Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(11): e2219523120, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36893269

RESUMEN

The continuous evolution of SARS-CoV-2 variants complicates efforts to combat the ongoing pandemic, underscoring the need for a dynamic platform for the rapid development of pan-viral variant therapeutics. Oligonucleotide therapeutics are enhancing the treatment of numerous diseases with unprecedented potency, duration of effect, and safety. Through the systematic screening of hundreds of oligonucleotide sequences, we identified fully chemically stabilized siRNAs and ASOs that target regions of the SARS-CoV-2 genome conserved in all variants of concern, including delta and omicron. We successively evaluated candidates in cellular reporter assays, followed by viral inhibition in cell culture, with eventual testing of leads for in vivo antiviral activity in the lung. Previous attempts to deliver therapeutic oligonucleotides to the lung have met with only modest success. Here, we report the development of a platform for identifying and generating potent, chemically modified multimeric siRNAs bioavailable in the lung after local intranasal and intratracheal delivery. The optimized divalent siRNAs showed robust antiviral activity in human cells and mouse models of SARS-CoV-2 infection and represent a new paradigm for antiviral therapeutic development for current and future pandemics.


Asunto(s)
COVID-19 , Humanos , Animales , Ratones , ARN Interferente Pequeño/genética , COVID-19/terapia , SARS-CoV-2/genética , Antivirales/farmacología , Antivirales/uso terapéutico , Oligonucleótidos , Pulmón
2.
J Virol ; 96(6): e0198221, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35045267

RESUMEN

Many oseltamivir resistance mutations exhibit fitness defects in the absence of drug pressure that hinders their propagation in hosts. Secondary permissive mutations can rescue fitness defects and facilitate the segregation of resistance mutations in viral populations. Previous studies have identified a panel of permissive or compensatory mutations in neuraminidase (NA) that restore the growth defect of the predominant oseltamivir resistance mutation (H275Y) in H1N1 influenza A virus. In prior work, we identified a hyperactive mutation (Y276F) that increased NA activity by approximately 70%. While Y276F had not been previously identified as a permissive mutation, we hypothesized that Y276F may counteract the defects caused by H275Y by buffering its reduced NA expression and enzyme activity. In this study, we measured the relative fitness, NA activity, and surface expression, as well as sensitivity to oseltamivir, for several oseltamivir resistance mutations, including H275Y in the wild-type and Y276F genetic background. Our results demonstrate that Y276F selectively rescues the fitness defect of H275Y by restoring its NA surface expression and enzymatic activity, elucidating the local compensatory structural impacts of Y276F on the adjacent H275Y. IMPORTANCE The potential for influenza A virus (IAV) to cause pandemics makes understanding evolutionary mechanisms that impact drug resistance critical for developing surveillance and treatment strategies. Oseltamivir is the most widely used therapeutic strategy to treat IAV infections, but mutations in IAV can lead to drug resistance. The main oseltamivir resistance mutation, H275Y, occurs in the neuraminidase (NA) protein of IAV and reduces drug binding as well as NA function. Here, we identified a new helper mutation, Y276F, that can rescue the functional defects of H275Y and contribute to the evolution of drug resistance in IAV.


Asunto(s)
Farmacorresistencia Viral , Subtipo H1N1 del Virus de la Influenza A , Oseltamivir , Proteínas Virales , Antivirales/farmacología , Antivirales/uso terapéutico , Farmacorresistencia Viral/genética , Humanos , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/enzimología , Subtipo H1N1 del Virus de la Influenza A/genética , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/enzimología , Virus de la Influenza A/genética , Gripe Humana/tratamiento farmacológico , Mutación , Neuraminidasa/genética , Neuraminidasa/metabolismo , Oseltamivir/farmacología , Proteínas Virales/genética , Proteínas Virales/metabolismo
4.
J Virol ; 93(2)2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30381484

RESUMEN

Influenza A virus (IAV), a major cause of human morbidity and mortality, continuously evolves in response to selective pressures. Stem-directed, broadly neutralizing antibodies (sBnAbs) targeting the influenza virus hemagglutinin (HA) are a promising therapeutic strategy, but neutralization escape mutants can develop. We used an integrated approach combining viral passaging, deep sequencing, and protein structural analyses to define escape mutations and mechanisms of neutralization escape in vitro for the F10 sBnAb. IAV was propagated with escalating concentrations of F10 over serial passages in cultured cells to select for escape mutations. Viral sequence analysis revealed three mutations in HA and one in neuraminidase (NA). Introduction of these specific mutations into IAV through reverse genetics confirmed their roles in resistance to F10. Structural analyses revealed that the selected HA mutations (S123G, N460S, and N203V) are away from the F10 epitope but may indirectly impact influenza virus receptor binding, endosomal fusion, or budding. The NA mutation E329K, which was previously identified to be associated with antibody escape, affects the active site of NA, highlighting the importance of the balance between HA and NA function for viral survival. Thus, whole-genome population sequencing enables the identification of viral resistance mutations responding to antibody-induced selective pressure.IMPORTANCE Influenza A virus is a public health threat for which currently available vaccines are not always effective. Broadly neutralizing antibodies that bind to the highly conserved stem region of the influenza virus hemagglutinin (HA) can neutralize many influenza virus strains. To understand how influenza virus can become resistant or escape such antibodies, we propagated influenza A virus in vitro with escalating concentrations of antibody and analyzed viral populations by whole-genome sequencing. We identified HA mutations near and distal to the antibody binding epitope that conferred resistance to antibody neutralization. Additionally, we identified a neuraminidase (NA) mutation that allowed the virus to grow in the presence of high concentrations of the antibody. Virus carrying dual mutations in HA and NA also grew under high antibody concentrations. We show that NA mutations mediate the escape of neutralization by antibodies against HA, highlighting the importance of a balance between HA and NA for optimal virus function.


Asunto(s)
Farmacorresistencia Viral , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Subtipo H1N1 del Virus de la Influenza A/genética , Mutación , Neuraminidasa/genética , Animales , Anticuerpos Neutralizantes/farmacología , Anticuerpos Antivirales/farmacología , Perros , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Vacunas contra la Influenza , Células de Riñón Canino Madin Darby , Modelos Moleculares , Neuraminidasa/química , Pruebas de Neutralización , Genética Inversa , Análisis de Secuencia de ARN , Proteínas Virales/química , Proteínas Virales/genética
5.
J Virol ; 92(2)2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29093087

RESUMEN

Over 90% of the world's population is persistently infected with Epstein-Barr virus. While EBV does not cause disease in most individuals, it is the common cause of acute infectious mononucleosis (AIM) and has been associated with several cancers and autoimmune diseases, highlighting a need for a preventive vaccine. At present, very few primary, circulating EBV genomes have been sequenced directly from infected individuals. While low levels of diversity and low viral evolution rates have been predicted for double-stranded DNA (dsDNA) viruses, recent studies have demonstrated appreciable diversity in common dsDNA pathogens (e.g., cytomegalovirus). Here, we report 40 full-length EBV genome sequences obtained from matched oral wash and B cell fractions from a cohort of 10 AIM patients. Both intra- and interpatient diversity were observed across the length of the entire viral genome. Diversity was most pronounced in viral genes required for establishing latent infection and persistence, with appreciable levels of diversity also detected in structural genes, including envelope glycoproteins. Interestingly, intrapatient diversity declined significantly over time (P < 0.01), and this was particularly evident on comparison of viral genomes sequenced from B cell fractions in early primary infection and convalescence (P < 0.001). B cell-associated viral genomes were observed to converge, becoming nearly identical to the B95.8 reference genome over time (Spearman rank-order correlation test; r = -0.5589, P = 0.0264). The reduction in diversity was most marked in the EBV latency genes. In summary, our data suggest independent convergence of diverse viral genome sequences toward a reference-like strain within a relatively short period following primary EBV infection.IMPORTANCE Identification of viral proteins with low variability and high immunogenicity is important for the development of a protective vaccine. Knowledge of genome diversity within circulating viral populations is a key step in this process, as is the expansion of intrahost genomic variation during infection. We report full-length EBV genomes sequenced from the blood and oral wash of 10 individuals early in primary infection and during convalescence. Our data demonstrate considerable diversity within the pool of circulating EBV strains, as well as within individual patients. Overall viral diversity decreased from early to persistent infection, particularly in latently infected B cells, which serve as the viral reservoir. Reduction in B cell-associated viral genome diversity coincided with a convergence toward a reference-like EBV genotype. Greater convergence positively correlated with time after infection, suggesting that the reference-like genome is the result of selection.


Asunto(s)
Infecciones por Virus de Epstein-Barr/virología , Variación Genética , Genoma Viral , Herpesvirus Humano 4/genética , Biología Computacional/métodos , Genómica/métodos , Genotipo , Herpesvirus Humano 4/clasificación , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Sistemas de Lectura Abierta , Filogenia
6.
J Virol ; 92(2)2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29118121

RESUMEN

HIV-1 R5 variants exploit CCR5 as a coreceptor to infect both T cells and macrophages. R5 viruses that are transmitted or derived from immune tissue and peripheral blood are mainly inefficient at mediating infection of macrophages. In contrast, highly macrophage-tropic (mac-tropic) R5 viruses predominate in brain tissue and can be detected in cerebrospinal fluid but are infrequent in immune tissue or blood even in late disease. These mac-tropic R5 variants carry envelope glycoproteins (Envs) adapted to exploit low levels of CD4 on macrophages to induce infection. However, it is unclear whether this adaptation is conferred by an increased affinity of the Env trimer for CD4 or is mediated by postbinding structural rearrangements in the trimer that enhance the exposure of the coreceptor binding site and facilitate events leading to fusion and virus entry. In this study, we investigated CD4 binding to mac-tropic and non-mac-tropic Env trimers and showed that CD4-IgG binds efficiently to mac-tropic R5 Env trimers, while binding to non-mac-tropic trimers was undetectable. Our data indicated that the CD4 binding site (CD4bs) is highly occluded on Env trimers of non-mac-tropic R5 viruses. Such viruses may therefore infect T cells via viral synapses where Env and CD4 become highly concentrated. This environment will enable high-avidity interactions that overcome extremely low Env-CD4 affinities.IMPORTANCE HIV R5 variants bind to CD4 and CCR5 receptors on T cells and macrophages to initiate infection. Transmitted HIV variants infect T cells but not macrophages, and these viral strains persist in immune tissue even in late disease. Here we show that the binding site for CD4 present on HIV's envelope protein is occluded on viruses replicating in immune tissue. This occlusion likely prevents antibody binding to this site and neutralization of the virus, but it makes it difficult for virus-CD4 interactions to occur. Such viruses probably pass from T cell to T cell via cell contacts where CD4 is highly concentrated and allows infection via inefficient envelope-CD4 binding. Our data are highly relevant for vaccines that aim to induce antibodies targeting the CD4 binding site on the envelope protein.


Asunto(s)
Antígenos CD4/metabolismo , VIH-1/fisiología , Macrófagos/metabolismo , Macrófagos/virología , Receptores CCR5/metabolismo , Tropismo Viral , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/metabolismo , Antígenos CD4/genética , Línea Celular , Epítopos de Linfocito T/inmunología , Citometría de Flujo , Expresión Génica , Anticuerpos Anti-VIH/inmunología , Anticuerpos Anti-VIH/metabolismo , Proteína gp120 de Envoltorio del VIH/genética , Proteína gp120 de Envoltorio del VIH/inmunología , Proteína gp120 de Envoltorio del VIH/metabolismo , Infecciones por VIH/inmunología , Infecciones por VIH/metabolismo , Infecciones por VIH/virología , Humanos , Inmunoglobulina G/inmunología , Inmunoglobulina G/metabolismo , Macrófagos/inmunología , Pruebas de Neutralización , Fragmentos de Péptidos/inmunología , Unión Proteica , Multimerización de Proteína , Productos del Gen env del Virus de la Inmunodeficiencia Humana/química , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética
7.
J Virol ; 91(1)2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27733645

RESUMEN

The Epstein-Barr virus (EBV) gp350 glycoprotein interacts with the cellular receptor to mediate viral entry and is thought to be the major target for neutralizing antibodies. To better understand the role of EBV-specific antibodies in the control of viral replication and the evolution of sequence diversity, we measured EBV gp350-specific antibody responses and sequenced the gp350 gene in samples obtained from individuals experiencing primary EBV infection (acute infectious mononucleosis [AIM]) and again 6 months later (during convalescence [CONV]). EBV gp350-specific IgG was detected in the sera of 17 (71%) of 24 individuals at the time of AIM and all 24 (100%) individuals during CONV; binding antibody titers increased from AIM through CONV, reaching levels equivalent to those in age-matched, chronically infected individuals. Antibody-dependent cell-mediated phagocytosis (ADCP) was rarely detected during AIM (4 of 24 individuals; 17%) but was commonly detected during CONV (19 of 24 individuals; 79%). The majority (83%) of samples taken during AIM neutralized infection of primary B cells; all samples obtained at 6 months postdiagnosis neutralized EBV infection of cultured and primary target cells. Deep sequencing revealed interpatient gp350 sequence variation but conservation of the CR2-binding site. The levels of gp350-specific neutralizing activity directly correlated with higher peripheral blood EBV DNA levels during AIM and a greater evolution of diversity in gp350 nucleotide sequences from AIM to CONV. In summary, we conclude that the viral load and EBV gp350 diversity during early infection are associated with the development of neutralizing antibody responses following AIM. IMPORTANCE: Antibodies against viral surface proteins can blunt the spread of viral infection by coating viral particles, mediating uptake by immune cells, or blocking interaction with host cell receptors, making them a desirable component of a sterilizing vaccine. The EBV surface protein gp350 is a major target for antibodies. We report the detection of EBV gp350-specific antibodies capable of neutralizing EBV infection in vitro The majority of gp350-directed vaccines focus on glycoproteins from lab-adapted strains, which may poorly reflect primary viral envelope diversity. We report some of the first primary gp350 sequences, noting that the gp350 host receptor binding site is remarkably stable across patients and time. However, changes in overall gene diversity were detectable during infection. Patients with higher peripheral blood viral loads in primary infection and greater changes in viral diversity generated more efficient antibodies. Our findings provide insight into the generation of functional antibodies, necessary for vaccine development.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , ADN Viral/genética , Herpesvirus Humano 4/genética , Inmunoglobulina G/sangre , Mononucleosis Infecciosa/inmunología , Glicoproteínas de Membrana/genética , Proteínas de la Matriz Viral/genética , Enfermedad Aguda , Adulto , Secuencia de Aminoácidos , Linfocitos B/inmunología , Linfocitos B/virología , Secuencia de Bases , Estudios de Casos y Controles , Línea Celular Tumoral , Enfermedad Crónica , Convalecencia , ADN Viral/inmunología , Variación Genética , Herpesvirus Humano 4/crecimiento & desarrollo , Herpesvirus Humano 4/inmunología , Interacciones Huésped-Patógeno , Humanos , Inmunoglobulina G/clasificación , Mononucleosis Infecciosa/sangre , Mononucleosis Infecciosa/virología , Glicoproteínas de Membrana/inmunología , Monocitos/inmunología , Monocitos/virología , Fagocitosis , Cultivo Primario de Células , Alineación de Secuencia , Análisis de Secuencia de ADN , Carga Viral/genética , Carga Viral/inmunología , Proteínas de la Matriz Viral/inmunología
8.
J Neurovirol ; 24(4): 439-453, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29687407

RESUMEN

Despite combined antiretroviral therapy (cART), HIV+ patients still develop neurological disorders, which may be due to persistent HIV infection and selective evolution in brain tissues. Single-molecule real-time (SMRT) sequencing technology offers an improved opportunity to study the relationship among HIV isolates in the brain and lymphoid tissues because it is capable of generating thousands of long sequence reads in a single run. Here, we used SMRT sequencing to generate ~ 50,000 high-quality full-length HIV envelope sequences (> 2200 bp) from seven autopsy tissues from an HIV+/cART+ subject, including three brain and four non-brain sites. Sanger sequencing was used for comparison with SMRT data and to clone functional pseudoviruses for in vitro tropism assays. Phylogenetic analysis demonstrated that brain-derived HIV was compartmentalized from HIV outside the brain and that the variants from each of the three brain tissues grouped independently. Variants from all peripheral tissues were intermixed on the tree but independent of the brain clades. Due to the large number of sequences, a clustering analysis at three similarity thresholds (99, 99.5, and 99.9%) was also performed. All brain sequences clustered exclusive of any non-brain sequences at all thresholds; however, frontal lobe sequences clustered independently of occipital and parietal lobes. Translated sequences revealed potentially functional differences between brain and non-brain sequences in the location of putative N-linked glycosylation sites (N-sites), V1 length, V3 charge, and the number of V4 N-sites. All brain sequences were predicted to use the CCR5 co-receptor, while most non-brain sequences were predicted to use CXCR4 co-receptor. Tropism results were confirmed by in vitro infection assays. The study is the first to use a SMRT sequencing approach to study HIV compartmentalization in tissues and supports other reports of limited trafficking between brain and non-brain sequences during cART. Due to the long sequence length, we could observe changes along the entire envelope gene, likely caused by differential selective pressure in the brain that may contribute to neurological disease.


Asunto(s)
Encéfalo/virología , Infecciones por VIH/virología , VIH-1/fisiología , Tropismo Viral/genética , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética , Adulto , Infecciones por VIH/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Macrófagos/virología , Masculino , Filogenia , Provirus/genética , Receptores CXCR4
9.
J Immunol ; 195(9): 4185-97, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26416268

RESUMEN

Virus-specific CD8(+) T cells expand dramatically during acute EBV infection, and their persistence is important for lifelong control of EBV-related disease. To better define the generation and maintenance of these effective CD8(+) T cell responses, we used microarrays to characterize gene expression in total and EBV-specific CD8(+) T cells isolated from the peripheral blood of 10 individuals followed from acute infectious mononucleosis (AIM) into convalescence (CONV). In total CD8(+) T cells, differential expression of genes in AIM and CONV was most pronounced among those encoding proteins important in T cell activation/differentiation, cell division/metabolism, chemokines/cytokines and receptors, signaling and transcription factors (TF), immune effector functions, and negative regulators. Within these categories, we identified 28 genes that correlated with CD8(+) T cell expansion in response to an acute EBV infection. In EBV-specific CD8(+) T cells, we identified 33 genes that were differentially expressed in AIM and CONV. Two important TF, T-bet and eomesodermin, were upregulated and maintained at similar levels in both AIM and CONV; in contrast, protein expression declined from AIM to CONV. Expression of these TF varied among cells with different epitope specificities. Collectively, gene and protein expression patterns suggest that a large proportion, if not a majority of CD8(+) T cells in AIM are virus specific, activated, dividing, and primed to exert effector activities. High expression of T-bet and eomesodermin may help to maintain effector mechanisms in activated cells and to enable proliferation and transition to earlier differentiation states in CONV.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Herpesvirus Humano 4/inmunología , Mononucleosis Infecciosa/inmunología , Transcriptoma , ADP-Ribosil Ciclasa 1/genética , Enfermedad Aguda , Adolescente , Adulto , Femenino , Humanos , Masculino , Receptores de Interleucina-7/genética , Factores de Transcripción/genética
10.
Retrovirology ; 12: 96, 2015 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-26573574

RESUMEN

BACKGROUND: Previous studies have demonstrated that single HIV-1 genotypes are commonly transmitted from mother to child, but such analyses primarily used single samples from mother and child. It is possible that in a single sample, obtained early after infection, only the most replication competent virus is detected even when other forms may have been transmitted. Such forms may have advantages later in infection, and may thus be detected in follow-up samples. Because HIV-1 frequently recombines, phylogenetic analyses that ignore recombination may miss transmission of multiple forms if they recombine after transmission. Moreover, recombination may facilitate adaptation, thus providing an advantage in establishing infection. The effect of recombination on viral evolution in HIV-1 infected children has not been well defined. RESULTS: We analyzed full-length env sequences after single genome amplification from the plasma of four subtype B HIV-1 infected women (11-67 env clones from 1 time point within a month prior to delivery) and their non-breastfed, intrapartum-infected children (3-6 longitudinal time points per child starting at the time of HIV-1 diagnosis). To address the potential beneficial or detrimental effects of recombination, we used a recently developed hierarchical recombination detection method based on the pairwise homoplasy index (PHI)-test. Recombination was observed in 9-67% of the maternal sequences and in 25-60% of the child sequences. In the child, recombination only occurred between variants that had evolved after transmission; taking recombination into account, we identified transmission of only 1 or 2 phylogenetic lineages from mother to child. Effective HIV-1 evolutionary rates of HIV-1 were initially high in the child and slowed over time (after 1000 days). Recombination was associated with elevated evolutionary rates. CONCLUSIONS: Our results confirm that 1-2 variants are typically transmitted from mothers to their newborns. They also demonstrate that early abundant recombination elevates the effective evolutionary rate, suggesting that recombination increases the rate of adaptation in HIV-1 evolution.


Asunto(s)
Evolución Molecular , Infecciones por VIH/transmisión , Infecciones por VIH/virología , VIH-1/genética , Recombinación Genética , Femenino , Genes env , Variación Genética , Genoma Viral , VIH-1/fisiología , Humanos , Lactante , Recién Nacido , Transmisión Vertical de Enfermedad Infecciosa , Madres , Filogenia , Embarazo
11.
J Virol ; 88(7): 3744-55, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24429365

RESUMEN

UNLABELLED: We report the diversity of latent membrane protein 1 (LMP1) gene founder sequences and the level of Epstein-Barr virus (EBV) genome variability over time and across anatomic compartments by using virus genomes amplified directly from oropharyngeal wash specimens and peripheral blood B cells during acute infection and convalescence. The intrahost nucleotide variability of the founder virus was 0.02% across the region sequences, and diversity increased significantly over time in the oropharyngeal compartment (P = 0.004). The LMP1 region showing the greatest level of variability in both compartments, and over time, was concentrated within the functional carboxyl-terminal activating regions 2 and 3 (CTAR2 and CTAR3). Interestingly, a deletion in a proline-rich repeat region (amino acids 274 to 289) of EBV commonly reported in EBV sequenced from cancer specimens was not observed in acute infectious mononucleosis (AIM) patients. Taken together, these data highlight the diversity in circulating EBV genomes and its potential importance in disease pathogenesis and vaccine design. IMPORTANCE: This study is among the first to leverage an improved high-throughput deep-sequencing methodology to investigate directly from patient samples the degree of diversity in Epstein-Barr virus (EBV) populations and the extent to which viral genome diversity develops over time in the infected host. Significant variability of circulating EBV latent membrane protein 1 (LMP1) gene sequences was observed between cellular and oral wash samples, and this variability increased over time in oral wash samples. The significance of EBV genetic diversity in transmission and disease pathogenesis are discussed.


Asunto(s)
Linfocitos B/virología , Infecciones por Virus de Epstein-Barr/virología , Variación Genética , Herpesvirus Humano 4/genética , Orofaringe/virología , Proteínas de la Matriz Viral/genética , Análisis por Conglomerados , ADN Viral/química , ADN Viral/genética , Herpesvirus Humano 4/aislamiento & purificación , Humanos , Datos de Secuencia Molecular , Filogenia , Análisis de Secuencia de ADN , Factores de Tiempo , Adulto Joven
12.
bioRxiv ; 2024 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-39463923

RESUMEN

Influenza viruses are enveloped, negative sense single-stranded RNA viruses covered in a dense layer of glycoproteins. Hemagglutinin (HA) accounts for 80-90% of influenza glycoprotein and plays a role in host cell binding and membrane fusion. While previous studies have characterized structures of receptor-free and receptor-bound HA in vitro, the effect of receptor binding on HA organization and structure on virions remains unknown. Here, we used cryo-electron tomography (cryoET) to visualize influenza virions bound to a sialic acid receptor mimic. Overall, receptor binding did not result in significant changes in viral morphology; however, we observed rearrangements of HA trimer organization and orientation. Compared to the even inter-glycoprotein spacing of unliganded HA trimers, receptor binding promotes HA trimer clustering and formation of a triplet of trimers. Subtomogram averaging and refinement yielded 8-10 Å reconstructions that allowed us to visualize specific contacts between HAs from neighboring trimers and identify molecular features that mediate clustering. Taken together, we present new structural evidence that receptor binding triggers clustering of HA trimers, revealing an additional layer of HA dynamics and plasticity.

14.
Viruses ; 14(7)2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35891350

RESUMEN

New variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continue to emerge, causing surges, breakthrough infections, and devastating losses-underscoring the importance of identifying SARS-CoV-2 antivirals. A simple, accessible human cell culture model permissive to SARS-CoV-2 variants is critical for identifying and assessing antivirals in a high-throughput manner. Although human alveolar A549 cells are a valuable model for studying respiratory virus infections, they lack two essential host factors for SARS-CoV-2 infection: angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2). SARS-CoV-2 uses the ACE2 receptor for viral entry and TMPRSS2 to prime the SARS-CoV-2 spike protein, both of which are negligibly expressed in A549 cells. Here, we report the generation of a suitable human cell line for SARS-CoV-2 studies by transducing human ACE2 and TMPRSS2 into A549 cells. We show that subclones highly expressing ACE2 and TMPRSS2 ("ACE2plus" and the subclone "ACE2plusC3") are susceptible to infection with SARS-CoV-2, including the delta and omicron variants. These subclones express more ACE2 and TMPRSS2 transcripts than existing commercial A549 cells engineered to express ACE2 and TMPRSS2. Additionally, the antiviral drugs EIDD-1931, remdesivir, nirmatrelvir, and nelfinavir strongly inhibit SARS-CoV-2 variants in our infection model. Our data show that ACE2plusC3 cells are highly permissive to SARS-CoV-2 infection and can be used to identify anti-SARS-CoV-2 drugs.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Células A549 , Enzima Convertidora de Angiotensina 2/genética , Antivirales/farmacología , Humanos , Peptidil-Dipeptidasa A/metabolismo , SARS-CoV-2/genética , Serina Endopeptidasas/genética , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo
15.
Structure ; 30(5): 777-786.e3, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35290796

RESUMEN

Influenza viruses pose severe public health threats globally. Influenza viruses are extensively pleomorphic, in shape, size, and organization of viral proteins. Analysis of influenza morphology and ultrastructure can help elucidate viral structure-function relationships and aid in therapeutics and vaccine development. While cryo-electron tomography (cryoET) can depict the 3D organization of pleomorphic influenza, the low signal-to-noise ratio inherent to cryoET and viral heterogeneity have precluded detailed characterization of influenza viruses. In this report, we leveraged convolutional neural networks and cryoET to characterize the morphological architecture of the A/Puerto Rico/8/34 (H1N1) influenza strain. Our pipeline improved the throughput of cryoET analysis and accurately identified viral components within tomograms. Using this approach, we successfully characterized influenza morphology, glycoprotein density, and conducted subtomogram averaging of influenza glycoproteins. Application of this processing pipeline can aid in the structural characterization of not only influenza viruses, but other pleomorphic viruses and infected cells.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Microscopía por Crioelectrón/métodos , Tomografía con Microscopio Electrónico/métodos , Glicoproteínas Hemaglutininas del Virus de la Influenza , Humanos , Redes Neurales de la Computación
16.
COVID ; 2(11): 1551-1563, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37274537

RESUMEN

Coronavirus disease 2019 (COVID-19) has had devastating effects worldwide, with particularly high morbidity and mortality in outbreaks on residential care facilities. Amantadine, originally licensed as an antiviral agent for therapy and prophylaxis against influenza A virus, has beneficial effects on patients with Parkinson's disease and is used for treatment of Parkinson's disease, multiple sclerosis, acquired brain injury, and various other neurological disorders. Recent observational data suggest an inverse relationship between the use of amantadine and COVID-19. Adamantanes, including amantadine and rimantadine, are reported to have in vitro activity against severe acute respiratory syndrome coronavirus (SARS-CoV) and, more recently, SARS-CoV-2. We hypothesized that adamantanes have antiviral activity against SARS-CoV-2, including variant strains. To assess the activity of adamantanes against SARS-CoV-2, we used in vitro and in vivo models of infection. We established that amantadine, rimantadine, and tromantadine inhibit the growth of SARS-CoV-2 in vitro in cultured human epithelial cells. While neither rimantadine nor amantadine reduces lung viral titers in mice infected with mouse-adapted SARS-CoV-2, rimantadine significantly reduces viral titers in the lungs in golden Syrian hamsters infected with SARS-CoV-2. In summary, rimantadine has antiviral activity against SARS-CoV-2 in human alveolar epithelial cells and in the hamster model of SARS-CoV-2 lung infection. The evaluation of amantadine or rimantadine in human randomized controlled trials can definitively address applications for the treatment or prevention of COVID-19.

17.
Retrovirology ; 8: 67, 2011 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-21843318

RESUMEN

BACKGROUND: Understanding the properties of HIV-1 variants that are transmitted from women to their infants is crucial to improving strategies to prevent transmission. In this study, 162 full-length envelope (env) clones were generated from plasma RNA obtained from 5 HIV-1 Clade B infected mother-infant pairs. Following extensive genotypic and phylogenetic analyses, 35 representative clones were selected for functional studies. RESULTS: Infant quasispecies were highly homogeneous and generally represented minor maternal variants, consistent with transmission across a selective bottleneck. Infant clones did not differ from the maternal in env length, or glycosylation. All infant variants utilized the CCR5 co-receptor, but were not macrophage tropic. Relatively high levels (IC50 ≥ 100 µg/ml) of autologous maternal plasma IgG were required to neutralize maternal and infant viruses; however, all infant viruses were neutralized by pooled sera from HIV-1 infected individuals, implying that they were not inherently neutralization-resistant. All infant viruses were sensitive to the HIV-1 entry inhibitors Enfuvirtide and soluble CD4; none were resistant to Maraviroc. Sensitivity to human monoclonal antibodies 4E10, 2F5, b12 and 2G12 varied. CONCLUSIONS: This study provides extensive characterization of the genotypic and functional properties of HIV-1 env shortly after transmission. We present the first detailed comparisons of the macrophage tropism of infant and maternal env variants and their sensitivity to Maraviroc, the only CCR5 antagonist approved for therapeutic use. These findings may have implications for improving approaches to prevent mother-to-child HIV-1 transmission.


Asunto(s)
Infecciones por VIH/virología , VIH-1/genética , Enfermedades del Recién Nacido/virología , Transmisión Vertical de Enfermedad Infecciosa , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo , Adulto , Femenino , Infecciones por VIH/inmunología , Infecciones por VIH/transmisión , VIH-1/clasificación , VIH-1/aislamiento & purificación , VIH-1/metabolismo , Humanos , Lactante , Recién Nacido , Enfermedades del Recién Nacido/inmunología , Masculino , Datos de Secuencia Molecular , Filogenia , Receptores CCR5/inmunología
18.
Nat Commun ; 12(1): 559, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33495478

RESUMEN

Broadly neutralizing antibodies (bnAbs) targeting conserved influenza A virus (IAV) hemagglutinin (HA) epitopes can provide valuable information for accelerating universal vaccine designs. Here, we report structural details for heterosubtypic recognition of HA from circulating and emerging IAVs by the human antibody 3I14. Somatic hypermutations play a critical role in shaping the HCDR3, which alone and uniquely among VH3-30 derived antibodies, forms contacts with five sub-pockets within the HA-stem hydrophobic groove. 3I14 light-chain interactions are also key for binding HA and contribute a large buried surface area spanning two HA protomers. Comparison of 3I14 to bnAbs from several defined classes provide insights to the bias selection of VH3-30 antibodies and reveals that 3I14 represents a novel structural solution within the VH3-30 repertoire. The structures reported here improve our understanding of cross-group heterosubtypic binding activity, providing the basis for advancing immunogen designs aimed at eliciting a broadly protective response to IAV.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Epítopos/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Virus de la Influenza A/inmunología , Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/metabolismo , Epítopos/química , Epítopos/metabolismo , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Humanos , Virus de la Influenza A/metabolismo , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Gripe Humana/virología
19.
ACS Chem Biol ; 16(3): 529-538, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33619959

RESUMEN

Human T-cell lymphotropic virus type 1 (HTLV-1) is a retrovirus that can cause severe paralytic neurologic disease and immune disorders as well as cancer. An estimated 20 million people worldwide are infected with HTLV-1, with prevalence reaching 30% in some parts of the world. In stark contrast to HIV-1, no direct acting antivirals (DAAs) exist against HTLV-1. The aspartyl protease of HTLV-1 is a dimer similar to that of HIV-1 and processes the viral polyprotein to permit viral maturation. We report that the FDA-approved HIV-1 protease inhibitor darunavir (DRV) inhibits the enzyme with 0.8 µM potency and provides a scaffold for drug design against HTLV-1. Analogs of DRV that we designed and synthesized achieved submicromolar inhibition against HTLV-1 protease and inhibited Gag processing in viral maturation assays and in a chronically HTLV-1 infected cell line. Cocrystal structures of these inhibitors with HTLV-1 protease highlight opportunities for future inhibitor design. Our results show promise toward developing highly potent HTLV-1 protease inhibitors as therapeutic agents against HTLV-1 infections.


Asunto(s)
Antivirales/química , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Darunavir/análogos & derivados , Virus Linfotrópico T Tipo 1 Humano/efectos de los fármacos , Inhibidores de Proteasas/química , Secuencia de Aminoácidos , Antivirales/farmacología , Ácido Aspártico Endopeptidasas/química , Ácido Aspártico Endopeptidasas/genética , Darunavir/farmacología , Descubrimiento de Drogas , Escherichia coli/genética , Humanos , Simulación de Dinámica Molecular , Estructura Molecular , Terapia Molecular Dirigida , Inhibidores de Proteasas/farmacología , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad
20.
Nature ; 426(6965): 450-4, 2003 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-14647384

RESUMEN

Spike (S) proteins of coronaviruses, including the coronavirus that causes severe acute respiratory syndrome (SARS), associate with cellular receptors to mediate infection of their target cells. Here we identify a metallopeptidase, angiotensin-converting enzyme 2 (ACE2), isolated from SARS coronavirus (SARS-CoV)-permissive Vero E6 cells, that efficiently binds the S1 domain of the SARS-CoV S protein. We found that a soluble form of ACE2, but not of the related enzyme ACE1, blocked association of the S1 domain with Vero E6 cells. 293T cells transfected with ACE2, but not those transfected with human immunodeficiency virus-1 receptors, formed multinucleated syncytia with cells expressing S protein. Furthermore, SARS-CoV replicated efficiently on ACE2-transfected but not mock-transfected 293T cells. Finally, anti-ACE2 but not anti-ACE1 antibody blocked viral replication on Vero E6 cells. Together our data indicate that ACE2 is a functional receptor for SARS-CoV.


Asunto(s)
Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/metabolismo , Enzima Convertidora de Angiotensina 2 , Animales , Anticuerpos/inmunología , Anticuerpos/farmacología , Carboxipeptidasas/antagonistas & inhibidores , Carboxipeptidasas/genética , Carboxipeptidasas/inmunología , Carboxipeptidasas/metabolismo , Línea Celular , Chlorocebus aethiops , Células Gigantes/citología , Células Gigantes/metabolismo , Humanos , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Peso Molecular , Peptidil-Dipeptidasa A/inmunología , Peptidil-Dipeptidasa A/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Receptores Virales/antagonistas & inhibidores , Receptores Virales/genética , Receptores Virales/inmunología , Receptores Virales/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/crecimiento & desarrollo , Solubilidad , Glicoproteína de la Espiga del Coronavirus , Transfección , Células Vero , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Replicación Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA