Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Chem Biol ; 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38553609

RESUMEN

Cytosine base editors (CBEs) are effective tools for introducing C-to-T base conversions, but their clinical applications are limited by off-target and bystander effects. Through structure-guided engineering of human APOBEC3A (A3A) deaminase, we developed highly accurate A3A-CBE (haA3A-CBE) variants that efficiently generate C-to-T conversion with a narrow editing window and near-background level of DNA and RNA off-target activity, irrespective of methylation status and sequence context. The engineered deaminase domains are compatible with PAM-relaxed SpCas9-NG variant, enabling accurate correction of pathogenic mutations in homopolymeric cytosine sites through flexible positioning of the single-guide RNAs. Dual adeno-associated virus delivery of one haA3A-CBE variant to a mouse model of tyrosinemia induced up to 58.1% editing in liver tissues with minimal bystander editing, which was further reduced through single dose of lipid nanoparticle-based messenger RNA delivery of haA3A-CBEs. These results highlight the tremendous promise of haA3A-CBEs for precise genome editing to treat human diseases.

2.
Nat Chem Biol ; 19(1): 101-110, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36229683

RESUMEN

Adenine base editors (ABEs) catalyze A-to-G transitions showing broad applications, but their bystander mutations and off-target editing effects raise safety concerns. Through structure-guided engineering, we found ABE8e with an N108Q mutation reduced both adenine and cytosine bystander editing, and introduction of an additional L145T mutation (ABE9), further refined the editing window to 1-2 nucleotides with eliminated cytosine editing. Importantly, ABE9 induced very minimal RNA and undetectable Cas9-independent DNA off-target effects, which mainly installed desired single A-to-G conversion in mouse and rat embryos to efficiently generate disease models. Moreover, ABE9 accurately edited the A5 position of the protospacer sequence in pathogenic homopolymeric adenosine sites (up to 342.5-fold precision over ABE8e) and was further confirmed through a library of guide RNA-target sequence pairs. Owing to the minimized editing window, ABE9 could further broaden the targeting scope for precise correction of pathogenic single-nucleotide variants when fused to Cas9 variants with expanded protospacer adjacent motif compatibility. bpNLS, bipartite nuclear localization signals.


Asunto(s)
Adenina , Edición Génica , Animales , Ratones , Ratas , Mutación , Citosina , Sistemas CRISPR-Cas/genética , ARN Guía de Sistemas CRISPR-Cas
3.
EMBO Rep ; 24(7): e57064, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37306042

RESUMEN

Eukaryotic cell adhesion and migration rely on surface adhesins connecting extracellular ligands to the intracellular actin cytoskeleton. Plasmodium sporozoites are transmitted by mosquitoes and rely on adhesion and gliding motility to colonize the salivary glands and to reach the liver after transmission. During gliding, the essential sporozoite adhesin TRAP engages actin filaments in the cytoplasm of the parasite, while binding ligands on the substrate through its inserted (I) domain. Crystal structures of TRAP from different Plasmodium species reveal the I domain in closed and open conformations. Here, we probe the importance of these two conformational states by generating parasites expressing versions of TRAP with the I domain stabilized in either the open or closed state with disulfide bonds. Strikingly, both mutations impact sporozoite gliding, mosquito salivary gland entry, and transmission. Absence of gliding in sporozoites expressing the open TRAP I domain can be partially rescued by adding a reducing agent. This suggests that dynamic conformational change is required for ligand binding, gliding motility, and organ invasion and hence sporozoite transmission from mosquito to mammal.


Asunto(s)
Culicidae , Plasmodium , Animales , Esporozoítos/metabolismo , Ligandos , Plasmodium/metabolismo , Hígado/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Mamíferos/metabolismo
4.
Microb Pathog ; 190: 106638, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38574829

RESUMEN

Autophagy plays an important role in the lifecycle of viruses. However, there is currently a lack of systematic research on the relationship between Infectious Bronchitis Virus (IBV) and autophagy. This study aims to investigate the impact of IBV on autophagy and the role of autophagy in viral replication. We observed that IBV infection increased the expression of microtubule-associated protein 1 light chain 3, a marker of autophagy, decreased the expression of sequestosome 1, and led to elevated intracellular LC3 puncta levels. These findings suggest that IBV infection activates the autophagic process in cells. To investigate the impact of autophagy on the replication of IBV, we utilized rapamycin as an autophagy activator and 3-methyladenine as an autophagy inhibitor. Our results indicate that IBV promotes viral replication by inducing autophagy. Further investigation revealed that IBV induces autophagosome formation by inhibiting the mTOR-ULK1 pathway and activating the activity of vacuolar protein sorting 34 (VPS34), autophagy-related gene 14, and the Beclin-1 complex. VPS34 plays a crucial role in this process, as inhibiting VPS34 protein activity enhances cell proliferation after IBV infection. Additionally, inhibiting VPS34 significantly improves the survival rate of IBV-infected chicks, suppresses IBV replication in the kidney, and alleviates tracheal, lung, and kidney damage caused by IBV infection. In summary, IBV infection can induce autophagy by modulating the mTOR/ULK1 signaling pathway and activating the VPS34 complex, while autophagy serves to promote virus replication.


Asunto(s)
Autofagia , Pollos , Fosfatidilinositol 3-Quinasas Clase III , Virus de la Bronquitis Infecciosa , Replicación Viral , Virus de la Bronquitis Infecciosa/fisiología , Animales , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Pollos/virología , Infecciones por Coronavirus/virología , Infecciones por Coronavirus/metabolismo , Sirolimus/farmacología , Beclina-1/metabolismo , Beclina-1/genética , Serina-Treonina Quinasas TOR/metabolismo , Transducción de Señal , Línea Celular , Enfermedades de las Aves de Corral/virología , Autofagosomas/metabolismo , Autofagosomas/virología , Chlorocebus aethiops , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética
5.
Nano Lett ; 23(20): 9179-9186, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37831892

RESUMEN

Adhesion G protein-coupled receptors (aGPCRs) have extracellular regions (ECRs) containing GPCR autoproteolysis-inducing (GAIN) domains. The GAIN domain enables the ECR to self-cleave into N- and C-terminal fragments. However, the impact of force on the GAIN domain's conformation, critical for mechanosensitive aGPCR activation, remains unclear. Our study investigated the mechanical stability of GAIN domains in three aGPCRs (B, G, and L subfamilies) at a loading rate of 1 pN/s. We discovered that forces of a few piconewtons can destabilize the GAIN domains. In autocleaved aGPCRs ADGRG1/GPR56 and ADGRL1/LPHN1, these forces cause the GAIN domain detachment from the membrane-proximal Stachel sequence, preceded by partial unfolding. In noncleavable aGPCR ADGRB3/BAI3 and cleavage-deficient mutant ADGRG1/GPR56-T383G, complex mechanical unfolding of the GAIN domain occurs. Additionally, GAIN domain detachment happens during cell migration. Our findings support the mechanical activation hypothesis of aGPCRs, emphasizing the sensitivity of the GAIN domain structure and detachment to physiological force ranges.


Asunto(s)
Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/química , Modelos Moleculares , Adhesión Celular
6.
Nature ; 546(7657): 312-315, 2017 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-28514449

RESUMEN

The glucagon-like peptide-1 receptor (GLP-1R) and the glucagon receptor (GCGR) are members of the secretin-like class B family of G-protein-coupled receptors (GPCRs) and have opposing physiological roles in insulin release and glucose homeostasis. The treatment of type 2 diabetes requires positive modulation of GLP-1R to inhibit glucagon secretion and stimulate insulin secretion in a glucose-dependent manner. Here we report crystal structures of the human GLP-1R transmembrane domain in complex with two different negative allosteric modulators, PF-06372222 and NNC0640, at 2.7 and 3.0 Å resolution, respectively. The structures reveal a common binding pocket for negative allosteric modulators, present in both GLP-1R and GCGR and located outside helices V-VII near the intracellular half of the receptor. The receptor is in an inactive conformation with compounds that restrict movement of the intracellular tip of helix VI, a movement that is generally associated with activation mechanisms in class A GPCRs. Molecular modelling and mutagenesis studies indicate that agonist positive allosteric modulators target the same general region, but in a distinct sub-pocket at the interface between helices V and VI, which may facilitate the formation of an intracellular binding site that enhances G-protein coupling.


Asunto(s)
Receptor del Péptido 1 Similar al Glucagón/química , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Regulación Alostérica/efectos de los fármacos , Sitio Alostérico/efectos de los fármacos , Secuencia de Aminoácidos , Aminopiridinas/química , Aminopiridinas/metabolismo , Aminopiridinas/farmacología , Benzamidas/química , Benzamidas/metabolismo , Benzamidas/farmacología , Cristalografía por Rayos X , Receptor del Péptido 1 Similar al Glucagón/agonistas , Humanos , Modelos Moleculares , Compuestos de Fenilurea/química , Compuestos de Fenilurea/metabolismo , Compuestos de Fenilurea/farmacología , Dominios Proteicos
7.
Nature ; 546(7657): 259-264, 2017 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-28514451

RESUMEN

The human glucagon receptor, GCGR, belongs to the class B G-protein-coupled receptor family and plays a key role in glucose homeostasis and the pathophysiology of type 2 diabetes. Here we report the 3.0 Å crystal structure of full-length GCGR containing both the extracellular domain and transmembrane domain in an inactive conformation. The two domains are connected by a 12-residue segment termed the stalk, which adopts a ß-strand conformation, instead of forming an α-helix as observed in the previously solved structure of the GCGR transmembrane domain. The first extracellular loop exhibits a ß-hairpin conformation and interacts with the stalk to form a compact ß-sheet structure. Hydrogen-deuterium exchange, disulfide crosslinking and molecular dynamics studies suggest that the stalk and the first extracellular loop have critical roles in modulating peptide ligand binding and receptor activation. These insights into the full-length GCGR structure deepen our understanding of the signalling mechanisms of class B G-protein-coupled receptors.


Asunto(s)
Receptores de Glucagón/química , Receptores de Glucagón/clasificación , Sitio Alostérico/efectos de los fármacos , Benzamidas/química , Benzamidas/metabolismo , Benzamidas/farmacología , Membrana Celular/metabolismo , Reactivos de Enlaces Cruzados/química , Cristalografía por Rayos X , Medición de Intercambio de Deuterio , Disulfuros/química , Humanos , Ligandos , Modelos Moleculares , Simulación de Dinámica Molecular , Compuestos de Fenilurea/química , Compuestos de Fenilurea/metabolismo , Compuestos de Fenilurea/farmacología , Dominios Proteicos , Estabilidad Proteica , Receptores de Glucagón/agonistas , Receptores de Glucagón/metabolismo
8.
J Biol Chem ; 296: 100776, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33992645

RESUMEN

The adhesion G protein-coupled receptor CD97 and its ligand complement decay-accelerating factor CD55 are important binding partners in the human immune system. Dysfunction in this binding has been linked to immune disorders such as multiple sclerosis and rheumatoid arthritis, as well as various cancers. Previous literatures have indicated that the CD97 includes 3 to 5 epidermal growth factor (EGF) domains at its N terminus and these EGF domains can bind to the N-terminal short consensus repeat (SCR) domains of CD55. However, the details of this interaction remain elusive, especially why the CD55 binds with the highest affinity to the shortest isoform of CD97 (EGF1,2,5). Herein, we designed a chimeric expression construct with the EGF1,2,5 domains of CD97 and the SCR1-4 domains of CD55 connected by a flexible linker and determined the complex structure by crystallography. Our data reveal that the two proteins adopt an overall antiparallel binding mode involving the SCR1-3 domains of CD55 and all three EGF domains of CD97. Mutagenesis data confirmed the importance of EGF5 in the interaction and explained the binding specificity between CD55 and CD97. The architecture of CD55-CD97 binding mode together with kinetics suggests a force-resisting shearing stretch geometry when forces applied to the C termini of both proteins in the circulating environment. The potential of the CD55-CD97 complex to withstand tensile force may provide a basis for the mechanosensing mechanism for activation of adhesion G protein-coupled receptors.


Asunto(s)
Antígenos CD/metabolismo , Antígenos CD55/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Antígenos CD/química , Antígenos CD55/química , Cristalografía por Rayos X , Células HEK293 , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Receptores Acoplados a Proteínas G/química
9.
Invest New Drugs ; 40(2): 274-289, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34981275

RESUMEN

Background One of the main challenges in the clinical treatment of lung cancer is resistance to chemotherapeutic drugs. P-glycoprotein (P-gp)-mediated drug resistance is the main obstacle to successfully implementing microtubule-targeted tumor chemotherapy. Purpose In this study, we explored the effect of Ad-hTERTp-E1a-Apoptin (Ad-VT) on drug-resistant cell lines and the molecular mechanism by which Ad-VT combined with chemotherapy affects drug-resistant cells and parental cells. Methods In vitro, cell proliferation, colony formation, resistance index (RI), apoptosis and autophagy assays were performed. Protein expression was analyzed by Western blotting. Finally, a xenograft tumor model in nude mice was used to detect tumor growth and evaluate histological characteristics. Results Our results showed that Ad-VT had an obvious killing effect on A549, A549/GEM and A549/Paclitaxel cancer cells, and the sensitivity of drug-resistant cell lines to Ad-VT was significantly higher than that of parental A549 cells. Compared with A549 cells, A549/GEM and A549/Paclitaxel cells had higher autophagy levels and higher viral replication ability. Ad-VT decreased the levels of p-PI3k, p-Akt and p-mTOR and the expression of P-gp. In vivo, Ad-VT combined with chemotherapy can effectively inhibit the growth of chemotherapy-resistant tumors and prolong the survival of mice. Conclusions Thus, the combination of Ad-VT and chemotherapeutic drugs will be a promising strategy to overcome chemoresistance.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Adenocarcinoma del Pulmón/tratamiento farmacológico , Animales , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Desoxicitidina/análogos & derivados , Resistencia a Antineoplásicos , Humanos , Neoplasias Pulmonares/patología , Ratones , Ratones Desnudos , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto , Gemcitabina
10.
Cell Commun Signal ; 20(1): 134, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36050738

RESUMEN

BACKGROUND: Apoptin, as a tumor-specific pro-apoptotic protein, plays an important anti-tumoral role, but its mechanism of autophagy activation and the interaction between autophagy and apoptosis have not been accurately elucidated. Here, we studied the mechanism of apoptin-induced apoptosis and autophagy and the interaction between two processes. METHODS: Using crystal violet staining and the CCK-8 assay, we analyzed the effect of apoptin in the inhibition of liver cancer cells in vitro and analyzed the effect of inhibiting liver cancer in vivo by establishing a nude mouse tumor model. Flow cytometry and fluorescence staining were used to analyze the main types of apoptin-induced apoptosis and autophagy. Subsequently, the relationship between the two events was also analyzed. Flow cytometry was used to analyze the effect of ROS on apoptin-mediated apoptosis and autophagy mediated by apoptin. The effect of ROS on two phenomena was analyzed. Finally, the role of key genes involved in autophagy was analyzed using gene silencing. RESULTS: The results showed that apoptin can significantly increase the apoptosis and autophagy of liver cancer cells, and that apoptin can cause mitophagy through the increase in the expression of NIX protein. Apoptin can also significantly increase the level of cellular ROS, involved in apoptin-mediated autophagy and apoptosis of liver cancer cells. The change of ROS may be a key factor causing apoptosis and autophagy. CONCLUSION: The above results indicate that the increase in ROS levels after apoptin treatment of liver cancer cells leads to the loss of mitochondrial transmembrane potential, resulting in endogenous apoptosis and mitophagy through the recruitment of NIX. Therefore, ROS may be a key factor connecting endogenous apoptosis and autophagy induced by apoptin in liver cancer cells. Video abstract.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Apoptosis , Proteínas de la Cápside , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Ratones , Ratones Desnudos , Mitofagia , Especies Reactivas de Oxígeno
11.
Exp Cell Res ; 409(2): 112926, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34793774

RESUMEN

Ad-apoptin is a recombinant oncolytic adenovirus constructed by our laboratory that can express apoptin. It can selectively kill tumor cells without damaging normal cells. This study investigated the effects of Ad-apoptin on glycolysis, migration and invasion of non-small cell lung cancer. Cell viability and apoptosis were detected by CCK-8 and flow cytometry, respectively. Glycolysis was investigated by glucose consumption, lactic acid production and glycolytic key enzyme protein levels. Migration and invasion were evaluated via wound healing, transwell assays and epithelial-mesenchymal transition (EMT) protein levels. The interaction between apoptin and AMPK was detected by Co-IP. A nude mice tumor model was established to investigate the anti-cancer role of Ad-apoptin in vivo. The results showed that Ad-apoptin inhibits cell viability and induces apoptosis of A549 and NCI-H23 cells. Ad-apoptin can reduce the glucose uptake and lactic production in lung cancer cells, and reduce the expression of related glycolysis-limiting enzymes. At the same time, Ad-apoptin inhibited the migration and invasion of lung cancer. Immunoprecipitation showed that apoptin and AMPK could interact directly. Moreover, knockdown of AMPK significantly attenuated the inhibitory effect of Ad-apoptin on glycolysis, migration and invasion of A549 and NCI-H23 cells. Ad-apoptin can inhibit the growth of tumors in nude mice. Compared with the control group, Ad-apoptin had a significant inhibitory effect on AMPK knockdown tumors. The immunohistochemical results of tumor tissues were consistent with those in vitro. Collectively, Ad-apoptin targets AMPK and inhibits glycolysis, migration and invasion of lung cancer cells through the AMPK/mTOR signaling pathway. This suggests that Ad-apoptin may have therapeutic potential for lung cancer by targeting AMPK activation.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Adenoviridae/genética , Proteínas de la Cápside/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Glucólisis , Viroterapia Oncolítica/métodos , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Animales , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/terapia , Ciclo Celular , Movimiento Celular , Proliferación Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/terapia , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Invasividad Neoplásica , Serina-Treonina Quinasas TOR/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
12.
J Assist Reprod Genet ; 39(3): 711-718, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35091966

RESUMEN

PURPOSE: This study aims to identify the genetic causes of 12 women with primary infertility characterized by primarily oocyte maturation abnormality and consequent early embryonic arrest. METHODS: Genomic DNA was isolated from peripheral blood samples. Whole-exome sequencing was performed on the probands, and the identified variants were confirmed by Sanger sequencing. The pathogenicity of the identified variants on the protein was accessed in silico. And we used qRT-PCR to detect the possible effects of the novel mutation on the mRNA level of NLRP5. RESULTS: A novel homozygous frameshift variant (p.V429Efs*30) in NLRP5 and compound heterozygous variants with a novel frameshift variant (p.A297Efs*20) and a recurrent variant (c. 223-14_223-2delCCCTCCTGTTCCA) in PATL2 were identified in two unrelated affected individuals. qRT-PCR showed an obvious decrease of the mutant NLRP5 mRNA. In addition, the truncated proteins of NLRP5 and PATL2 were predicted to be non-functional due to the deletion of the most or the whole region of the critical functional domain(s) respectively. CONCLUSIONS: This study identified novel mutations in NLRP5 and PATL2, further expanding the mutational and phenotypic spectrum of both genes. This is the first report of the NLRP5 mutations that associates with oocyte maturation abnormality in humans.


Asunto(s)
Autoantígenos/genética , Infertilidad Femenina , Proteínas Mitocondriales/genética , Proteínas Nucleares/genética , Proteínas de Unión al ARN/genética , Femenino , Humanos , Infertilidad Femenina/metabolismo , Mutación/genética , Oocitos/metabolismo , Oogénesis , ARN Mensajero/genética , ARN Mensajero/metabolismo
13.
J Assist Reprod Genet ; 39(1): 261-266, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34854019

RESUMEN

PURPOSE: To identify the genetic causes of multiple morphological anomalies of the flagella (MMAF) and oligoasthenoteratozoospermia (OAT). METHODS: Whole-exome sequencing (WES) was performed on the proband to identify pathogenic mutation for infertility. Western blotting and immunofluorescence analysis detected the expression level and localization of adenylate kinase 7 (AK7). RESULTS: We identified a novel homozygous missense mutation (NM_152327: c.1846G > A; p.E616K) in AK7 in two brothers with MMAF and OAT from a consanguineous family by WES. Western blotting and immunofluorescence experiments determined that the expression level of AK7 decreased in the sperm from the proband. The proband and his wife underwent two cycles of intracytoplasmic sperm injection (ICSI) treatment but got unfavorable outcomes. CONCLUSION: This study could provide precise genetic diagnosis for the patient and expand the spectrum of AK7 mutations.


Asunto(s)
Adenilato Quinasa/genética , Flagelos/genética , Mutación Missense/genética , Oligospermia/etiología , Adenilato Quinasa/efectos adversos , Adulto , Flagelos/metabolismo , Flagelos/microbiología , Humanos , Masculino , Oligospermia/genética , Oligospermia/fisiopatología
14.
Trends Biochem Sci ; 42(12): 946-960, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29132948

RESUMEN

The secretin-like class B family of G protein-coupled receptors (GPCRs) are key players in hormonal homeostasis. Recent structures of various receptors in complex with a variety of orthosteric and allosteric ligands provide fundamental new insights into the function and mechanism of class B GPCRs, including: (i) ligand-induced changes in the relative orientation of the extracellular and transmembrane receptor domains; (ii) intramolecular interaction networks that stabilize conformational changes to accommodate intracellular G protein binding; and (iii) allosteric modulation of receptor activation. This review provides a comprehensive analysis of the structural, biochemical, and pharmacological data on class B GPCRs for understanding ligand-receptor interaction and modulation mechanisms and assessing the potential implications for drug discovery for the secretin-like GPCR family.


Asunto(s)
Receptores Acoplados a Proteínas G/química , Humanos , Ligandos , Conformación Proteica , Receptores Acoplados a Proteínas G/metabolismo
15.
J Cell Mol Med ; 25(2): 666-676, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33305893

RESUMEN

Apoptin can specifically kill cancer cells but has no toxicity to normal cells. Human telomerase reverse transcriptase (hTERT) can act as a tumour-specific promoter by triggering the expression of certain genes in tumour cells. This study aims to investigate the inhibitory effects and to explore the inhibitory pathway of a dual cancer-specific recombinant adenovirus (Ad-apoptin-hTERTp-E1a, Ad-VT) on breast cancer stem cells. Breast cancer cell spheres were obtained from MCF-7 cells through serum-free suspension culture. The cell spheres were detected by flow cytometry for CD44+ CD24- cell subsets. The stemness of MCF-7-CSC cells was confirmed by in vivo tumorigenesis experiments. The inhibitory effect of the recombinant adenoviruses on MCF-7-CSC cells was evaluated by CCK-8 assay. In addition, the stemness of adenovirus-infected MCF-7-CSC cells was analysed by testing the presence of CD44+ CD24- cell subsets. The ability of the recombinant adenovirus to induce MCF-7-CSC cell apoptosis was detected by staining JC-1, TMRM and Annexin V. Our results showed that a significantly higher proportion of the CD44+ CD24- cell subsets was present in MCF-7-CSC cells with a significantly increased expression of stem cell marker proteins. The MCF-7-CSC cells, whlist exhibited a strong tumorigenic ability with a certain degree of stemness in mice, were shown to be strongly inhibited by recombinant adenovirus Ad-VT through cell apoptosis. In addition, Ad-VT was shown to exert a killing effect on BCSCs. These results provide a new theoretical basis for the future treatment of breast cancer.


Asunto(s)
Antígeno CD24/metabolismo , Receptores de Hialuranos/metabolismo , Células Madre Neoplásicas/metabolismo , Apoptosis/genética , Apoptosis/fisiología , Western Blotting , Antígeno CD24/genética , Citometría de Flujo , Humanos , Receptores de Hialuranos/genética , Células MCF-7 , Potencial de la Membrana Mitocondrial/genética , Potencial de la Membrana Mitocondrial/fisiología
16.
Clin Genet ; 100(3): 324-328, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33966269

RESUMEN

The genetic causes in most of patients with oocyte maturation arrest remain largely unknown. In this study, we identified a homozygous missense mutation (c.895T>C; p.C299R) in TBPL2 (TATA box binding protein like 2) in two infertile sisters with oocyte maturation arrest and degeneration from a consanguineous family by whole-exome sequencing. The TBPL2 mutation is rare and pathogenic, and impaired the transcription initiation function of the protein. Our results showed that TBPL2 mutation might be associated with female infertility due to oocyte maturation arrest and degeneration.


Asunto(s)
Infertilidad Femenina/genética , Mutación Missense , Proteínas Nucleares/genética , Oogénesis/genética , Proteínas Similares a la Proteína de Unión a TATA-Box/genética , Adulto , Muerte Celular/genética , Consanguinidad , Femenino , Homocigoto , Humanos , Linaje , Secuenciación del Exoma
17.
Invest New Drugs ; 39(4): 949-960, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33534026

RESUMEN

As a potential cancer therapy, we developed a recombinant adenovirus named Ad-VT, which was designed to express the apoptosis-inducing gene (apoptin) and selectively replicate in cancer cells via E1a manipulation. However, how it performs in bladder cancer remains unclear. We examined the antitumor efficacy of Ad-VT in bladder cancers using CCK-8 assays and xenograft models. Autophagy levels were evaluated by western blotting, MDC staining, and RFP-GFP-LC3 aggregates' analyses. Here, we report the selective replication and antitumor efficacy (viability inhibition and apoptosis induction) of Ad-VT in bladder cancer cells. Using xenograft tumor models, we demonstrate that its effects are tumor specific resulting in the inhibition of tumor growth and improvement of the survival of mice models. Most Importantly, Ad-VT induced a complete autophagy flux leading to autophagic cancer cell death through a signaling pathway involving AMPK, raptor and mTOR. Finally, we suggest that treatment combination of Ad-VT and rapamycin results in a synergistic improvement of tumor control and survival compared to monotherapy. This study suggests that Ad-VT can induce selective autophagic antitumor activities in bladder cancer through the AMPK-Raptor-mTOR pathway, which can be further improved by rapamycin.


Asunto(s)
Adenoviridae/genética , Autofagia/genética , Viroterapia Oncolítica/métodos , Neoplasias de la Vejiga Urinaria/terapia , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Proteínas de la Cápside/genética , Línea Celular Tumoral , Femenino , Células HEK293 , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Proteína Reguladora Asociada a mTOR/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Neoplasias de la Vejiga Urinaria/genética , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Hum Reprod ; 33(6): 1183-1190, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29697801

RESUMEN

STUDY QUESTION: Do PATL2 mutations account for female infertility with oocyte germinal vesicle (GV) arrest? SUMMARY ANSWER: Four of nine independent families with oocyte GV arrest were identified with biallelic PATL2 mutations, suggesting that these mutations may be responsible for oocyte maturation arrest in primary infertile women. WHAT IS KNOWN ALREADY: Recently, two independent studies have demonstrated that infertility in some women with oocyte maturation arrest at the GV stage was caused by biallelic mutations in PATL2. PATL2 encodes protein PAT1 homolog 2, an RNA-binding protein that may act as a translational repressor. STUDY DESIGN, SIZE, DURATION: In this study, nine unrelated primary infertile females presenting with oocyte GV arrest were recruited during the treatment of early rescue ICSI or ICSI from January 2013 to December 2016. PARTICIPANTS/MATERIALS, SETTING, METHODS: Genomic DNA was isolated from blood samples obtained from all nine affected individuals and all of their available family members. All the coding regions of PATL2 were sequenced by Sanger sequencing. The pathogenicity of the identified variants and their possible effects on the protein were evaluated in silico. MAIN RESULTS AND THE ROLE OF CHANCE: Five novel point mutations and one recurrent splicing mutation in PATL2 were identified in four of nine (44.4%) unrelated patients. We found a consanguineous family with a homozygous missense mutation in two affected sisters, and their fertile brother. There were no clear phenotypic differences in oocytes between the patient with the homozygous missense mutation, patients with nonsense mutations and undiagnosed patients. LARGE SCALE DATA: n/a. LIMITATIONS, REASONS FOR CAUTION: The function of PATL2 remains largely unknown. Both the exact pathogenic mechanism(s) of mutated PATL2 causing human oocyte maturation arrest and the strategies to overcome this condition should be further investigated in the future. WIDER IMPLICATIONS OF THE FINDINGS: According to our data, mutations in PATL2 account for 44.4% of the individuals with oocyte GV arrest. Our study further confirms that PATL2 is required for human oocyte maturation and female fertility, which indicates a potential prognostic value of testing for PATL2 mutations in primary infertile women with oocyte maturation arrest. STUDY FUNDING/COMPETING INTEREST(S): Natural Science Foundation of Anhui Province (1808085MH241), National Natural Science Foundation of China (81401251 and 81370757) and Central Guided Local Development of Science and Technology Special Fund (2016080802D114) supported this study. None of the authors have any competing interests.


Asunto(s)
Proteínas de Unión al ADN/genética , Infertilidad Femenina/genética , Oocitos/patología , Mutación Puntual/genética , Adulto , Consanguinidad , Proteínas de Unión al ADN/sangre , Femenino , Humanos , Infertilidad Femenina/diagnóstico , Oocitos/metabolismo , Hermanos
20.
J Biol Chem ; 291(25): 12991-3004, 2016 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-27059958

RESUMEN

The glucagon-like peptide-1 receptor (GLP-1R) belongs to the secretin-like (class B) family of G protein-coupled receptors. Members of the class B family are distinguished by their large extracellular domain, which works cooperatively with the canonical seven-transmembrane (7TM) helical domain to signal in response to binding of various peptide hormones. We have combined structure-based site-specific mutational studies with molecular dynamics simulations of a full-length model of GLP-1R bound to multiple peptide ligand variants. Despite the high sequence similarity between GLP-1R and its closest structural homologue, the glucagon receptor (GCGR), nearly half of the 62 stably expressed mutants affected GLP-1R in a different manner than the corresponding mutants in GCGR. The molecular dynamics simulations of wild-type and mutant GLP-1R·ligand complexes provided molecular insights into GLP-1R-specific recognition mechanisms for the N terminus of GLP-1 by residues in the 7TM pocket and explained how glucagon-mimicking GLP-1 mutants restored binding affinity for (GCGR-mimicking) GLP-1R mutants. Structural analysis of the simulations suggested that peptide ligand binding mode variations in the 7TM binding pocket are facilitated by movement of the extracellular domain relative to the 7TM bundle. These differences in binding modes may account for the pharmacological differences between GLP-1 peptide variants.


Asunto(s)
Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/química , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Células CHO , Cricetulus , Glucagón/metabolismo , Péptido 1 Similar al Glucagón/química , Péptido 1 Similar al Glucagón/genética , Receptor del Péptido 1 Similar al Glucagón/genética , Células HEK293 , Humanos , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Mutación Puntual , Unión Proteica , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA