Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(10)2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37240186

RESUMEN

H9N2 avian influenza A viruses (AIVs) cause economic losses in the poultry industry and provide internal genomic segments for the evolution of H5N1 and H7N9 AIVs into more detrimental strains for poultry and humans. In addition to the endemic Y439/Korea-lineage H9N2 viruses, the Y280-lineage spread to Korea since 2020. Conventional recombinant H9N2 vaccine strains, which bear mammalian pathogenic internal genomes of the PR8 strain, are pathogenic in BALB/c mice. To reduce the mammalian pathogenicity of the vaccine strains, the PR8 PB2 was replaced with the non-pathogenic and highly productive PB2 of the H9N2 vaccine strain 01310CE20. However, the 01310CE20 PB2 did not coordinate well with the hemagglutinin (HA) and neuraminidase (NA) of the Korean Y280-lineage strain, resulting in a 10-fold lower virus titer compared to the PR8 PB2. To increase the virus titer, the 01310CE20 PB2 was mutated (I66M-I109V-I133V) to enhance the polymerase trimer integrity with PB1 and PA, which restored the decreased virus titer without causing mouse pathogenicity. The reverse mutation (L226Q) of HA, which was believed to decrease mammalian pathogenicity by reducing mammalian receptor affinity, was verified to increase mouse pathogenicity and change antigenicity. The monovalent Y280-lineage oil emulsion vaccine produced high antibody titers for homologous antigens but undetectable titers for heterologous (Y439/Korea-lineage) antigens. However, this defect was corrected by the bivalent vaccine. Therefore, the balance of polymerase and HA/NA activities can be achieved by fine-tuning PB2 activity, and a bivalent vaccine may be more effective in controlling concurrent H9N2 viruses with different antigenicities.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Subtipo H7N9 del Virus de la Influenza A , Subtipo H9N2 del Virus de la Influenza A , Gripe Aviar , Humanos , Animales , Ratones , Subtipo H9N2 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/genética , Vacunas Sintéticas , Vacunas Combinadas , Pollos , Mamíferos
2.
Vaccines (Basel) ; 10(2)2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35214621

RESUMEN

For the development of an optimized Egyptian H9N2 vaccine candidate virus for poultry, various recombinant Egyptian H9N2 viruses generated by a PR8-based reverse genetics system were compared in terms of their productivity and biosafety since Egyptian H9N2 avian influenza viruses already possess mammalian pathogenicity-related mutations in the hemagglutinin (HA), neuraminidase (NA), and PB2 genes. The Egyptian HA and NA genes were more compatible with PR8 than with H9N2 AIV (01310) internal genes, and the 01310-derived recombinant H9N2 strains acquired the L226Q reverse mutation in HA after passages in eggs. Additionally, the introduction of a strong promoter at the 3'-ends of PB2 and PB1 genes induced an additional mutation of P221S. When recombinant Egyptian H9N2 viruses with intact or reverse mutated HA (L226Q and P221S) and NA (prototypic 2SBS) were compared, the virus with HA and NA mutations had high productivity in ECES but was lower in antigenicity when used as an inactivated vaccine due to its high binding affinity into non-specific inhibitors in eggs. Finally, we substituted the PB2 gene of PR8 with 01310 to remove the replication ability in mammalian hosts and successfully generated the best recombinant vaccine candidate in terms of immunogenicity, antigenicity, and biosafety.

3.
Vaccines (Basel) ; 8(4)2020 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-33419331

RESUMEN

Clade 2.3.4.4c H5N6 avian influenza A viruses (AIVs) may have originally adapted to infect chickens and have caused highly pathogenic avian influenza (HPAI) in poultry and human fatalities. Although A/Puerto Rico/8/1934 (H1N1) (PR8)-derived recombinant clade 2.3.4.4c H5N6 vaccine strains have been effective in embryonated chicken eggs-based vaccine production system, they need to be improved in terms of immunogenicity and potential mammalian pathogenicity. We replaced the PB2 gene alone or the PB2 (polymerase basic protein 2), NP (nucleoprotein), M (matrix protein) and NS (non-structural protein) genes together in the PR8 strain with corresponding genes from AIVs with low pathogenicity to remove mammalian pathogenicity and to match CD8+ T cell epitopes with contemporary HPAI viruses, respectively, without loss of viral fitness. Additionally, we tested the effect of the H103Y mutation of hemagglutinin (HA) on antigen productivity, mammalian pathogenicity and heat/acid stability. The replacement of PB2 genes and the H103Y mutation reduced the mammalian pathogenicity but increased the antigen productivity of the recombinant vaccine strains. The H103Y mutation increased heat stability but unexpectedly decreased acid stability, probably resulting in increased activation pH for HA. Interestingly, vaccination with inactivated recombinant virus with replaced NP, M and NS genes halted challenge virus shedding earlier than the recombinant vaccine without internal genes replacement. In conclusion, we successfully generated recombinant clade 2.3.4.4c H5N6 vaccine strains that were less pathogenic to mammals and more productive and heat stable than conventional PR8-derived recombinant strains by optimization of internal genes and the H103Y mutation of HA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA