Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 680
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Annu Rev Biochem ; 83: 585-614, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24905787

RESUMEN

The importance of eukaryotic DNA methylation [5-methylcytosine (5mC)] in transcriptional regulation and development was first suggested almost 40 years ago. However, the molecular mechanism underlying the dynamic nature of this epigenetic mark was not understood until recently, following the discovery that the TET proteins, a family of AlkB-like Fe(II)/α-ketoglutarate-dependent dioxygenases, can oxidize 5mC to generate 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). Since then, several mechanisms that are responsible for processing oxidized 5mC derivatives to achieve DNA demethylation have emerged. Our biochemical understanding of the DNA demethylation process has prompted new investigations into the biological functions of DNA demethylation. Characterization of two additional AlkB family proteins, FTO and ALKBH5, showed that they possess demethylase activity toward N(6)-methyladenosine (m(6)A) in RNA, indicating that members of this subfamily of dioxygenases have a general function in demethylating nucleic acids. In this review, we discuss recent advances in this emerging field, focusing on the mechanism and function of TET-mediated DNA demethylation.


Asunto(s)
Metilación de ADN , ADN/química , Regulación de la Expresión Génica , Oxígeno/química , ARN/química , 5-Metilcitosina/química , Animales , Citosina/análogos & derivados , Citosina/química , Escherichia coli/metabolismo , Genoma , Células Germinativas/citología , Células HEK293 , Humanos , Metilación , Ratones , Neoplasias/genética , Células Madre/citología , Transcriptoma
2.
Cell ; 153(3): 678-91, 2013 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-23602153

RESUMEN

TET proteins oxidize 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). 5fC and 5caC are excised by mammalian DNA glycosylase TDG, implicating 5mC oxidation in DNA demethylation. Here, we show that the genomic locations of 5fC can be determined by coupling chemical reduction with biotin tagging. Genome-wide mapping of 5fC in mouse embryonic stem cells (mESCs) reveals that 5fC preferentially occurs at poised enhancers among other gene regulatory elements. Application to Tdg null mESCs further suggests that 5fC production coordinates with p300 in remodeling epigenetic states of enhancers. This process, which is not influenced by 5hmC, appears to be associated with further oxidation of 5hmC and commitment to demethylation through 5fC. Finally, we resolved 5fC at base resolution by hydroxylamine-based protection from bisulfite-mediated deamination, thereby confirming sites of 5fC accumulation. Our results reveal roles of active 5mC/5hmC oxidation and TDG-mediated demethylation in epigenetic tuning at regulatory elements.


Asunto(s)
Citosina/análogos & derivados , Células Madre Embrionarias/metabolismo , Epigénesis Genética , Técnicas Genéticas , Estudio de Asociación del Genoma Completo , 5-Metilcitosina/metabolismo , Animales , Citosina/metabolismo , Ratones , Elementos Reguladores de la Transcripción , Factores de Transcripción p300-CBP/metabolismo
3.
Cell ; 149(6): 1368-80, 2012 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-22608086

RESUMEN

The study of 5-hydroxylmethylcytosines (5hmC) has been hampered by the lack of a method to map it at single-base resolution on a genome-wide scale. Affinity purification-based methods cannot precisely locate 5hmC nor accurately determine its relative abundance at each modified site. We here present a genome-wide approach, Tet-assisted bisulfite sequencing (TAB-Seq), that when combined with traditional bisulfite sequencing can be used for mapping 5hmC at base resolution and quantifying the relative abundance of 5hmC as well as 5mC. Application of this method to embryonic stem cells not only confirms widespread distribution of 5hmC in the mammalian genome but also reveals sequence bias and strand asymmetry at 5hmC sites. We observe high levels of 5hmC and reciprocally low levels of 5mC near but not on transcription factor-binding sites. Additionally, the relative abundance of 5hmC varies significantly among distinct functional sequence elements, suggesting different mechanisms for 5hmC deposition and maintenance.


Asunto(s)
Citosina/análogos & derivados , Estudio de Asociación del Genoma Completo , Análisis de Secuencia de ADN/métodos , 5-Metilcitosina/análisis , Animales , Citosina/análisis , Células Madre Embrionarias/metabolismo , Epigenómica , Regulación de la Expresión Génica , Genoma Humano , Humanos , Ratones
4.
Mol Cell ; 73(4): 714-726.e4, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30581144

RESUMEN

CRISPR-Cas9 genome editing has transformed biotechnology and therapeutics. However, in vivo applications of some Cas9s are hindered by large size (limiting delivery by adeno-associated virus [AAV] vectors), off-target editing, or complex protospacer-adjacent motifs (PAMs) that restrict the density of recognition sequences in target DNA. Here, we exploited natural variation in the PAM-interacting domains (PIDs) of closely related Cas9s to identify a compact ortholog from Neisseria meningitidis-Nme2Cas9-that recognizes a simple dinucleotide PAM (N4CC) that provides for high target site density. All-in-one AAV delivery of Nme2Cas9 with a guide RNA targeting Pcsk9 in adult mouse liver produces efficient genome editing and reduced serum cholesterol with exceptionally high specificity. We further expand our single-AAV platform to pre-implanted zygotes for streamlined generation of genome-edited mice. Nme2Cas9 combines all-in-one AAV compatibility, exceptional editing accuracy within cells, and high target site density for in vivo genome editing applications.


Asunto(s)
Proteína 9 Asociada a CRISPR/genética , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN/genética , Edición Génica/métodos , Hígado/enzimología , Neisseria meningitidis/enzimología , Proproteína Convertasa 9/genética , Animales , Proteína 9 Asociada a CRISPR/metabolismo , ADN/metabolismo , Dependovirus/genética , Transferencia de Embrión , Femenino , Vectores Genéticos , Células HEK293 , Humanos , Células K562 , Ratones Endogámicos C57BL , Motivos de Nucleótidos , Proproteína Convertasa 9/metabolismo , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , Especificidad por Sustrato , Cigoto/metabolismo
5.
Plant Cell ; 35(9): 3585-3603, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37279565

RESUMEN

Ubiquitination modulates protein turnover or activity depending on the number and location of attached ubiquitin (Ub) moieties. Proteins marked by a lysine 48 (K48)-linked polyubiquitin chain are usually targeted to the 26S proteasome for degradation; however, other polyubiquitin chains, such as those attached to K63, usually regulate other protein properties. Here, we show that 2 PLANT U-BOX E3 ligases, PUB25 and PUB26, facilitate both K48- and K63-linked ubiquitination of the transcriptional regulator INDUCER OF C-REPEAT BINDING FACTOR (CBF) EXPRESSION1 (ICE1) during different periods of cold stress in Arabidopsis (Arabidopsis thaliana), thus dynamically modulating ICE1 stability. Moreover, PUB25 and PUB26 attach both K48- and K63-linked Ub chains to MYB15 in response to cold stress. However, the ubiquitination patterns of ICE1 and MYB15 mediated by PUB25 and PUB26 differ, thus modulating their protein stability and abundance during different stages of cold stress. Furthermore, ICE1 interacts with and inhibits the DNA-binding activity of MYB15, resulting in an upregulation of CBF expression. This study unravels a mechanism by which PUB25 and PUB26 add different polyubiquitin chains to ICE1 and MYB15 to modulate their stability, thereby regulating the timing and degree of cold stress responses in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Respuesta al Choque por Frío , Poliubiquitina/metabolismo , Factores de Transcripción/metabolismo , Ubiquitinación , Ubiquitina/metabolismo
6.
Plant J ; 119(1): 237-251, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38597817

RESUMEN

Plasma membrane (PM)-associated abscisic acid (ABA) signal transduction is an important component of ABA signaling. The C2-domain ABA-related (CAR) proteins have been reported to play a crucial role in recruiting ABA receptor PYR1/PYL/RCAR (PYLs) to the PM. However, the molecular details of the involvement of CAR proteins in membrane-delimited ABA signal transduction remain unclear. For instance, where this response process takes place and whether any additional members besides PYL are taking part in this signaling process. Here, the GUS-tagged materials for all Arabidopsis CAR members were used to comprehensively visualize the extensive expression patterns of the CAR family genes. Based on the representativeness of CAR1 in response to ABA, we determined to use it as a target to study the function of CAR proteins in PM-associated ABA signaling. Single-particle tracking showed that ABA affected the spatiotemporal dynamics of CAR1. The presence of ABA prolonged the dwell time of CAR1 on the membrane and showed faster lateral mobility. Surprisingly, we verified that CAR1 could directly recruit hypersensitive to ABA1 (HAB1) and SNF1-related protein kinase 2.2 (SnRK2.2) to the PM at both the bulk and single-molecule levels. Furthermore, PM localization of CAR1 was demonstrated to be related to membrane microdomains. Collectively, our study revealed that CARs recruited the three main components of ABA signaling to the PM to respond positively to ABA. This study deepens our understanding of ABA signal transduction.


Asunto(s)
Ácido Abscísico , Proteínas de Arabidopsis , Arabidopsis , Membrana Celular , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Membrana Celular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas Modificadas Genéticamente
7.
Plant J ; 118(1): 7-23, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38261530

RESUMEN

The cytosol-facing outer membrane (OM) of organelles communicates with other cellular compartments to exchange proteins, metabolites, and signaling molecules. Cellular surveillance systems also target OM-resident proteins to control organellar homeostasis and ensure cell survival under stress. However, the OM proximity proteomes have never been mapped in plant cells since using traditional approaches to discover OM proteins and identify their dynamically interacting partners remains challenging. In this study, we developed an OM proximity labeling (OMPL) system using biotin ligase-mediated proximity biotinylation to identify the proximity proteins of the OMs of mitochondria, chloroplasts, and peroxisomes in living Arabidopsis (Arabidopsis thaliana) cells. Using this approach, we mapped the OM proximity proteome of these three organelles under normal conditions and examined the effects of the ultraviolet-B (UV-B) or high light (HL) stress on the abundances of OM proximity proteins. We demonstrate the power of this system with the discovery of cytosolic factors and OM receptor candidates potentially involved in local protein translation and translocation. The candidate proteins that are involved in mitochondrion-peroxisome, mitochondrion-chloroplast, or peroxisome-chloroplast contacts, and in the organellar quality control system are also proposed based on OMPL analysis. OMPL-generated OM proximity proteomes are valuable sources of candidates for functional validation and suggest directions for further investigation of important questions in cell biology.


Asunto(s)
Arabidopsis , Arabidopsis/metabolismo , Proteoma/metabolismo , Citosol/metabolismo , Biotinilación , Peroxisomas/metabolismo , Proteínas de la Membrana/metabolismo
8.
Plant Physiol ; 194(2): 684-697, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-37850874

RESUMEN

The molecular mechanisms controlling organ size during plant development ultimately influence crop yield. However, a deep understanding of these mechanisms is still lacking. UBIQUITIN-SPECIFIC PROTEASE14 (UBP14), encoded by DA3, is an essential factor determining organ size in Arabidopsis (Arabidopsis thaliana). Here, we identified two suppressors of the da3-1 mutant phenotype, namely SUPPRESSOR OF da3-1 1 and 2 (SUD1 and SUD2), which encode the E3 ligases MOS4-ASSOCIATED COMPLEX 3A (MAC3A) and MAC3B, respectively. The mac3a-1 and mac3b-1 mutations partially suppressed the high ploidy level and organ size phenotypes observed in the da3-1 mutant. Biochemical analysis showed that MAC3A and MAC3B physically interacted with and ubiquitinated UBP14/DA3 to modulate its stability. We previously reported that UBP14/DA3 acts upstream of the B-type cyclin-dependent kinase CDKB1;1 and maintains its stability to inhibit endoreduplication and cell growth. In this work, MAC3A and MAC3B were found to promote the degradation of CDKB1;1 by ubiquitinating UBP14/DA3. Genetic analysis suggests that MAC3A and MAC3B act in a common pathway with UBP14/DA3 to control endoreduplication and organ size. Thus, our findings define a regulatory module, MAC3A/MAC3B-UBP14-CDKB1;1, that plays a critical role in determining organ size and endoreduplication in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ligasas/metabolismo , Tamaño de los Órganos , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
9.
Plant Physiol ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38850036

RESUMEN

Water transportation to developing tissues relies on the structure and function of plant xylem cells. Plant microtubules govern the direction of cellulose microfibrils and guide secondary cell wall formation and morphogenesis. However, the relevance of microtubule-determined xylem wall thickening patterns in plant hydraulic conductivity remains unclear. In the present study, we identified a maize (Zea mays) semi-dominant mutant, designated drought-overly-sensitive1 (ZmDos1), the upper leaves of which wilted even when exposed to well-watered conditions during growth; the wilting phenotype was aggravated by increased temperatures and decreased humidity. Protoxylem vessels in the stem and leaves of the mutant showed altered thickening patterns of the secondary cell wall (from annular to spiral), decreased inner diameters, and limited water transport efficiency. The causal mutation for this phenotype was found to be a G-to-A mutation in the maize gene α-tubulin4, resulting in a single amino acid substitution at position 196 (E196K). Ectopic expression of the mutant α-tubulin4 in Arabidopsis (Arabidopsis thaliana) changed the orientation of microtubule arrays, suggesting a determinant role of this gene in microtubule assembly and secondary cell wall thickening. Our findings suggest that the spiral wall thickenings triggered by the α-tubulin mutation are stretched during organ elongation, causing a smaller inner diameter of the protoxylem vessels and affecting water transport in maize. This study underscores the importance of tubulin-mediated protoxylem wall thickening in regulating plant hydraulics, improves our understanding of the relationships between protoxylem structural features and functions, and offers candidate genes for the genetic enhancement of maize.

10.
Plant Cell ; 34(6): 2286-2308, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35263433

RESUMEN

CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1), a well-characterized E3 ubiquitin ligase, is a central repressor of seedling photomorphogenic development in darkness. However, whether COP1 is involved in modulating abscisic acid (ABA) signaling in darkness remains largely obscure. Here, we report that COP1 is a positive regulator of ABA signaling during Arabidopsis seedling growth in the dark. COP1 mediates ABA-induced accumulation of ABI5, a transcription factor playing a key role in ABA signaling, through transcriptional and post-translational regulatory mechanisms. We further show that COP1 physically interacts with ABA-hypersensitive DCAF1 (ABD1), a substrate receptor of the CUL4-DDB1 E3 ligase targeting ABI5 for degradation. Accordingly, COP1 directly ubiquitinates ABD1 in vitro, and negatively regulates ABD1 protein abundance in vivo in the dark but not in the light. Therefore, COP1 promotes ABI5 protein stability post-translationally in darkness by destabilizing ABD1 in response to ABA. Interestingly, we reveal that ABA induces the nuclear accumulation of COP1 in darkness, thus enhancing its activity in propagating the ABA signal. Together, our study uncovers that COP1 modulates ABA signaling during seedling growth in darkness by mediating ABA-induced ABI5 accumulation, demonstrating that plants adjust their ABA signaling mechanisms according to their light environment.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Oscuridad , Regulación de la Expresión Génica de las Plantas , Plantones/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
11.
Plant Cell ; 34(4): 1308-1325, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-34999895

RESUMEN

Endoreduplication, a process in which DNA replication occurs in the absence of mitosis, is found in all eukaryotic kingdoms, especially plants, where it is assumed to be important for cell growth and cell fate maintenance. However, a comprehensive understanding of the mechanism regulating endoreduplication is still lacking. We previously reported that UBIQUITIN-SPECIFIC PROTEASE14 (UBP14), encoded by DA3, acts upstream of CYCLIN-DEPENDENT KINASE B1;1 (CDKB1;1) to influence endoreduplication and cell growth in Arabidopsis thaliana. The da3-1 mutant possesses large cotyledons with enlarged cells due to high ploidy levels. Here, we identified a suppressor of da3-1 (SUPPRESSOR OF da3-1 6; SUD6), encoding CYCLIN-DEPENDENT KINASE G2 (CDKG2), which promotes endoreduplication and cell growth. CDKG2/SUD6 physically associates with CDKB1;1 in vivo and in vitro. CDKB1;1 directly phosphorylates SUD6 and modulates its stability. Genetic analysis indicated that SUD6 acts downstream of DA3 and CDKB1;1 to control ploidy level and cell growth. Thus, our study establishes a regulatory cascade for UBP14/DA3-CDKB1;1-CDKG2/SUD6-mediated control of endoreduplication and cell growth in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Quinasas Ciclina-Dependientes/genética , Endorreduplicación/genética , Ubiquitina/genética
12.
Plant Cell ; 34(5): 1890-1911, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35166333

RESUMEN

The unique morphology of grass stomata enables rapid responses to environmental changes. Deciphering the basis for these responses is critical for improving food security. We have developed a planta platform of single-nucleus RNA-sequencing by combined fluorescence-activated nuclei flow sorting, and used it to identify cell types in mature and developing stomata from 33,098 nuclei of the maize epidermis-enriched tissues. Guard cells (GCs) and subsidiary cells (SCs) displayed differential expression of genes, besides those encoding transporters, involved in the abscisic acid, CO2, Ca2+, starch metabolism, and blue light signaling pathways, implicating coordinated signal integration in speedy stomatal responses, and of genes affecting cell wall plasticity, implying a more sophisticated relationship between GCs and SCs in stomatal development and dumbbell-shaped guard cell formation. The trajectory of stomatal development identified in young tissues, and by comparison to the bulk RNA-seq data of the MUTE defective mutant in stomatal development, confirmed known features, and shed light on key participants in stomatal development. Our study provides a valuable, comprehensive, and fundamental foundation for further insights into grass stomatal function.


Asunto(s)
Estomas de Plantas , Zea mays , Humanos , Hojas de la Planta/metabolismo , Estomas de Plantas/metabolismo , Poaceae/genética , Transcriptoma/genética , Zea mays/genética
13.
EMBO J ; 39(2): e102602, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31802519

RESUMEN

Plants establish mutualistic associations with beneficial microbes while deploying the immune system to defend against pathogenic ones. Little is known about the interplay between mutualism and immunity and the mediator molecules enabling such crosstalk. Here, we show that plants respond differentially to a volatile bacterial compound through integral modulation of the immune system and the phosphate-starvation response (PSR) system, resulting in either mutualism or immunity. We found that exposure of Arabidopsis thaliana to a known plant growth-promoting rhizobacterium can unexpectedly have either beneficial or deleterious effects to plants. The beneficial-to-deleterious transition is dependent on availability of phosphate to the plants and is mediated by diacetyl, a bacterial volatile compound. Under phosphate-sufficient conditions, diacetyl partially suppresses plant production of reactive oxygen species (ROS) and enhances symbiont colonization without compromising disease resistance. Under phosphate-deficient conditions, diacetyl enhances phytohormone-mediated immunity and consequently causes plant hyper-sensitivity to phosphate deficiency. Therefore, diacetyl affects the type of relation between plant hosts and certain rhizobacteria in a way that depends on the plant's phosphate-starvation response system and phytohormone-mediated immunity.


Asunto(s)
Arabidopsis/inmunología , Diacetil/farmacología , Fosfatos/metabolismo , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta/inmunología , Raíces de Plantas/inmunología , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Bacterias/inmunología , Bacterias/metabolismo , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Rizosfera , Simbiosis , Compuestos Orgánicos Volátiles/farmacología
14.
J Cell Sci ; 135(24)2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36453135

RESUMEN

Cilia are conserved organelles found in many cell types in eukaryotes, and their dysfunction causes defects in environmental sensing and signaling transduction; such defects are termed ciliopathies. Distinct cilia have cell-specific morphologies and exert distinct functions. However, the underlying mechanisms of cell-specific ciliogenesis and regulation are unclear. Here, we identified a WD40-repeat (WDR) protein, NMTN-1 (the homolog of mammalian WDR47), and show that it is specifically required for ciliogenesis of AWB chemosensory neurons in C. elegans. NMTN-1 is expressed in the AWB chemosensory neuron pair, and is enriched at the basal body (BB) of the AWB cilia. Knockout of nmtn-1 causes abnormal AWB neuron cilia morphology, structural integrity, and induces aberrant AWB-mediated aversive behaviors. We further demonstrate that nmtn-1 deletion affects movement of intraflagellar transport (IFT) particles and their cargo delivery in AWB neurons. Our results indicate that NMTN-1 is essential for AWB neuron ciliary morphology and function, which reveal a novel mechanism for cell-specific ciliogenesis. Given that WDR47/NMTN-1 is conserved in mammals, our findings may help understanding of the process of cell-specific ciliogenesis and provide insights for treating ciliopathies.


Asunto(s)
Caenorhabditis elegans , Ciliopatías , Animales , Transporte Biológico , Cilios/metabolismo , Neuronas/metabolismo , Ciliopatías/metabolismo , Mamíferos
15.
New Phytol ; 241(1): 314-328, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37865884

RESUMEN

Gossypol and the related terpenoids are stored in the pigment gland to protect cotton plants from biotic stresses, but little is known about the synthetic sites of these metabolites. Here, we showed that GoPGF, a key gene regulating gland formation, was expressed in gland cells and roots. The chromatin immunoprecipitation sequencing (ChIP-seq) analysis demonstrated that GoPGF targets GhJUB1 to regulate gland morphogenesis. RNA-sequencing (RNA-seq) showed high accumulation of gossypol biosynthetic genes in gland cells. Moreover, integrated analysis of the ChIP-seq and RNA-seq data revealed that GoPGF binds to the promoter of several gossypol biosynthetic genes. The cotton callus overexpressing GoPGF had dramatically increased the gossypol levels, indicating that GoPGF can directly activate the biosynthesis of gossypol. In addition, the gopgf mutant analysis revealed the existence of both GoPGF-dependent and -independent regulation of gossypol production in cotton roots. Our study revealed that the pigment glands are synthetic sites of gossypol in aerial parts of cotton and that GoPGF plays a dual role in regulating gland morphogenesis and gossypol biosynthesis. The study provides new insights for exploring the complex relationship between glands and the metabolites they store in cotton and other plant species.


Asunto(s)
Gosipol , Gosipol/metabolismo , Gossypium/genética , Gossypium/metabolismo , Terpenos , Componentes Aéreos de las Plantas
16.
Osteoporos Int ; 35(1): 41-52, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37704919

RESUMEN

This study is the first to measure global burden of hip fracture in patients aged 55 years and older across 204 countries and territories from 1990 to 2019. Our study further proved that the global burden of hip fracture is still large. Hip fractures among males are perhaps underestimated, and older adults should be given more attention. PURPOSE: Hip fracture is a tremendous universal public health challenge, but no updated comprehensive and comparable assessment of hip fracture incidence and burden exists for most of the world in older adults. METHODS: Using data from the Global Burden of Diseases (GBD) 2019, we estimated the number and rates of the incidence, prevalence, and years lived with disability (YLD) of hip fracture across 204 countries and territories in patients aged 55 years and older from 1990 to 2019. RESULTS: In 2019, the incidence, prevalence, and YLDs rates of hip fracture in patients aged 55 years and older were 681.35 (95% UI 508.36-892.27) per 100000 population, 1191.39 (95% UI 1083.80-1301.52) per 100000 population, and 130.78 (95% UI 92.26-175.30) per 100000 population. During the three decades, the incidence among people aged below 60 years showed a downward trend, whereas it showed a rapid upward trend among older adults. All the numbers and rates of hip fractures among females were higher than those among males and increased with age, with the highest number and rate in the highest age group. Notably, the male to female ratio of the incidence for people aged over 55 years increased from 0.577 in 1990 to 0.612 in 2019. Falls were the leading cause among both sexes and in all age groups. CONCLUSIONS: The incidence and the number of hip fractures among patients aged 55 years and older increased over the past three decades, indicating that the global burden of hip fracture is still large. Hip fractures among males are perhaps underestimated, and older adults should be given more attention.


Asunto(s)
Personas con Discapacidad , Fracturas de Cadera , Humanos , Masculino , Femenino , Anciano , Carga Global de Enfermedades , Incidencia , Prevalencia , Fracturas de Cadera/epidemiología , Salud Global , Años de Vida Ajustados por Calidad de Vida
17.
BMC Cancer ; 24(1): 293, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438901

RESUMEN

BACKGROUND: Hepatic proteins, including albumin, prealbumin, and transferrin have been confirmed to be prognostic predictors in various cancers. This study aimed to comprehensively assess the prognostic value of these three serum markers in patients with cancer cachexia. METHODS: This multicenter prospective cohort study included 1303 cancer cachexia patients, among whom 592 deaths occurred during a median follow-up of 20.23 months. The definition of cachexia was based on the 2011 international consensus. Concordance index (C-index) and receiver operating characteristic (ROC) curves were applied to compare the prognostic performance. The primary outcome was overall survival, which was calculated using the Kaplan-Meier method generated by log-rank test. A Cox proportional hazard regression model was used to identify independent predictors associated with survival. The secondary outcomes included 90-days mortality and quality of life (QoL). RESULTS: C-index and ROC curves showed that albumin had the most accurate predictive capacity for survival, followed by transferrin and prealbumin. Multivariate Cox analysis confirmed that low albumin (hazard ratio [HR] = 1.51, 95% confidence interval [95%CI] = 1.28-1.80, P < 0.001), prealbumin (HR = 1.42, 95%CI = 1.19-1.69, P < 0.001), and transferrin (HR = 1.50, 95%CI = 1.25-1.80, P < 0.001) were independent risk factors for long-term survival in cancer patients with cachexia. In subgroup analysis, the prognostic value of low albumin was significant in patients with upper gastrointestinal, hepatobiliary and pancreatic, and colorectal cancers; low prealbumin was significant in colorectal cancer; and low transferrin was significant in patients with upper gastrointestinal and colorectal cancer. All three hepatic proteins were valuable as prognostic predictors for patients with advanced (Stage III and IV) cancer with cachexia. The risks of 90-days mortality and impaired QoL were higher in cachexia patients with low albumin, prealbumin, and transferrin levels. CONCLUSION: Low albumin, prealbumin, and transferrin levels were all independent prognostic factors affecting patients with cancer cachexia, especially in patients in the advanced stages. These results highlight the value of routinely checking serum hepatic proteins in clinical practice to predict the prognosis of patients with cancer cachexia.


Asunto(s)
Neoplasias Colorrectales , Prealbúmina , Humanos , Calidad de Vida , Caquexia/diagnóstico , Caquexia/etiología , Estudios Prospectivos , Pronóstico , Albúminas , Proteínas Sanguíneas , Estudios de Cohortes , Transferrinas
18.
Ann Hematol ; 103(2): 405-408, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38095655

RESUMEN

Immune thrombocytopenia (ITP) is a common bleeding disorder in children. First-line medicines (glucocorticoids and immunoglobulin) may not be effective for some children, endangering their lives, posing challenges for healthcare facilities, and leading to an unfavorable prognosis. As a sialidase inhibitor, oseltamivir phosphate can reduce the destruction of platelets in liver macrophages by inhibiting the sialylation of platelets, and finally achieve the purpose of increasing platelet count. In this paper, three cases of children with ITP who failed first-line therapy and were cured by oral administration of oseltamivir phosphate granules were reported. The mechanism of action of oseltamivir phosphate granules was clarified.


Asunto(s)
Púrpura Trombocitopénica Idiopática , Trombocitopenia , Niño , Humanos , Púrpura Trombocitopénica Idiopática/tratamiento farmacológico , Oseltamivir/uso terapéutico , Trombocitopenia/terapia , Recuento de Plaquetas , Plaquetas , Fosfatos
19.
Immunol Invest ; : 1-13, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38651786

RESUMEN

BACKGROUND: Sterile alpha and TIR motif-containing 1 (Sarm1) is known as a negative regulator of inflammatory responses. However, its role in inflammatory bowel disease (IBD) is still unclear. OBJECTIVE: This study aimed to explore the function of Sarm1 in IBD and its underlying mechanisms. Sarm1 and tumor necrosis factor (TNF) receptor associated factor 3 (TRAF3) knockout (KO) micewere established. METHODS: The colitis was induced using dextran sulfate sodium (DSS). Bone marrow-derived macrophages (BMDMs) were isolated and stimulated with lipopolysaccharides (LPS) or cytidine phosphate guanosine(CpG). Inflammatory cytokines were measured viaELISA. qPCR and Western blotting were used to determine the levels of the mRNA and protein expression, respectively. RESULTS: It was demonstrated that reduced expression of Sarm1 was correlated with the severity of IBD in ulcerative colitis patients, and also with the reduction of pro-inflammatory cytokines in the mouse model induced by DSS. It was further observed that Sarm1 KO enhanced the induction of pro-inflammatory cytokines in both animal and in vitro cell models. Sarm1 deficiency in macrophages increased the severity of colitis in the mouse model induced by DSS. Moreover, Sarm1 regulatedTRAF3 recruitment to myeloid differentiation primary response protein 88 (MyD88), which in turn controlled the MYD88-mediated inflammatory responses. CONCLUSIONS: In summary, our data suggest that Sarm1 controls the MYD88-mediated inflammatory responses in IBD via its regulation of TRAF3 recruitment.


1. Sarm1 KO enhances the induction of pro-inflammatory cytokines in both animal and in vitro cell models.2. Sarm1 deficiency in macrophages increases the severity of colitis in the mouse model.3. Sarm1 regulates TRAF3 recruitment to MyD88.

20.
Nucleic Acids Res ; 50(18): e104, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-35849350

RESUMEN

Long-read sequencing provides valuable information on difficult-to-map genomic regions, which can complement short-read sequencing to improve genome assembly, yet limited methods are available to accurately detect DNA methylation over long distances at a whole-genome scale. By combining our recently developed TET-assisted pyridine borane sequencing (TAPS) method, which enables direct detection of 5-methylcytosine and 5-hydroxymethylcytosine, with PacBio single-molecule real-time sequencing, we present here whole-genome long-read TAPS (wglrTAPS). To evaluate the performance of wglrTAPS, we applied it to mouse embryonic stem cells as a proof of concept, and an N50 read length of 3.5 kb is achieved. By sequencing wglrTAPS to 8.2× depth, we discovered a significant proportion of CpG sites that were not covered in previous 27.5× short-read TAPS. Our results demonstrate that wglrTAPS facilitates methylation profiling on problematic genomic regions with repetitive elements or structural variations, and also in an allelic manner, all of which are extremely difficult for short-read sequencing methods to resolve. This method therefore enhances applications of third-generation sequencing technologies for DNA epigenetics.


Asunto(s)
5-Metilcitosina , Metilación de ADN , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Animales , Compuestos de Boro , ADN/genética , Ratones , Piridinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA