Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Phys Condens Matter ; 32(22): 224001, 2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-31978922

RESUMEN

A rheological probe that can measure mechanical properties of biological milieu at well-defined locations with high spatial resolution, on a time scale faster than most biological processes, can further improve our understanding of how living systems operate and behave. Here, we demonstrate nanorobots actively driven in realistic ex vivo biological systems for fast mechanical measurements with high spatial accuracy. In the various demonstrations of magnetic nanobots as mechanical probes, we report the first direct observation of the internalization of probes by a living cell, the accurate measurement of the 'fluid phase' cytoplasmic viscosity of ~200 cP for a HeLa cell, demonstration of intracellular measurements in cells derived from human patients; all of which establish the strength of this novel technique for measurements in both intra- and extracellular environments.


Asunto(s)
Espacio Extracelular/metabolismo , Espacio Intracelular/metabolismo , Nanotubos , Células HeLa , Humanos , Fenómenos Mecánicos , Reología , Viscosidad
2.
Adv Mater ; 30(22): e1800429, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29635828

RESUMEN

Spatiotemporally controlled active manipulation of external micro-/nanoprobes inside living cells can lead to development of innovative biomedical technologies and inspire fundamental studies of various biophysical phenomena. Examples include gene silencing applications, real-time mechanical mapping of the intracellular environment, studying cellular response to local stress, and many more. Here, for the first time, cellular internalization and subsequent intracellular manipulation of a system of helical nanomotors driven by small rotating magnetic fields with no adverse effect on the cellular viability are demonstrated. This remote method of fuelling and guidance limits the effect of mechanical transduction to cells containing external probes, in contrast to ultrasonically or chemically powered techniques that perturb the entire experimental volume. The investigation comprises three cell types, containing both cancerous and noncancerous types, and is aimed toward analyzing and engineering the motion of helical propellers through the crowded intracellular space. The studies provide evidence for the strong anisotropy, heterogeneity, and spatiotemporal variability of the cellular interior, and confirm the suitability of helical magnetic nanoprobes as a promising tool for future cellular investigations and applications.


Asunto(s)
Magnetismo , Anisotropía , Campos Magnéticos , Movimiento (Física) , Nanotecnología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA