Ea of silicon crystallization from 137 to 117 kJ/mol (as estimated by the Kissinger method) as well as an increase in the crystallization heat from 12.3 to 16.0 kJ/(mol Si). The detailed kinetic analysis showed that the change in the thickness of an individual Al layer could lead to a qualitative change in the mechanism of aluminum-induced silicon crystallization: with the thickness of Al ≤ 20 nm. The process followed two parallel routes described by the n-th order reaction equation with autocatalysis (Cn-X) and the Avrami-Erofeev equation (An): with an increase in the thickness of Al ≥ 40 nm, the process occurred in two consecutive steps. The first one can be described by the n-th order reaction equation with autocatalysis (Cn-X), and the second one can be described by the n-th order reaction equation (Fn). The change in the mechanism of amorphous silicon crystallization was assumed to be due to the influence of the degree of Al defects at the initial state on the kinetics of the crystallization process.

9.
Acta Crystallogr B ; 68(Pt 1): 89-90, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22267562

RESUMEN

A revision is presented of the restrained Rietveld analysis of the crystal structure of magnesium perchlorate tetrahydrate, Mg(ClO(4))(2)·4H(2)O, recently published by Robertson & Bish [(2010), Acta Cryst. B 66, 579-584]. The actual symmetry of the material is shown to be C2/m. The corrected structure model is refined by the derivative difference method [Solovyov (2004). J. Appl. Cryst. 37, 743-749], anisotropically for all non-H atoms and isotropically for two independent H atoms without restraints.

10.
Nanomaterials (Basel) ; 12(3)2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35159723

RESUMEN

This work is devoted to the study of magnetic Fe3O4 nanoparticles doubly coated with carbon. First, Fe3O4@C nanoparticles were synthesized by thermal decomposition. Then these synthesized nanoparticles, 20-30 nm in size were processed in a solution of glucose at 200 °C during 12 h, which led to an unexpected phenomenon-the nanoparticles self-assembled into large conglomerates of a regular shape of about 300 nm in size. The morphology and features of the magnetic properties of the obtained hybrid nanoparticles were characterized by transmission electron microscopy, differential thermo-gravimetric analysis, vibrating sample magnetometer, magnetic circular dichroism and Mössbauer spectroscopy. It was shown that the magnetic core of Fe3O4@C nanoparticles was nano-crystalline, corresponding to the Fe3O4 phase. The Fe3O4@C@C nanoparticles presumably contain Fe3O4 phase (80%) with admixture of maghemite (20%), the thickness of the carbon shell in the first case was of about 2-4 nm. The formation of very large nanoparticle conglomerates with a linear size up to 300 nm and of the same regular shape is a remarkable peculiarity of the Fe3O4@C@C nanoparticles. Adsorption of organic dyes from water by the studied nanoparticles was also studied. The best candidates for the removal of dyes were Fe3O4@C@C nanoparticles. The kinetic data showed that the adsorption processes were associated with the pseudo-second order mechanism for cationic dye methylene blue (MB) and anionic dye Congo red (CR). The equilibrium data were more consistent with the Langmuir isotherm and were perfectly described by the Langmuir-Freundlich model.

11.
Langmuir ; 27(2): 720-6, 2011 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-21155556

RESUMEN

Colloidal silver has gained wide acceptance as an antimicrobial agent, and various substrates coated with nanosilver such as fabrics, plastics, and metal have been shown to develop antimicrobial properties. Here, a simple method to develop coating of colloidal silver on paper using ultrasonic radiation is presented, and the coatings are characterized using X-ray diffraction (XRD), high resolution scanning electron microscope (HRSEM), and thermogravimetry (TGA) measurements. Depending on the variables such as precursor concentrations and ultrasonication time, uniform coatings ranging from 90 to 150 nm in thickness have been achieved. Focused ion beam (FIB) cross section imaging measurements revealed that silver nanoparticles penetrated the paper surface to a depth of more than 1 µm, resulting in highly stable coatings. The coated paper demonstrated antibacterial activity against E. coli and S. aureus, suggesting its potential application as a food packing material for longer shelf life.


Asunto(s)
Antiinfecciosos/química , Nanopartículas del Metal/química , Plata/química , Antiinfecciosos/farmacología , Escherichia coli/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Papel , Tamaño de la Partícula , Staphylococcus aureus/efectos de los fármacos , Propiedades de Superficie , Ultrasonido , Difracción de Rayos X
12.
Langmuir ; 27(18): 11697-703, 2011 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-21846095

RESUMEN

The reduction of chlorocomplexes of gold(III) from muriatic solutions by nanocrystal powders of palladium and platinum at 110 and 130 °C under hydrothermal conditions and the action of microwave irradiation has been investigated. The structure and composition of the solid phase have been characterized by transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and chemical methods. Bimetallic particles with a core-shell structure have been revealed. The obtained particles are established to have a core of the metal reductant covered with a substitutional solid (Au, Pd) solution in case of palladium, and isolated by a gold layer in the case of platinum. The main reason for such a difference is the ratio between the rates of aggregation and reduction. It has been shown by the example of the Au-Pd system that the use of microwave irradiation allows us not only to accelerate the synthesis of particles but also to obtain more homogeneous materials in comparison with conventional heating.

13.
ACS Omega ; 6(30): 20076-20085, 2021 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-34368592

RESUMEN

Characterization of magnetic particulate matter (PM) in coal fly ashes is critical to assessing the health risks associated with industrial coal combustion and for future applications of fine fractions that will minimize solid waste pollution. In this study, magnetic narrow fractions of fine ferrospheres related to environmentally hazardous PM2.5, PM2.5-10, and PM10 were for the first time separated from fly ash produced during combustion of Ekibastuz coal. It was determined that the average diameter of globules in narrow fractions is 1, 2, 3, and 7 µm. The major components of chemical composition are Fe2O3 (57-60) wt %, SiO2 (25-28 wt %), and Al2O3 (10-12 wt %). The phase composition is represented by crystalline phases, including ferrospinel, α-Fe2O3, ε-Fe2O3, mullite, and quartz, as well as the amorphous glass phase. Mössbauer spectroscopy and magnetic measurements confirmed the formation of nanoscale particles of ε-Fe2O3. Stabilization of the ε-Fe2O3 metastable phase, with quite ideal distribution of iron cations, occurs in the glass matrix due to the rapid cooling of fine globules during their formation from mineral components of coal.

14.
Langmuir ; 26(8): 5976-84, 2010 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-20337410

RESUMEN

This work represents a new method to synthesis of ZnO and/or Zn nanoparticles by means of microwave plasma whose electrons are the reducing agents. Glass quadratic slides sized 2.5 x 2.5 cm were coated by ZnO and/or Zn particles whose sizes ranged from a few micrometers to approximately 20 nm. The size of the particles can be controlled by the type of the precursor and its concentration. In the current paper, the mechanism of the reactions of ZnO and/or Zn formation was proposed. Longer plasma irradiation and lower precursor concentration favor the fabrication of metallic Zn nanoparticles. The nature of the precursor's ion (acetate, nitrate, or chloride) is also of importance in determining the composition of the product. The glass slides coated by ZnO and/or Zn nanoparticles were characterized by HR-SEM, HR-TEM, AFM, XRD, ESR, contact angle and diffuse reflectance spectroscopy (DRS).

15.
Acta Crystallogr C Struct Chem ; 75(Pt 5): 584-588, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31062716

RESUMEN

The crystal structures of the complex sulfides SrLnCuS3 (Ln = Sm, Gd, Er and Lu) have been determined and refined using powder X-ray diffraction. The crystals are found to be orthorhombic, with the structure type changing consecutively in the order BaLaCuS3 → Eu2CuS3 → KZrCuS3 as the Ln3+ ionic radius decreases in the order La/Pr → Sm/Gd → Er/Lu. Variations of the structure parameters along the series of compounds studied are analyzed, and an effect caused by crystallochemical contraction on the stabilization of the respective structure types is demonstrated.

16.
Chem Commun (Camb) ; (21): 2242-4, 2006 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-16718316

RESUMEN

A method to determine the volumes of ordered mesopores and complementary small pores in polymer-templated ordered mesoporous silicas and organosilicas is proposed on the basis of the existing relation between the pore width and unit cell values obtained by the XRD structure modeling and the adsorption pore volume.

17.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 72(Pt 5): 738-743, 2016 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-27698315

RESUMEN

The structure of benzene:ethane co-crystal at 90 K is refined with anisotropic displacement parameters without geometric restraints from high-resolution synchrotron X-ray powder diffraction (XRPD) data using the derivative difference method (DDM) with properly chosen weighting schemes. The average C-C bond precision achieved is 0.005 Šand the H-atom positions in ethane are refined independently. A new DDM weighting scheme is introduced that compensates for big distortions of experimental data. The results are compared with density functional theory (DFT) calculations reported by Maynard-Casely et al. [(2016). IUCrJ, 3, 192-199] where a rigid-body Rietveld refinement was also applied to the same dataset due to severe distortions of the powder pattern attributable to experimental peculiarities. For the crystal structure of 2-aminopyridinium fumarate-fumaric acid formerly refined applying 77 geometric restraints by Dong et al. [(2013). Acta Cryst. C69, 896-900], an unrestrained DDM refinement using the same XRPD pattern surprisingly gave two times narrower dispersion of interatomic distances.

18.
J Phys Chem B ; 109(8): 3233-7, 2005 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-16851346

RESUMEN

The structure of MCM-48 mesoporous silicate materials has been fully characterized from X-ray diffraction data by applying recently developed methods of mesostructure analysis and full-profile refinement. The pore wall thickness of both as-made and calcined MCM-48 was determined with high precision to be 8.0(1) Angstrom. No regular variations of the wall thickness were detected, but its density was found to be ca. 10% higher in the low-curvature regions. The surfactant density in the pores was assessed around 0.6-0.7 g/cm(3) and was found to have a distinct minimum in the pore center similar to that detected previously in MCM-41. A new extended model function of the density distribution in MCM-48 is proposed on the basis of the structural features that were revealed.

19.
Chem Commun (Camb) ; (13): 1536-7, 2004 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-15216368

RESUMEN

Exceptional control of the phase behavior of highly ordered large pore mesostructured silica (with the choice of Fm3m, Im3m or p6mm symmetry) is achieved using a triblock copolymer (EO(106)PO(70)EO(106)) and butanol at low acid concentrations.

20.
Artículo en Inglés | MEDLINE | ID: mdl-24675609

RESUMEN

The crystal structure model of decafluorocyclohex-1-ene at 4.2 K derived from simulated powder diffraction data and solid-state energy minimization [Smrcok et al. (2013). Acta Cryst. B69, 395-404] is found to be incomplete. In this study it is completed by an additional alternative molecular orientation revealed from the difference density analysis and direct space search. The structure is refined by the derivative difference method in the rigid-body approximation leading to perfect agreement between observed and calculated neutron powder patterns.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA