Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Metab Eng ; 84: 158-168, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38942195

RESUMEN

Vitamin B5 [D-pantothenic acid (D-PA)] is an essential water-soluble vitamin that is widely used in the food and feed industries. Currently, the relatively low fermentation efficiency limits the industrial application of D-PA. Here, a plasmid-free D-PA hyperproducer was constructed using systematic metabolic engineering strategies. First, pyruvate was enriched by deleting the non-phosphotransferase system, inhibiting pyruvate competitive branches, and dynamically controlling the TCA cycle. Next, the (R)-pantoate pathway was enhanced by screening the rate-limiting enzyme PanBC and regulating the other enzymes of this pathway one by one. Then, to enhance NADPH sustainability, NADPH regeneration was achieved through the novel "PEACES" system by (1) expressing the NAD + kinase gene ppnk from Clostridium glutamicum and the NADP + -dependent gapCcae from Clostridium acetobutyricum and (2) knocking-out the endogenous sthA gene, which interacts with ilvC and panE in the D-PA biosynthesis pathway. Combined with transcriptome analysis, it was found that the membrane proteins OmpC and TolR promoted D-PA efflux by increasing membrane fluidity. Strain PA132 produced a D-PA titer of 83.26 g/L by two-stage fed-batch fermentation, which is the highest D-PA titer reported so far. This work established competitive producers for the industrial production of D-PA and provided an effective strategy for the production of related products.


Asunto(s)
Escherichia coli , Ingeniería Metabólica , Ácido Pantoténico , Escherichia coli/genética , Escherichia coli/metabolismo , Ácido Pantoténico/biosíntesis , Ácido Pantoténico/metabolismo
2.
Physiol Plant ; 176(3): e14367, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38837234

RESUMEN

Inoculation of arbuscular mycorrhizal fungi (AMF) or biochar (BC) application can improve photosynthesis and promote plant growth under saline-alkali stress. However, little is known about the effects of the two combined on growth and physiological characteristics of switchgrass under saline-alkali stress. This study examined the effects of four treatments: (1) no AMF inoculation and no biochar addition (control), (2) biochar (BC) alone, (3) AMF (Rhizophagus irregularis, Ri) alone, and (4) the combination of both (BC+Ri) on the plant biomass, antioxidant enzymes, chlorophyll, and photosynthetic parameters of switchgrass under saline-alkali stress. The results showed that the above-ground, belowground and total biomass of switchgrass in the BC+Ri treatment group was significantly higher (+136.7%, 120.2% and 132.4%, respectively) than in other treatments compared with Control. BC+Ri treatment significantly increased plant leaves' relative chlorophyll content, antioxidant enzyme activity, and photosynthesis parameters. It is worth noting that the transpiration rate, stomatal conductance, net photosynthetic rate, PSII efficiency and other photosynthetic-related indexes of the BC+Ri treatment group were the highest (38% to 54% higher than other treatments). The fitting results of light response and CO2 response curves showed that the light saturation point, light compensation point, maximum carboxylation rate and maximum electron transfer rate of switchgrass in the Ri+BC treatment group were the highest. In conclusion, biochar combined with Ri has potential beneficial effects on promoting switchgrass growth under saline-alkali stress and improving the activity of antioxidant enzymes and photosynthetic characteristics of plants.


Asunto(s)
Carbón Orgánico , Clorofila , Micorrizas , Panicum , Fotosíntesis , Carbón Orgánico/farmacología , Panicum/fisiología , Panicum/efectos de los fármacos , Panicum/crecimiento & desarrollo , Fotosíntesis/fisiología , Clorofila/metabolismo , Micorrizas/fisiología , Glomeromycota/fisiología , Álcalis , Biomasa , Hojas de la Planta/fisiología , Antioxidantes/metabolismo
3.
Ecotoxicol Environ Saf ; 281: 116592, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38901167

RESUMEN

Arbuscular mycorrhizal fungi (AMF) and biochar application individually can enhance plant tolerance to saline-alkali stress and promote plant growth efficiency. However, little is known about the potential synergistic effects of their combination on improving plant growth and soil quality under saline-alkali stress. This experiment adopted the potted method to explore the effects of four treatments on switchgrass growth and soil quality: biochar (BC), Rhizophagus irregularis (Ri), biochar + Ri (BR) and a control without biochar or Ri (CK). Compared to the CK treatment, the switchgrass biomass increased by 92.4 %, 148.6 %, and 177.3 % in the BC, Ri, and BR treatment groups, respectively. Similarly, the rhizosphere soil quality index increased by 29.33 %, 22.7 %, and 49.1 % in the respective treatment groups. The BR treatment significantly altered the rhizosphere soil microbial composition and diversity. Notably, compared to the other treatments, the archaeal α-diversity in the BR group showed a significant decrease. BR treatment significantly increased the relative abundance of bacteria, fungi and archaea at the genus level (e.g., Bacillus, Trichome and candidatus_methanopenens). Network analysis showed that the complexity and closeness of interactions between different microbial taxa were stronger in the BC, Ri and BR treatments than in the CK treatment, with BR being the more prominent. In summary, biochar combined with Ri has a better effect on promoting the growth of switchgrass under saline-alkali stress, improving the quality of saline-alkali soil, and increasing soil microbial diversity. This study provides a new approach for the efficient development and utilization of saline-alkali land.


Asunto(s)
Carbón Orgánico , Micorrizas , Rizosfera , Microbiología del Suelo , Suelo , Suelo/química , Micorrizas/fisiología , Micorrizas/efectos de los fármacos , Álcalis , Microbiota/efectos de los fármacos , Biomasa , Panicum/efectos de los fármacos , Panicum/crecimiento & desarrollo , Desarrollo de la Planta/efectos de los fármacos
4.
Ecotoxicol Environ Saf ; 262: 115143, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37336091

RESUMEN

Owing to complex pore systems and chemical substances, soil aggregates provide a spatially heterogeneous microenvironment for adsorption capacity and microbial survival. As the widely used pesticide in farmlands, atrazine environmental behavior is not well known at the aggregate scale. In this study, Mollisol soil samples were sieved into four aggregate-size classes: large macroaggregates (>2 mm, LMa), small macroaggregates (1-2 mm, SMa), microaggregates (0.25-1 mm, Mia) and primary particles (<0.25 mm, P). The pore characteristics of each aggregate fraction was visualized by non-invasive X-ray three-dimensional microscopic computed tomography (3D-CT) combined with pore network extraction. The adsorption kinetics of atrazine in each aggregate-size fraction can be described well by a pseudo-second-order kinetic model. The adsorption isothermal process of atrazine can be better fitted by the Langmuir isotherm model than Freundlich isotherm model. There was an obvious linear correlation between the maximum atrazine adsorption capacity and aggregate SOC content as well as TN. In addition, the abundance of bacteria, actinomycetes and anaerobic bacteria in P was totally higher than those in SMa and Mia. Although pH is strongly linked to the bacterial community in the aggregate fraction, aggregate particle size explained 18 % for shaping the microbial community. Therefore, chemical properties and pore characteristics of each soil aggregate fraction both contributed to performance of atrazine adsorption behavior and microbial community.

5.
Ecotoxicol Environ Saf ; 256: 114849, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37011513

RESUMEN

High Cd pollution can damage plant physiology and seriously threaten ecological security and human health. Therefore, we designed a cropping system, arbuscular mycorrhizal fungi (AMF) - soybean - Solanum nigrum L., to solve the high Cd pollution problem in an environmentally and economically friendly way. The results showed that AMF were able to break free from the constraints of cocultivation and still promote plant photosynthesis and growth in combined treatments to resist Cd stress. In addition, cocultivation combined with AMF improved the antioxidant defense to scavenge reactive oxygen species by promoting the production of antioxidant enzymes and nonenzyme substances in host plants. The glutathione content in soybean and the catalase activity in nightshade were recorded at the highest values under cocultivation combined with AMF treatment, which were 23.68% and 129.12% higher than those of monoculture without AMF treatments. The improvement in antioxidant defense alleviated oxidative stress, which was manifested by the reduction in Cd dense electronic particles in the ultrastructure and a 26.38% decrease in MDA content. Furthermore, this cropping mode combined the advantages of cocultivation to improve the Cd extraction efficiency and Rhizophagus intraradices to limit Cd accumulation and transport so that Cd was more accumulated and restricted in the roots of the cocultivated Solanum nigrum L., and the Cd concentration in soybean beans was reduced by 56% compared with the soybean monoculture without AMF treatment. Therefore, we suggest that this cropping system is a comprehensive and mild remediation technology suitable for highly Cd-contaminated soil.


Asunto(s)
Micorrizas , Contaminantes del Suelo , Solanum nigrum , Humanos , Antioxidantes/metabolismo , Cadmio/análisis , Solanum nigrum/metabolismo , Glycine max/metabolismo , Técnicas de Cocultivo , Micorrizas/fisiología , Raíces de Plantas/metabolismo , Fotosíntesis , Contaminantes del Suelo/análisis
6.
Int J Med Sci ; 19(2): 402-415, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35165525

RESUMEN

Hypertension, diabetes mellitus, and coronary artery disease are common comorbidities and dangerous factors for infection and serious COVID-19. Polymorphisms in genes associated with comorbidities may help observe susceptibility and disease severity variation. However, specific genetic factors and the extent to which they can explain variation in susceptibility of severity are unclear. Therefore, we evaluated candidate genes associated with COVID-19 and hypertension, diabetes mellitus, and coronary artery disease. In particular, we performed searches against OMIM, NCBI, and other databases, protein-protein interaction network construction, and GO and KEGG pathway enrichment analyses. Results showed that the associated overlapping genes were TLR4, NLRP3, MBL2, IL6, IL1RN, IL1B, CX3CR1, CCR5, AGT, ACE, and F2. GO and KEGG analyses yielded 302 GO terms (q < 0.05) and 29 signaling pathways (q < 0.05), respectively, mainly including coronavirus disease-COVID-19 and cytokine-cytokine receptor interaction. IL6 and AGT were central in the PPI, with 8 and 5 connections, respectively. In this study, we identified 11 genes associated with both COVID-19 and three comorbidities that may contribute to infection and disease severity. The key genes IL6 and AGT are involved in regulating immune response, cytokine activity, and viral infection. Therefore, RAAS inhibitors, AGT antisense nucleotides, cytokine inhibitors, vitamin D, fenofibrate, and vaccines regulating non-immune and immune factors could be potential strategies to prevent and cure COVID-19. The study provides a basis for further investigation of genes and pathways with predictive value for the risk of infection and prognosis and could help guide drug and vaccine development to improve treatment efficacy and the development of personalised treatments, especially for COVID-19 individuals with common comorbidities.


Asunto(s)
COVID-19/genética , COVID-19/epidemiología , Comorbilidad , Enfermedad de la Arteria Coronaria/complicaciones , Enfermedad de la Arteria Coronaria/epidemiología , Enfermedad de la Arteria Coronaria/genética , Complicaciones de la Diabetes/epidemiología , Complicaciones de la Diabetes/genética , Humanos , Hipertensión/complicaciones , Hipertensión/epidemiología , Hipertensión/genética , Mutación , Mapas de Interacción de Proteínas
7.
Microb Ecol ; 81(2): 410-424, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32894355

RESUMEN

To predict the effects of nitrogen deposition on nitrogen-mineralizing enzyme activity and soil microbial community structure in artificial temperate forests in northern China, we studied the soil properties, nitrogen-mineralizing enzyme activity, and microbial community structure in the soil of a Korean pine plantation in which different concentrations (0, 20, 40, 80 kg N ha-1 year-1) of ammonium nitrate were applied for 5 consecutive years. The results showed that nitrogen addition at different concentrations did not significantly affect the soil pH. High nitrogen addition (80 kg N ha-1 year-1) significantly increased the soil organic matter, ammonium nitrogen, and nitrate nitrogen content in the Korean pine plantation, and ammonium nitrogen was the key factor that influenced the soil fungal community structure. The urease activity under the moderate nitrogen addition treatment (40 kg N ha-1 year-1) was significantly lower than that under the control (0 kg N ha-1 year-1), and the protease activity in the three treatments was also significantly lower than that in the control. There was no significant correlation between microbial community structure and the four mineralizing enzymes. After nitrogen addition at different concentrations, the Simpson and Shannon indexes of soil bacteria decreased significantly under low nitrogen addition (20 kg N ha-1 year-1), but the α-diversity index of soil fungi did not show significant differences under nitrogen addition. The microbial community composition was significantly changed by the different treatments. PLS-DA analysis showed that Tardiphaga was an important genus that made the greatest contribution to the differences in bacterial community composition among treatments, as was Taeniolella for fungal community composition. The low level of nitrogen addition inhibited nitrogen mineralization in the Korean pine plantation by reducing the relative abundances of Nitrosomonadaceae and Betaproteobacteriales and by reducing the abundances of symbiotrophic fungi. Berkelbacteria and Polyporales were bacteria and fungi, respectively, that changed significantly under the high nitrogen addition treatment (80 kg N ha-1 year-1). This study provides more data to support predictions of the changes in nitrogen-mineralizing enzyme activity and microbial community structure in artificial temperate forest soils in response to increased nitrogen deposition.


Asunto(s)
Microbiota , Nitrógeno/metabolismo , Microbiología del Suelo , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , China , Bosques , Hongos/clasificación , Hongos/genética , Hongos/aislamiento & purificación , Hongos/metabolismo , Nitratos/análisis , Nitratos/metabolismo , Nitrógeno/análisis , Péptido Hidrolasas/metabolismo , Pinus/microbiología , Suelo/química , Ureasa/metabolismo
8.
Inorg Chem ; 60(22): 17051-17062, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34694111

RESUMEN

To advance the structural development and fully explore the application potential, it is highly desirable but challenging to elucidate the relationship between the structures and properties of ZnII-LnIII heterometallic species. Herein, three types of ZnII-LnIII heterometallic compounds (LnIII = GdIII, TbIII) formulated as [Zn16Ln4L12(µ3-O)4(NO3)12]·8CH3CN (ZnLn-1), [Zn2Ln2L2(NO3)6(H2O)2]·3CH3CN (ZnLn-2), and [Zn4Ln2L8(OAc)12]·xCH3CN (ZnLn-3: for Ln = Gd, x = 5; for Ln = Tb, x = 4) were dictated by common inorganic anions, NO3- and OAc-, with the aid of the multidentate ligand H2L with propane as the central skeleton and 3-methoxysalicylamide and 3-methoxysalicylaldimine as terminal groups. ZnLn-1 features cubic cages with four {Zn4L3} tetrahedral subunits and four Ln3+ centers positioned at the eight vertices alternately when NO3- was introduced into the reaction system exclusively. An attempt to replace NO3- in ZnLn-1 with OAc- partially led to the formation of {Zn2Ln2L2} heterometallic wheels. Meanwhile, ZnLn-3 featuring double-hairpin-like {Zn4Ln2L4} hemicycles that are orthogonal to each other assisted by intermolecular hydrogen bonds was constructed when NO3- in ZnLn-1 was completely replaced by OAc-. Their structural integrity in solution were ascertained by both emission and 1H NMR spectroscopy. Ascribed to the different Zn2+-containing antenna, ZnTb-2 possesses a relatively strong emission characteristic of Tb3+; ZnTb-1 has moderate Tb3+ luminescence, yet an absence of Tb3+ emission is found in ZnTb-3. Such an emission difference could be mainly attributed to the antenna effect directed by distinct structural characteristics induced by anions. The anion-dictated self-assembly strategy presented herein not only offers a facile approach to regulate the coordination mode of H2L to such an extent to obtain diverse structures of ZnII-LnIII heterometallic species but also provides an understanding of how common inorganic anions tune coordination-driven self-assemblies as well as the subsequent luminescence properties.

9.
Int J Mol Sci ; 20(3)2019 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-30759832

RESUMEN

To reveal the mechanism of salinity stress alleviation by arbuscular mycorrhizal fungi (AMF), we investigated the growth parameter, soluble sugar, soluble protein, and protein abundance pattern of E. angustifolia seedlings that were cultured under salinity stress (300 mmol/L NaCl) and inoculated by Rhizophagus irregularis (RI). Furthermore, a label-free quantitative proteomics approach was used to reveal the stress-responsive proteins in the leaves of E. angustifolia. The result indicates that the abundance of 75 proteins in the leaves was significantly influenced when E. angustifolia was inoculated with AMF, which were mainly involved in the metabolism, signal transduction, and reactive oxygen species (ROS) scavenging. Furthermore, we identified chorismate mutase, elongation factor mitochondrial, peptidyl-prolyl cis-trans isomerase, calcium-dependent kinase, glutathione S-transferase, glutathione peroxidase, NADH dehydrogenase, alkaline neutral invertase, peroxidase, and other proteins closely related to the salt tolerance process. The proteomic results indicated that E. angustifolia seedlings inoculated with AMF increased the secondary metabolism level of phenylpropane metabolism, enhanced the signal transduction of Ca2+ and ROS scavenging ability, promoted the biosynthesis of protein, accelerated the protein folding, and inhibited the degradation of protein under salt stress. Moreover, AMF enhanced the synthesis of ATP and provided sufficient energy for plant cell activity. This study implied that symbiosis of halophytes and AMF has potential as an application for the improvement of saline-alkali soils.


Asunto(s)
Elaeagnaceae/metabolismo , Elaeagnaceae/microbiología , Micorrizas/metabolismo , Proteoma/metabolismo , Estrés Salino/fisiología , Plantones/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Proteómica/métodos , Especies Reactivas de Oxígeno/metabolismo , Tolerancia a la Sal/fisiología , Plantas Tolerantes a la Sal/metabolismo , Transducción de Señal/fisiología , Simbiosis/fisiología
10.
BMC Plant Biol ; 18(1): 289, 2018 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-30463523

RESUMEN

BACKGROUND: Arbuscular mycorrhizal (AM) fungi form symbiotic associations with host plants can protect host plants against diverse biotic and abiotic stresses, and promote biodegradation of various contaminants. However, the molecular mechanisms of how the arbuscular mycorrhizal fungi and host plant association on atrazine stress were still poorly understood. To better characterize how arbuscular mycorrhizal fungi and host plant interactions increase atrazine stress, we performed physiological and proteomic analysis of Funneliformis mosseae (mycorrhizal fungi) and Medicago sativa (alfalfa) association under atrazine stress. RESULTS: The results showed that in the Arbuscular mycorrhizal, protective enzymes were up regulated and the malondialdehyde content increased relative to those of non-mycorrhizal M.sativa. We also examined the atrazine degradation rates within the nutrient solution, and a 44.43% reduction was observed with the mycorrhizal M.sativa, with 30.83% of the reduction attributed to F. mosseae. The accumulation content in root and stem of mycorrhizal M.sativa were obviously increased 11.89% and 16.33% than those of non- mycorrhizal M.sativa. The activity of PPO, POD, CAT and SOD in mycorrhizal M.sativa were obviously higher than non mycorrhizal M.sativa under atrazine stess. We identified differential root proteins using isobaric tags for relative and absolute quantization coupled with liquid chromatography-mass spectrometry, with 533 proteins identified (276 unregulated and 257 downregulated). The differentially expressed proteins were further examined using GO, BLAST comparisons, and a literature inquiry and were classified into the categories of atrazine degradation (37.1%); atrazine stress response (28.6%); plant immune responses (14.3%); translation, synthesis, and processing (10%); and signal transduction and biological processes (10%). Furthermore, we identified glycosyl transferase, glutathione S-transferase, laccase, cytochrome P450 monooxygenase, peroxidase, and other proteins closely related to the degradation process. CONCLUSIONS: Mycorrhizal Medicago showed improved atrazine degradation within the culturing medium and increased atrazine enrichment in the roots and stems. Additionally, AMF increased the plant root response to atrazine, with relevant enzymes up regulated and toxic effects alleviated. Overall, the findings of this study show that AMF played an important role in easing atrazine stress in plants and contributed to atrazine remediation and further contributed to the understanding of the molecular mechanism associated with atrazine stresses and potential mycorrhizal contributions in M.sativa.


Asunto(s)
Atrazina/toxicidad , Glomeromycota/metabolismo , Herbicidas/toxicidad , Medicago sativa/metabolismo , Micorrizas/metabolismo , Proteoma/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Atrazina/metabolismo , Biodegradación Ambiental , Glomeromycota/efectos de los fármacos , Herbicidas/metabolismo , Medicago sativa/efectos de los fármacos , Medicago sativa/microbiología , Micorrizas/efectos de los fármacos , Proteínas de Plantas/metabolismo , Contaminantes del Suelo/metabolismo , Simbiosis
11.
Ecotoxicol Environ Saf ; 166: 102-108, 2018 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-30253284

RESUMEN

Atrazine is an ingredient in photosynthesis-inhibiting herbicides and has been widely used to combat weeds in farmland. However, most atrazine that is applied fails to degrade in the soil and subsequently affects non-target plants. In this study, we investigated the influence of arbuscular mycorrhizal fungi (AMF), Funneliformis mosseae on the photosynthesis-related parameters, chlorophyll content, and chloroplast ultrastructure in alfalfa plants, some of which had been exposed to atrazine. Our results showed that the percentage of AMF hyphal colonization reached 91.23% 35 days after the alfalfa was planted, which suggests a symbiotic relationship between F. mosseae and alfalfa roots. F. mosseae alleviated the inhibition of net photosynthesis and stomatal function significantly in alfalfa exposed to atrazine for 24 h. A chlorophyll fluorescence analysis revealed that F. mosseae prevented a major reduction in the performance of photosystem II (PSII) photochemistry in the presence of atrazine, such as the relative decrease of Fv/Fm between the non-mycorrhizal and F. mosseae mycorrhizal treatments was 4.4% and 5.8% after 24 and 48 h of atrazine exposure time. However, F. mosseae has no significant alleviation on a sharp reduction in the chlorophyll a, chlorophyll b and carotenoid content in alfalfa exposed to atrazine. For the chloroplast ultrastructure in alfalfa exposed to atrazine, the number of both plastoglobules and partial granal stacks was greater in the presence of F. mosseae. In general, our results indicate that the F. mosseae inoculation was beneficial to sustain photosynthesis-related performance, such as net photosynthesis, stomatal conductance, the maximum quantum yield (Fv/Fm) and effective quantum yield (ΦPSII) of PSII photochemistry in alfalfa after exposure to atrazine, because the mycorrhizal alfalfa had a greater number of plastoglobules and granal stacks in the chloroplast, thereby enhancing its resistance to the oxidative damage induced by atrazine.


Asunto(s)
Atrazina/toxicidad , Herbicidas/toxicidad , Medicago sativa/efectos de los fármacos , Carotenoides/metabolismo , Clorofila/metabolismo , Cloroplastos/efectos de los fármacos , Cloroplastos/metabolismo , Cloroplastos/ultraestructura , Glomeromycota/fisiología , Medicago sativa/microbiología , Medicago sativa/fisiología , Micorrizas/fisiología , Estrés Oxidativo/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Complejo de Proteína del Fotosistema II/efectos de los fármacos , Complejo de Proteína del Fotosistema II/metabolismo , Raíces de Plantas/metabolismo
12.
Mycorrhiza ; 28(5-6): 567-571, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29934746

RESUMEN

Atrazine induces the production of reactive oxygen species (ROS), which are detoxified by enzymatic and nonenzymatic mechanisms in plants. Arbuscular mycorrhizal fungi improve on this first level of plant resistance to environmental stresses through the antioxidant defense system, but the way in which nonenzymatic antioxidants relate to atrazine in arbuscular mycorrhizal roots is not well-known. In this study, a symbiotic relationship between Funneliformis mosseae and Medicago sativa L. roots was established successfully. Then, a non-targeted metabolite analysis which was hypothesis-free concerning particular metabolites was used to provide a comprehensive metabolic fingerprint and to subsequently identify, quantify, and finally find different nonenzymatic antioxidants in mycorrhizal and non-mycorrhizal roots following atrazine addition. Tocotrienol, (iso)flavonoids, and their derivate concentrations in F. mosseae-M. sativa mycorrhizal roots were significantly higher than in non-mycorrhizal roots. The majority of (iso)flavonoids and their derivates increased significantly via methylation or glycosylation, but dehydroascorbic acid in its oxidized form decreased significantly in mycorrhizal roots. In general, F. mosseae colonization results in significantly greater nonenzymatic antioxidant tocotrienol and (iso)flavonoids derivate concentrations in M. sativa roots, which may be associated with resistance to atrazine.


Asunto(s)
Antioxidantes/análisis , Atrazina/farmacología , Medicago sativa/metabolismo , Micorrizas/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Simbiosis , Flavonoides/análisis , Medicago sativa/microbiología , Micorrizas/metabolismo , Raíces de Plantas/microbiología , Estrés Fisiológico
13.
J Cell Mol Med ; 19(3): 511-20, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25534251

RESUMEN

Mesenchymal stem cells (MSCs) are a group of stem cells derived from the mesodermal mesenchyme. MSCs can be obtained from a variety of tissues, including bone marrow, umbilical cord tissue, umbilical cord blood, peripheral blood and adipose tissue. Under certain conditions, MSCs can differentiate into many cell types both in vitro and in vivo, including hepatocytes. To date, four main strategies have been developed to induce the transdifferentiation of MSCs into hepatocytes: addition of chemical compounds and cytokines, genetic modification, adjustment of the micro-environment and alteration of the physical parameters used for culturing MSCs. Although the phenomenon of transdifferentiation of MSCs into hepatocytes has been described, the detailed mechanism is far from clear. Generally, the mechanism is a cascade reaction whereby stimulating factors activate cellular signalling pathways, which in turn promote the production of transcription factors, leading to hepatic gene expression. Because MSCs can give rise to hepatocytes, they are promising to be used as a new treatment for liver dysfunction or as a bridge to liver transplantation. Numerous studies have confirmed the therapeutic effects of MSCs on hepatic fibrosis, cirrhosis and other liver diseases, which may be related to the differentiation of MSCs into functional hepatocytes. In addition to transdifferentiation into hepatocytes, when MSCs are used to treat liver disease, they may also inhibit hepatocellular apoptosis and secrete various bioactive molecules to promote liver regeneration. In this review, the capacity and molecular mechanism of MSC transdifferentiation, and the therapeutic effects of MSCs on liver diseases are thoroughly discussed.


Asunto(s)
Transdiferenciación Celular/fisiología , Hepatocitos/citología , Hepatopatías/terapia , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Tejido Adiposo/citología , Células de la Médula Ósea/citología , Diferenciación Celular/fisiología , Citocinas/metabolismo , Factor de Crecimiento Epidérmico/farmacología , Sangre Fetal/citología , Factores de Crecimiento de Fibroblastos/farmacología , Humanos , Regeneración Hepática/fisiología , Trasplante de Hígado , Transducción de Señal
14.
Crit Care Med ; 43(1): 109-19, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25251762

RESUMEN

OBJECTIVE: The efficacy and safety of ultrasound-guided abdominal paracentesis drainage ahead of percutaneous catheter drainage as the new second step of a step-up approach are evaluated. DESIGN: The observed parameters were compared between groups including mortality, infection, organ failure, inflammatory factor levels, indexes of further interventions, and drainage-related complications. PATIENTS: This retrospective study included 102 consecutive patients with acute pancreatitis from June 2009 to June 2011. INTERVENTIONS: In this step-up approach, all patients subsequently received medical management, percutaneous catheter drainage (with or without previous abdominal paracentesis drainage), and necrosectomy if necessary according to indications. The patients were divided into two groups: 53 cases underwent abdominal paracentesis drainage followed by percutaneous catheter drainage (abdominal paracentesis drainage + percutaneous catheter drainage group) and 49 cases were managed only with percutaneous catheter drainage (percutaneous catheter drainage-alone group). MEASUREMENTS AND MAIN RESULTS: The demographic data and severity scores of the two groups were comparable. The mortality rate was lower in the abdominal paracentesis drainage + percutaneous catheter drainage group (0%) than the percutaneous catheter drainage-alone group (8.2%) (p = 0.050). Compared with the percutaneous catheter drainage-alone group, the laboratory variables of the abdominal paracentesis drainage + percutaneous catheter drainage group decreased more rapidly, the mean number of failed organs was lower, and the interval from the onset of disease to further interventions was much longer. However, there was no significant difference in the prevalence and duration of infections between the two groups. CONCLUSION: Application of abdominal paracentesis drainage ahead of percutaneous catheter drainage is safe and beneficial to patients by reducing inflammatory factors, postponing further interventions, and delaying or avoiding multiple organ failure.


Asunto(s)
Drenaje/métodos , Pancreatitis/terapia , Paracentesis/métodos , APACHE , Cavidad Abdominal , Enfermedad Aguda , Drenaje/efectos adversos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Insuficiencia Multiorgánica/epidemiología , Insuficiencia Multiorgánica/etiología , Pancreatitis/complicaciones , Pancreatitis/mortalidad , Estudios Retrospectivos , Ultrasonografía Intervencional/métodos
15.
Chem Sci ; 15(21): 8052-8061, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38817568

RESUMEN

Room temperature phosphorescence (RTP) materials are increasingly recognized for their superior luminescent properties, which are pivotal in applications such as anti-counterfeiting, information storage, and optoelectronics. Despite this, the sensitivity of most RTP systems to humidity presents a significant challenge in achieving durable RTP performance in aqueous environments. This study proposes a strategy to enhance organic room-temperature phosphorescence through racemization. By incorporating external racemates of various chiral phosphors-NDBD-Ph, NDBD-Ph-Ph, NDBD-CH3, and NDBD-O-CH3-into a polyacrylonitrile (PAN) matrix, we significantly enhance the RTP properties (quantum yield, lifetime, and afterglow-time) of the resultant films. This enhancement can be attributed to the increased density of racemic molecules in the matrix and the increased spin-orbit coupling (SOC), facilitating the development of a long-lasting polymer RTP system in water. Notably, the racemic rac-NDBD-Ph@PAN film exhibits a persistent bright turquoise afterglow, even after immersion in water for a month. Furthermore, for the first time, we achieved an enhanced green to cyan RTP response to pH variations under both acidic and alkaline conditions (pH = 2-12), with the maximum phosphorescence emission intensity increasing up to threefold. The remarkable water stability, reversible response characteristics, and enhanced phosphorescence properties of this system offer promising potential for dynamic information encryption in aqueous environments.

16.
Sci Total Environ ; 927: 172349, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38615770

RESUMEN

Nitrogen (N) deposition is a global environmental issue that can have significant impacts on the community structure and function in ecosystems. Fungi play a key role in soil biogeochemical cycles and their community structures are tightly linked to the health and productivity of forest ecosystems. Based on high-throughput sequencing and ergosterol extraction, we examined the changes in community structure, composition, and biomass of soil ectomycorrhizal (ECM) and saprophytic (SAP) fungi in 0-10 cm soil layer after 8 years of continuous N addition and their driving factors in a temperate Korean pine plantation in northeast China. Our results showed that N addition increased fungal community richness, with the highest richness and Chao1 index under the low N treatment (LN: 20 kg N ha-1 yr-1). Based on the FUN Guild database, we found that the relative abundance of ECM and SAP fungi increased first and then decreased with increasing N deposition concentration. The molecular ecological network analysis showed that the interaction between ECM and SAP fungi was enhanced by N addition, and the interaction was mainly positive in the ECM fungal network. N addition increased fungal biomass, and the total fungal biomass (TFB) was the highest under the MN treatment (6.05 ± 0.3 mg g-1). Overall, we concluded that N addition changed soil biochemical parameters, increased fungal activity, and enhanced functional fungal interactions in the Korean pine plantation over an 8-year simulated N addition. We need to consider the effects of complex soil conditions on soil fungi and emphasize the importance of regulating soil fungal community structure and biomass for managing forest ecosystems. These findings could deepen our understanding of the effects of increased N deposition on soil fungi in temperate forests in northern China, which can provide the theoretical basis for reducing the effects of increased N deposition on forest soil.


Asunto(s)
Biomasa , Hongos , Nitrógeno , Pinus , Microbiología del Suelo , Suelo , China , Pinus/microbiología , Nitrógeno/análisis , Suelo/química , Micorrizas/fisiología , Micobioma , Bosques , Fertilizantes/análisis
17.
Environ Pollut ; 345: 123507, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38325508

RESUMEN

As a potential low-cost and environmentally friendly strategy, bioremediation of herbicide polluted soil has attracted increasing attention. However, there is a lack of knowledge regarding the response of the atrazine-degrading bacterial community to coinoculation of arbuscular mycorrhizal (AM) fungi and rhizobia for atrazine dissipation. In this study, a pot experiment was conducted with AM fungi Glomus mosseae (AM), rhizobia Rhizobium trifolii TA-1 (R) and their coinoculation (AMR) with atrazine. In each treatment, the atrazine-degrading bacterial community of four soil size aggregates, namely large macroaggregates (LMa), small macroaggregates (SMa), microaggregates (Mia) and primary particles (P) were investigated. The results showed that the atrazine residue concentration was lowest in AMR, and that in LMa was also significantly lower than that in the other smaller aggregate sizes. Overall, inoculation, the aggregate fraction and their interaction had significant effects on soil TN, SOC, AP and pH. For the atrazine-degrading bacterial community, the Chao1 index increased with decreasing particle size, but the Shannon index decreased. Moreover, the abundances of the dominant atrazine-degrading bacterial genera Arthrobacter, Bacillus, Marmoricola and Nocardioides in the Mia and P particle size groups were greater than those in the LMa and SMa groups in each treatment. The bacterial communities in the Mia and P particle sizes in each treatment group were more complex. Therefore, coinoculation of AM fungi and rhizobia stimulated atrazine dissipation by changing the atrazine-degrading bacterial community, and the response of the atrazine-degrading bacterial community to each aggregate size varied depending on its distinct soil physicochemical properties.


Asunto(s)
Atrazina , Micorrizas , Rhizobium , Contaminantes del Suelo , Atrazina/análisis , Micorrizas/fisiología , Suelo , Microbiología del Suelo , Hongos , Bacterias , Biodegradación Ambiental , Contaminantes del Suelo/análisis
18.
Front Microbiol ; 14: 1210319, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37426023

RESUMEN

Enterococcus faecalis is a well-established resident of the human gastrointestinal tract and is also a major cause of human infections. Unfortunately, therapeutic options for E. faecalis infections remain limited, particularly with the emergence of vancomycin-resistant strains in hospital settings. Consequently, there has been a renewed interest in phage therapy as an alternative to antibiotics. In this study, we have isolated a bacteriophage, vB_EfaS-SFQ1, from hospital sewage, which effectively infects E. faecalis strain EFS01. Phage SFQ1 is a siphovirus and exhibits a relatively broad host range. Furthermore, it has a short latent period of approximately 10 min and a large burst size of about 110 PFU/cell at a multiplicity of infection (MOI) of 0.01, and it could effectively disrupt the biofilms formed by E. faecalis. Thus, this study provides a detailed characterization of E. faecalis phage SFQ1, which has great potential for treating E. faecalis infections.

19.
ACS Sens ; 8(9): 3468-3477, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37603446

RESUMEN

Filamentous fungi are competitive hosts for the production of drugs, proteins, and chemicals. However, their utility is limited by screening methods and low throughput. In this work, a universal high-throughput system for optimizing protein production in filamentous fungi was described. Droplet microfluidics was used to encapsulate large mutant strain pools in biocompatible core-shell microdroplets designed to avoid mycelial punctures and thus sustain prolonged culture. The self-assembled split GFP was then used to characterize the secretory capacity of the strains and isolate strains with superior production titers according to the fluorescence signals. The platform was applied to optimize the α-amylase secretion of Aspergillus niger, resulting in the isolation of a strain with 2.02-fold higher secretion capacity. The system allows the analysis of >105 single cells per h and will facilitate ultrahigh-throughput screening experiments of filamentous fungi. This method could help identify improved hosts for the large-scale production of biotechnology-relevant proteins. This is a broadly applicable system that can be equally used in other hosts.


Asunto(s)
Aspergillus niger , Microfluídica , Microfluídica/métodos , Aspergillus niger/genética , Aspergillus niger/metabolismo
20.
Rice (N Y) ; 16(1): 18, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37036613

RESUMEN

Increased soil salinization is among the main factors that limits safe rice production. Arbuscular mycorrhizal fungi (AMF) have been shown to alleviate the toxic effects of salt stress in plants. However, more studies on AMF combined with other functional microorganisms are needed to further improve salt tolerance in rice. Therefore, the compound inoculum Funneliformis mosseae (Fm) together with two functional microorganisms, Piriformospora indica (Pi) and Agrobacterium rhizogenes (Ar) was evaluated for their effect on the rice growth, photosynthetic gas exchange parameters, ion homeostasis, and the expression of salt tolerance-related genes under 0, 80, 120 and 160 mM salt stress conditions. The results showed that: (1) the rice seedling biomass of the AMF compound inoculant treatment group was significantly higher than that of the non-inoculation treatment group (P < 0.05); (2) under NaCl stress, inoculation with AMF compound inoculants can activate the rice antioxidant enzyme system and improve osmoregulation ability; (3) AMF compound inoculants can increase the concentration of K+ in the plant and inhibit the transfer of Na+ to rice leaves, maintaining a high K+/Na+; and (4) AMF compound inoculants could induce and regulate the overexpression of genes related to salt tolerance, photosynthesis and ion homeostasis in rice, and improve the tolerance of rice under salt stress. Our study showed that AMF compound inoculants could improve the adaptability of rice under NaCl stress and promote plant growth by regulating the photosynthetic gas exchange parameter, reactive oxygen species (ROS) scavenging ability, and ion homeostasis of plants. These results suggest that AMF compound inoculants may play an important role in improving rice productivity in salinized soil.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA