Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 144(35): 16164-16170, 2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-35998388

RESUMEN

Natural products containing an aziridine ring, such as mitomycin C and azinomycin B, exhibit antitumor activities by alkylating DNA via their aziridine rings; however, the biosynthetic mechanisms underlying the formation of these rings have not yet been elucidated. We herein investigated the biosynthesis of vazabitide A, the structure of which is similar to that of azinomycin B, and demonstrated that Vzb10/11, with no similarities to known enzymes, catalyzed the formation of the aziridine ring via sulfate elimination. To elucidate the detailed reaction mechanism, crystallization of Vzb10/11 and the homologous enzyme, AziU3/U2, in the biosynthesis of azinomycin B was attempted, and the structure of AziU3/U2, which had a new protein fold overall, was successfully determined. The structural analysis revealed that these enzymes adjusted the dihedral angle between the amino group and the adjacent sulfate group of the substrate to almost 180° and enhanced the nucleophilicity of the C6-amino group temporarily, facilitating the SN2-like reaction to form the aziridine ring. The present study reports for the first time the molecular basis for aziridine ring formation.


Asunto(s)
Aziridinas , Sulfatos , Aziridinas/química , ADN/química , Mitomicina
2.
Appl Environ Microbiol ; 84(9)2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29500263

RESUMEN

1,8-Dihydroxynaphthalene (1,8-DHN) is a key intermediate in the biosynthesis of DHN melanin, which is specific to fungi. In this study, we characterized the enzymatic properties of the gene products of an operon consisting of soceCHS1, bdsA, and bdsB from the Gram-negative bacterium Sorangium cellulosum Heterologous expression of soceCHS1, bdsA, and bdsB in Streptomyces coelicolor caused secretion of a dark-brown pigment into the broth. High-performance liquid chromatography (HPLC) analysis of the broth revealed that the recombinant strain produced 1,8-DHN, indicating that the operon encoded a novel enzymatic system for the synthesis of 1,8-DHN. Simultaneous incubation of the recombinant SoceCHS1, BdsA, and BdsB with malonyl-coenzyme A (malonyl-CoA) and NADPH resulted in the synthesis of 1,8-DHN. SoceCHS1, a type III polyketide synthase (PKS), catalyzed the synthesis of 1,3,6,8-tetrahydroxynaphthalene (T4HN) in vitro T4HN was in turn converted to 1,8-DHN by successive steps of reduction and dehydration, which were catalyzed by BdsA and BdsB. BdsA, which is a member of the aldo-keto reductase (AKR) superfamily, catalyzed the reduction of T4HN and 1,3,8-tetrahydroxynaphthalene (T3HN) to scytalone and vermelone, respectively. The stereoselectivity of T4HN reduction by BdsA occurred on the si-face to give (R)-scytalone with more than 99% optical purity. BdsB, a SnoaL2-like protein, catalyzed the dehydration of scytalone and vermelone to T3HN and 1,8-DHN, respectively. The fungal pathway for the synthesis of 1,8-DHN is composed of a type I PKS, naphthol reductases of the short-chain dehydrogenase/reductase (SDR) superfamily, and scytalone dehydratase (SD). These findings demonstrated 1,8-DHN synthesis by novel enzymes of bacterial origin.IMPORTANCE Although the DHN biosynthetic pathway was thought to be specific to fungi, we discovered novel DHN synthesis enzymes of bacterial origin. The biosynthesis of bacterial DHN utilized a type III PKS for polyketide synthesis, an AKR superfamily for reduction, and a SnoaL2-like NTF2 superfamily for dehydration, whereas the biosynthesis of fungal DHN utilized a type I PKS, SDR superfamily enzyme, and SD-like NTF2 superfamily. Surprisingly, the enzyme systems comprising the pathway were significantly different from each other, suggesting independent, parallel evolution leading to the same biosynthesis. DHN melanin plays roles in host invasion and adaptation to stress in pathogenic fungi and is therefore important to study. However, it is unclear whether DHN biosynthesis occurs in bacteria. Importantly, we did find that bacterial DHN biosynthetic enzymes were conserved among pathogenic bacteria.


Asunto(s)
Proteínas Bacterianas/genética , Myxococcales/enzimología , Naftoles/metabolismo , Operón , Proteínas Bacterianas/metabolismo , Biocatálisis , Melaninas/biosíntesis , Operón/genética
3.
ACS Chem Biol ; 18(2): 385-395, 2023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36669120

RESUMEN

(2,6)-Diamino-(5,7)-dihydroxyheptanoic acid (DADH), a non-proteinogenic amino acid, is converted to 1-azabicyclo[3.1.0]hexane ring-containing amino acids that are subsequently incorporated into ficellomycin and vazabitide A. The present study revealed that the sugar aminotransferase-like enzymes Fic25 and Vzb9, with a high amino acid sequence identity (56%) to each other, synthesized stereoisomers of DADH with (6S) and (6R) configurations, respectively. The crystal structure of the Fic25 complex with a PLP-(6S)-N2-acetyl-DADH adduct indicated that Asn45 and Gln197 (Asn205 and Ala53 in Vzb9) were located at positions that affected the stereochemistry of DADH being synthesized. A modeling study suggested that amino acid substitutions between Fic25 and Vzb9 allowed the enzymes to bind to the substrate with almost 180° rotation in the C5-C7 portions of the DADH molecules, accompanied by a concomitant shift in their C1-C4 portions. In support of this result, the replacement of two corresponding residues in Fic25 and Vzb9 increased (6R) and (6S) stereoselectivities, respectively. The different stereochemistry at C6 of DADH resulted in a different stereochemistry/orientation of the aziridine portion of the 1-azabicyclo[3.1.0]hexane ring, which plays a crucial role in biological activity, between ficellomycin and vazabitide A. A phylogenic analysis suggested that Fic25 and Vzb9 evolved from sugar aminotransferases to produce unusual building blocks for expanding the structural diversity of secondary metabolites.


Asunto(s)
Aminoácidos , Productos Biológicos , Aminoácidos/química , Transaminasas/metabolismo , Hexanos , Azúcares , Estereoisomerismo
4.
Ocul Surf ; 22: 152-162, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34428578

RESUMEN

PURPOSE: We aimed to clarify the role of particulate allergen exposure to the conjunctiva in the development of allergic conjunctivitis. METHODS: We administered ragweed pollen suspension, pollen extract, pollen shell, particulate air pollutants, and their combinations to the mouse conjunctiva five days a week without prior sensitization. Clinical signs were scored. Histological changes, cellular infiltrations, mRNA expressions, lymph node cell recall responses, and serum immunoglobulin levels were assessed. Immune cell-depleting antibodies and ST2 knockout mice were used to investigate the cellular and molecular requirements. RESULTS: Pollen suspension, but not the extract or shell alone, induced robust eosinophilic conjunctivitis, accompanied by a proliferative response of epithelial cells. A combination of pollen extract and shell completely restored eosinophil accumulation. In addition, eosinophilic conjunctivitis was induced by a mixture of particulate air pollutants and pollen extract. Mechanistically, eosinophil accumulation was ameliorated by deficiency of the IL-33 receptor ST2 and abolished by depleting CD4+ T cells. Pollen shells, but not the extract, induced IL-33 release from conjunctival epithelial cells in vivo. CONCLUSIONS: Our results indicate the non-redundant roles for the allergens' particulate properties and soluble factors in the development of allergic conjunctivitis.


Asunto(s)
Conjuntivitis Alérgica , Alérgenos , Animales , Conjuntiva , Ratones , Ratones Endogámicos BALB C , Polen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA