Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 604(7907): 689-696, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35444276

RESUMEN

The structure of the human neocortex underlies species-specific traits and reflects intricate developmental programs. Here we sought to reconstruct processes that occur during early development by sampling adult human tissues. We analysed neocortical clones in a post-mortem human brain through a comprehensive assessment of brain somatic mosaicism, acting as neutral lineage recorders1,2. We combined the sampling of 25 distinct anatomic locations with deep whole-genome sequencing in a neurotypical deceased individual and confirmed results with 5 samples collected from each of three additional donors. We identified 259 bona fide mosaic variants from the index case, then deconvolved distinct geographical, cell-type and clade organizations across the brain and other organs. We found that clones derived after the accumulation of 90-200 progenitors in the cerebral cortex tended to respect the midline axis, well before the anterior-posterior or ventral-dorsal axes, representing a secondary hierarchy following the overall patterning of forebrain and hindbrain domains. Clones across neocortically derived cells were consistent with a dual origin from both dorsal and ventral cellular populations, similar to rodents, whereas the microglia lineage appeared distinct from other resident brain cells. Our data provide a comprehensive analysis of brain somatic mosaicism across the neocortex and demonstrate cellular origins and progenitor distribution patterns within the human brain.


Asunto(s)
Células Clonales , Mosaicismo , Neocórtex , Linaje de la Célula , Células Cultivadas , Humanos , Microglía , Neocórtex/citología , Neocórtex/crecimiento & desarrollo
2.
J Transl Med ; 22(1): 243, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443979

RESUMEN

BACKGROUND: Peritoneal fibrosis is the prevailing complication induced by prolonged exposure to high glucose in patients undergoing peritoneal dialysis. METHODS: To elucidate the molecular mechanisms underlying this process, we conducted an integrated analysis of the transcriptome and chromatin accessibility profiles of human peritoneal mesothelial cells (HMrSV5) during high-glucose treatment. RESULTS: Our study identified 2775 differentially expressed genes (DEGs) related to high glucose-triggered pathological changes, including 1164 upregulated and 1611 downregulated genes. Genome-wide DEGs and network analysis revealed enrichment in the epithelial-mesenchymal transition (EMT), inflammatory response, hypoxia, and TGF-beta pathways. The enriched genes included VEGFA, HIF-1α, TGF-ß1, EGF, TWIST2, and SNAI2. Using ATAC-seq, we identified 942 hyper (higher ATAC-seq signal in high glucose-treated HMrSV5 cells than in control cells) and 714 hypo (lower ATAC-seq signal in high glucose-treated HMrSV5 cells versus control cells) peaks with differential accessibility in high glucose-treated HMrSV5 cells versus controls. These differentially accessible regions were positively correlated (R = 0.934) with the nearest DEGs. These genes were associated with 566 up- and 398 downregulated genes, including SNAI2, TGF-ß1, HIF-1α, FGF2, VEGFA, and VEGFC, which are involved in critical pathways identified by transcriptome analysis. Integrated ATAC-seq and RNA-seq analysis also revealed key transcription factors (TFs), such as HIF-1α, ARNTL, ELF1, SMAD3 and XBP1. Importantly, we demonstrated that HIF-1α is involved in the regulation of several key genes associated with EMT and the TGF-beta pathway. Notably, we predicted and experimentally validated that HIF-1α can exacerbate the expression of TGF-ß1 in a high glucose-dependent manner, revealing a novel role of HIF-1α in high glucose-induced pathological changes in human peritoneal mesothelial cells (HPMCs). CONCLUSIONS: In summary, our study provides a comprehensive view of the role of transcriptome deregulation and chromosome accessibility alterations in high glucose-induced pathological fibrotic changes in HPMCs. This analysis identified hub genes, signaling pathways, and key transcription factors involved in peritoneal fibrosis and highlighted the novel glucose-dependent regulation of TGF-ß1 by HIF-1α. This integrated approach has offered a deeper understanding of the pathogenesis of peritoneal fibrosis and has indicated potential therapeutic targets for intervention.


Asunto(s)
Cromatina , Fibrosis Peritoneal , Humanos , Cromatina/genética , Factor de Crecimiento Transformador beta1/genética , Transcriptoma/genética , Aberraciones Cromosómicas , Factor de Crecimiento Transformador beta
3.
Artículo en Inglés | MEDLINE | ID: mdl-38743887

RESUMEN

Objective: To investigate the molecular mechanism of sevoflurane affecting the development of the offspring's nervous system through the GABAAR/Sirt 1 pathway. Methods: Pregnant rats were obtained by mating females and males, and were randomly divided into 3 h sevoflurane (2.3% sevoflurane anesthesia for 3 h), 6 h sevoflurane (2.3% sevoflurane anesthesia for 6 h), Sirt-1 activator-SRT1720 (10 mg/kg SRT1720), 6 h sevoflurane+SRT1720 (10 mg/kg SRT1720) and control groups) group and control group, 31-day-old littermates were taken out and their learning and memory functions were examined by the water maze experiment; the heads were severed to remove the brains, and the kits were used to detect the levels of 5-HT and Ach in the brain tissue; the hippocampal tissues of the littermates were isolated, and neuronal damage in the hippocampal tissues was assessed by Nissen staining; neuronal apoptosis in the hippocampal tissues was detected by TUNEL staining; and GABAAR in the hippocampal tissues was detected by Western blot. GABAAR, Sirt-1, and apoptosis-related proteins (Caspase-3, BCL-2, BAX) in hippocampal tissue. Results: Compared with the control group, the 3 h sevoflurane group and the 6 h sevoflurane group neurons were arranged sparsely, the cells appeared to be swollen, the evasion latency, the apoptosis rate of neurons, the expression of Caspase-3, and BAX increased significantly, and the number of crossing the plateau, the level of 5-HT and Ach in the brain tissues, and the expression of GABAAR, Sirt-1, and BCL-2 were decreased significantly, and the differences existed between the groups (P < .5); compared with the 6 h sevoflurane group, neuronal morphological changes in the hippocampal tissue of the 6 h sevoflurane+SRT1720 group were improved, with a significant decrease in the evasion latency, neuronal apoptosis rate, expression of Caspase-3 and BAX, and a significant increase in the number of traversing platforms, brain tissue 5-HT, Ach level, GABAAR, Sirt-1, and BCL-2 expression (P < .5); compared with the SRT1720 group, the neurons in the 6 h sevoflurane + SRT1720 group were sparsely arranged, with a significant increase in evasion latency, neuronal apoptosis rate, caspase-3, BAX expression, and a significant decrease in the number of traversing platforms, brain tissue 5-HT, Ach level, GABAAR, Sirt-1, and BCL-2 expression (P < .5 ). Conclusion: Sevoflurane can affect the neurological development of rat offspring, which may be related to the inhibition of Sirt-1 expression.

4.
Mol Cancer ; 22(1): 99, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37353784

RESUMEN

BACKGROUND: Lung adenocarcinoma (LUAD) is a common type of lung cancer with a high risk of metastasis, but the exact molecular mechanisms of metastasis are not yet understood. METHODS: This study acquired single-cell transcriptomics profiling of 11 distal normal lung tissues, 11 primary LUAD tissues, and 4 metastatic LUAD tissues from the GSE131907 dataset. The lung multicellular ecosystems were characterized at a single-cell resolution, and the potential mechanisms underlying angiogenesis and metastasis of LUAD were explored. RESULTS: We constructed a global single-cell landscape of 93,610 cells from primary and metastatic LUAD and found that IGF2BP2 was specifically expressed both in a LUAD cell subpopulation (termed as LUAD_IGF2BP2), and an endothelial cell subpopulation (termed as En_IGF2BP2). The LUAD_IGF2BP2 subpopulation progressively formed and dominated the ecology of metastatic LUAD during metastatic evolution. IGF2BP2 was preferentially secreted by exosomes in the LUAD_IGF2BP2 subpopulation, which was absorbed by the En_IGF2BP2 subpopulation in the tumor microenvironment. Subsequently, IGF2BP2 improved the RNA stability of FLT4 through m6A modification, thereby activating the PI3K-Akt signaling pathway, and eventually promoting angiogenesis and metastasis. Analysis of clinical data showed that IGF2BP2 was linked with poor overall survival and relapse-free survival for LUAD patients. CONCLUSIONS: Overall, these findings provide a novel insight into the multicellular ecosystems of primary and metastatic LUAD, and demonstrate that a specific LUAD_IGF2BP2 subpopulation is a key orchestrator promoting angiogenesis and metastasis, with implications for the gene regulatory mechanisms of LUAD metastatic evolution, representing themselves as potential antiangiogenic targets.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Metilación , Ecosistema , Células Endoteliales , Fosfatidilinositol 3-Quinasas , Recurrencia Local de Neoplasia , Adenocarcinoma del Pulmón/genética , Neoplasias Pulmonares/genética , Microambiente Tumoral , Proteínas de Unión al ARN/genética
5.
Pharmacol Res ; 196: 106933, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37729957

RESUMEN

Both environmental and genetic factors contribute to the etiology of autoimmune thyroid disease (AITD) including Graves' disease (GD) and Hashimoto's thyroiditis (HT). However, the exact pathogenesis and interactions that occur between environmental factors and genes remain unclear, and therapeutic targets require further investigation due to limited therapeutic options. To solve such problems, this study utilized single-cell transcriptome, whole transcriptome, full-length transcriptome (Oxford nanopore technology), and metabolome sequencing to examine thyroid lesion tissues from 2 HT patients and 2 GD patients as well as healthy thyroid tissue from 1 control subject. HT patients had increased ATF4-positive thyroid follicular epithelial (ThyFoEp) cells, which significantly increased endoplasmic reticulum stress. The enhanced sustained stress resulted in cell death mainly including apoptosis and necroptosis. The ATF4-based global gene regulatory network and experimental validation revealed that N6-methyladenosine (m6A) reader hnRNPC promoted the transcriptional activity, synthesis, and translation of ATF4 through mediating m6A modification of ATF4. Increased ATF4 expression initiated endoplasmic reticulum stress signaling, which when sustained, caused apoptosis and necroptosis in ThyFoEp cells, and mediated HT development. Targeting hnRNPC and ATF4 notably decreased ThyFoEp cell death, thus ameliorating disease progression. Collectively, this study reveals the mechanisms by which microenvironmental cells in HT and GD patients trigger and amplify the thyroid autoimmune cascade response. Furthermore, we identify new therapeutic targets for the treatment of autoimmune thyroid disease, hoping to provide a potential way for targeted therapy.

6.
Blood Purif ; 52(6): 578-590, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37302392

RESUMEN

INTRODUCTION: The aim of the study was to systematically evaluate the efficacy and safety of plasma exchange combined with hemoperfusion in the treatment of organophosphorus poisoning. METHODS: PubMed, Embase, the Cochrane Library, China National Knowledge Internet, Wanfang database, and Weipu database were searched for articles about this subject. Literature screening and selection were conducted in strict accordance with the inclusion and exclusion criteria. RESULTS: 14 randomized controlled trials with 1,034 participants were included in this meta-analysis study, including 518 cases in plasma exchange combined with hemoperfusion group (the combination treatment group) and 516 cases in hemoperfusion group (the control group). Compared with the control group, the combination treatment group was associated with a higher effective rate (relative risk [RR] = 1.20, 95% confidence interval [CI] [1.11, 1.30], p < 0.00001) and lower fatality rate (RR = 0.28, 95% CI [0.15, 0.52], p< 0.0001); reduced TNF-α (standardized mean difference [SMD] = -1.95, 95% CI [-2.42, -1.48], p < 0.00001), IL-6 (SMD = -1.94, 95% CI [-3.08, -0.80], p = 0.0009), and C-reactive protein (CRP) (SMD = -1.94, 95% CI [-2.86, -1.03], p < 0.0001); shorten coma time (SMD = -1.99, 95% CI [-2.75, -1.24], p < 0.00001), recovery time of cholinesterase activity (SMD = -1.71, 95% CI [-1.90, -1.53], p < 0.00001), and hospital stay (SMD = -1.29, 95% CI [-1.59, -0.98], p < 0.00001). The incidence of complications in the combination treatment group such as liver and kidney damage (RR = 0.30, 95% CI [0.18, 0.50], p < 0.00001), pulmonary infection (RR = 0.29, 95% CI [0.18, 0.47], p < 0.00001), and intermediate syndrome (RR = 0.32, 95% CI [0.21, 0.49], p < 0.00001) was lower than that in the control group. CONCLUSIONS: The current evidence suggests that the combination of plasma exchange with hemoperfusion therapy can reduce the mortality of patients with organophosphorus poisoning, shorten the recovery time of cholinesterase activity and the time of coma, reduce the average length of hospital stay, and reduce the levels of IL-6, TNF-α, and CRP, but high-quality randomized double-blind controlled trials are still required to confirm the current findings in the future.


Asunto(s)
Hemoperfusión , Intoxicación por Organofosfatos , Humanos , Intoxicación por Organofosfatos/terapia , Intercambio Plasmático , Factor de Necrosis Tumoral alfa , Coma , Interleucina-6 , Colinesterasas , Ensayos Clínicos Controlados Aleatorios como Asunto
7.
Mol Cancer ; 21(1): 182, 2022 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-36131282

RESUMEN

BACKGROUND: Multiple myeloma (MM) is a heterogeneous disease with different patterns of clonal evolution and a complex tumor microenvironment, representing a challenge for clinicians and pathologists to understand and dissect the contribution and impact of polyclonality on tumor progression. METHODS: In this study, we established a global cell ecological landscape of the bone marrow (BM) from MM patients, combining single-cell RNA sequencing and single-molecule long-read genome sequencing data. RESULTS: The malignant mutation event was localized to the tumor cell clusters with shared mutation of ANK1 and IFITM2 in all malignant subpopulations of all MM patients. Therefore, these two variants occur in the early stage of malignant clonal origin to mediate the malignant transformation of proplasmacytes or plasmacytes to MM cells. Tumor cell stemness index score and pseudo-sequential clonal evolution analysis can be used to divide the evolution model of MM into two clonal origins: types I and IX. Notably, clonal evolution and the tumor microenvironment showed an interactive relationship, in which the evolution process is not only selected by but also reacts to the microenvironment; thus, vesicle secretion enriches immune cells with malignant-labeled mRNA for depletion. Interestingly, microenvironmental modification exhibited significant heterogeneity among patients. CONCLUSIONS: This characterization of the malignant clonal evolution pattern of MM at the single-cell level provides a theoretical basis and scientific evidence for a personalized precision therapy strategy and further development of a potential new adjuvant strategy combining epigenetic agent and immune checkpoint blockade.


Asunto(s)
Mieloma Múltiple , Médula Ósea/patología , Evolución Clonal/genética , Humanos , Inhibidores de Puntos de Control Inmunológico , Proteínas de la Membrana/genética , Mieloma Múltiple/patología , ARN Mensajero , Microambiente Tumoral/genética
8.
Biochem Biophys Res Commun ; 631: 9-17, 2022 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-36162328

RESUMEN

OBJECTIVE: To explore the association between phenotype and the gut microbiome following damage to the GRID2 gene. METHODS: Ten wild-type (WT) mice and 11 GRID2 knockout heterozygous mice (GRID2(±)) of a similar age and weight were randomly selected. Fresh feces were collected from both groups of mice under specified pathogen-free (SPF) conditions. The bacterial genomes were extracted from the feces, the 16S rRNA genes were sequenced, and the data were analyzed to determine clustering, diversity, abundance, LEfSe, and functional differences. Differential expression and enrichment analyses of the RNA-seq and protein levels of the GRID2 gene were also performed using data in the GENE database and the new version of the Human Protein Atlas portal (www.proteinatlas.org). RESULTS: The diversity analysis showed differences in species composition between the two groups at different levels. At phylum level, compared with the WT group, the distribution was more bacteriophages but showed a lower content of Tenericutes in the GRID2(±) group. At the order level, compared with the WT group, a higher content of Actinomycetales and Bacteriophages were found in the GRID2(±) group. The species difference analysis showed that 17 species, including E. faecalis and Paracoccus spp., showed differences in content between the two groups. LEfSe analysis showed that the abundance of Clostridiaceae, Allobaculum, and other groups decreased in the GRID2(±) group compared with the WT group, while Mycoplasma, Sphingomonas, and Alphaproteobacteria increased in abundance. Functional analysis revealed eight differential functions between the WT and GRID2(±) group (P < 0.05). The most significantly disrupted were neuroactive ligand-receptor interactions (P < 9.99e-4). In addition, the differential expression and enrichment analyses performed at RNA-seq and protein levels revealed that the GRID2 gene showed organ-specific expression and was mainly enriched in the brain tissue. CONCLUSIONS: Compared with the WT group, the defective GRID2 gene affected the species richness and composition of gut microbes in the GRID2(±) mice, which in turn affected the function of gut microbes, leading to the disruption of neuroactive ligand-receptor interactions. Our findings indicate that the host gene, GRID2, can influence the abundance of a subset of gut microbes but the exact mechanisms still need further investigation.


Asunto(s)
Microbioma Gastrointestinal , Interacciones Microbiota-Huesped , Receptores de Glutamato , Animales , Humanos , Ratones , Bacterias/genética , Bacteriófagos/genética , Heces/microbiología , Microbioma Gastrointestinal/fisiología , Ligandos , ARN Ribosómico 16S/genética , Receptores de Glutamato/genética , Receptores de Glutamato/metabolismo
9.
Am J Hum Genet ; 103(2): 296-304, 2018 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-30032983

RESUMEN

The dynamic shape of the endoplasmic reticulum (ER) is a reflection of its wide variety of critical cell biological functions. Consequently, perturbation of ER-shaping proteins can cause a range of human phenotypes. Here, we describe three affected children (from two consanguineous families) who carry homozygous loss-of-function mutations in LNPK (previously known as KIAA1715); this gene encodes lunapark, which is proposed to serve as a curvature-stabilizing protein within tubular three-way junctions of the ER. All individuals presented with severe psychomotor delay, intellectual disability, hypotonia, epilepsy, and corpus callosum hypoplasia, and two of three showed mild cerebellar hypoplasia and atrophy. Consistent with a proposed role in neurodevelopmental disease, LNPK was expressed during brain development in humans and mice and was present in neurite-like processes in differentiating human neural progenitor cells. Affected cells showed the absence of full-length lunapark, aberrant ER structures, and increased luminal mass density. Together, our results implicate the ER junction stabilizer lunapark in establishing the corpus callosum.


Asunto(s)
Retículo Endoplásmico/genética , Proteínas de Homeodominio/genética , Mutación/genética , Adolescente , Animales , Atrofia/genética , Diferenciación Celular/genética , Niño , Cuerpo Calloso/patología , Femenino , Humanos , Lactante , Discapacidad Intelectual/genética , Masculino , Proteínas de la Membrana , Ratones , Hipotonía Muscular/genética , Fenotipo , Trastornos Psicomotores/genética , Células Madre/patología
10.
Cancer Cell Int ; 21(1): 467, 2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34488772

RESUMEN

BACKGROUND: Prostate cancer (PCa) is still a serious male malignant disease across the world. However, no exact pathogenesis had been explained. Although adenylosuccinate lyase (ADSL) gene was identified to be important in PCa early in 1987, its comprehensive functions for PCa have not been presented. METHODS: The cBioPortal for Cancer Genomics, Oncomine and GEO database were retrieved to investigate the associations between of the ADSL gene and PCa. Then, the PC-3, DU145 and C4-2B cell lines were applied in vitro experiments. RNA sequencing and further western blot (WB) were applied to explore the potential mechanisms of ADSL gene in PCa. RESULTS: Based on PCa clinical datasets, we firstly found ADSL gene highly expressed in PCa tissues. Moreover, its transcript level increased in the metastatic PCa further. Elevated ADSL gene expression indicated a poor prognosis of PCa. While inhibiting the expression of ADSL with siRNA, the ability of cell proliferation and migration all declined markedly, with increased cell apoptosis inversely. Most of cells were blocked in the G0/G1 phase. Additionally, RNA sequencing also discovered the inactivity of cell cycle pathway after ADSL knockdown, which had also confirmed on the proteins levels. CONCLUSIONS: Our study identified the ADSL as an oncogene of PCa through regulating the cell cycle pathway firstly, with explicit cell and clinical phenotypes. Further mechanisms were needed to confirm its carcinogenic effect.

11.
Prostate ; 80(4): 352-364, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31905248

RESUMEN

BACKGROUND: Signal regulatory protein ß1 (SIRPB1) is a signal regulatory protein member of the immunoglobulin superfamily and is capable of modulating receptor tyrosine kinase-coupled signaling. Copy number variations at the SIRPB1 locus were previously reported to associate with prostate cancer aggressiveness in patients, however, the role of SIRPB1 in prostate carcinogenesis is unknown. METHODS: Fluorescence in situ hybridization and laser-capture microdissection coupled with quantitative polymerase chain reaction was utilized to determine SIRPB1 gene amplification and messenger RNA expression in prostate cancer specimens. The effect of knockdown of SIRPB1 by RNA interference in PC3 prostate cancer cells on cell growth in colony formation assays and cell mobility in wound-healing, transwell assays, and cell cycle analysis was determined. Overexpression of SIPRB1 in C4-2 prostate cancer cells on cell migration, invasion, colony formation and cell cycle progression and tumor take rate in xenografts was also determined. Western blot assay of potential downstream SIRPB1 pathways was also performed. RESULTS: SIRPB1 gene amplification was detected in up to 37.5% of prostate cancer specimens based on in silico analysis of several publicly available datasets. SIRPB1 gene amplification and overexpression were detected in prostate cancer specimens. The knockdown of SIRPB1 significantly suppressed cell growth in colony formation assays and cell mobility. SIRPB1 knockdown also induced cell cycle arrest during the G0 /G1 phase and enhancement of apoptosis. Conversely, overexpression of SIPRB1 in C4-2 prostate cancer cells significantly enhanced cell migration, invasion, colony formation, and cell cycle progression and increased C4-2 xenograft tumor take rate in nude mice. Finally, this study presented evidence for SIRPB1 regulation of Akt phosphorylation and showed that Akt inhibition could abolish SIRPB1 stimulation of prostate cancer cell proliferation. CONCLUSIONS: These results suggest that SIRPB1 is a potential oncogene capable of activating Akt signaling to stimulate prostate cancer proliferation and could be a biomarker for patients at risk of developing aggressive prostate cancer.


Asunto(s)
Moléculas de Adhesión de Célula Nerviosa/genética , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Neoplasias de la Próstata/enzimología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular/fisiología , Activación Enzimática , Amplificación de Genes , Xenoinjertos , Humanos , Masculino , Ratones , Ratones Desnudos , Moléculas de Adhesión de Célula Nerviosa/biosíntesis , Células PC-3 , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal
12.
J Cell Mol Med ; 23(1): 306-316, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30338905

RESUMEN

Hypertrophic cardiomyopathy (HCM) is the most common genetic cardiovascular disease. Although some genes and miRNAs related with HCM have been studied, the molecular regulatory mechanisms between miRNAs and transcription factors (TFs) in HCM have not been systematically elucidated. In this study, we proposed a novel method for identifying dysregulated miRNA-TF feed-forward loops (FFLs) by integrating sample matched miRNA and gene expression profiles and experimentally verified interactions of TF-target gene and miRNA-target gene. We identified 316 dysregulated miRNA-TF FFLs in HCM, which were confirmed to be closely related with HCM from various perspectives. Subpathway enrichment analysis demonstrated that the method was outperformed by the existing method. Furthermore, we systematically analysed the global architecture and feature of gene regulation by miRNAs and TFs in HCM, and the FFL composed of hsa-miR-17-5p, FASN and STAT3 was inferred to play critical roles in HCM. Additionally, we identified two panels of biomarkers defined by three TFs (CEBPB, HIF1A, and STAT3) and four miRNAs (hsa-miR-155-5p, hsa-miR-17-5p, hsa-miR-20a-5p, and hsa-miR-181a-5p) in a discovery cohort of 126 samples, which could differentiate HCM patients from healthy controls with better performance. Our work provides HCM-related dysregulated miRNA-TF FFLs for further experimental study, and provides candidate biomarkers for HCM diagnosis and treatment.


Asunto(s)
Cardiomiopatía Hipertrófica/genética , MicroARNs/genética , Factores de Transcripción/genética , Biomarcadores , Retroalimentación Fisiológica , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Reproducibilidad de los Resultados , Factor de Transcripción STAT3/genética
13.
Prostate ; 79(6): 657-666, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30714180

RESUMEN

BACKGROUND: DHX15 is a member of the DEAH-box (DHX) RNA helicase family. Our previous study identified it as an AR coactivator which contributes to prostate cancer progression. METHODS: We investigated DHX15 expression in castration resistant prostate cancer specimens and the influence of DHX15 on the responsiveness of prostate cancer cells to DHT stimulation. We also explored the role DHX15 played in enzalutamide resistance and the interacting domain in DHX15 with AR. DHX15 expression level in human CRPC specimens and prostate cancer specimens was detected by tissue microarray (TMA) immunostaining analysis. Colony formation assay was performed to determine the proliferation of cells treated with enzalutamide or DHT. siRNAs were used to knockdown DHX15. The interactions between DHX15 and AR were detected using co-immunoprecipitation assay. RESULTS: The expression level of DHX15 was upregulated in human CRPC specimens compared with hormone naïve prostate cancer specimens. DHX15 knockdown reduced AR sensitivity to low DHT concentrations in C4-2 cells. Inactivation of DHX15 sensitizes the enzalutamide treatment in C4-2 cells. Deletion mutagenesis indicated that DHX1 5 interacts with AR through its N terminal domain. CONCLUSIONS: These findings suggest that DHX15 contributes to prostate cancer progression. DHX15 is required for androgen receptor sensitivity to low DHT concentrations and contributes to enzalutamide resistance in C4-2 cells. Targeting DHX15 may improve the ADT treatment.


Asunto(s)
Feniltiohidantoína/análogos & derivados , Neoplasias de la Próstata Resistentes a la Castración , ARN Helicasas , Receptores Androgénicos/metabolismo , Antineoplásicos/farmacología , Benzamidas , Línea Celular Tumoral , Progresión de la Enfermedad , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunoprecipitación/métodos , Masculino , Nitrilos , Feniltiohidantoína/farmacología , Próstata/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , ARN Helicasas/genética , ARN Helicasas/metabolismo , Activación Transcripcional , Regulación hacia Arriba
14.
Sensors (Basel) ; 19(18)2019 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-31547389

RESUMEN

In this paper, we propose a fast and accurate deep network-based object tracking method, which combines feature representation, template tracking and foreground detection into a single framework for robust tracking. The proposed framework consists of a backbone network, which feeds into two parallel networks, TmpNet for template tracking and FgNet for foreground detection. The backbone network is a pre-trained modified VGG network, in which a few parameters need to be fine-tuned for adapting to the tracked object. FgNet is a fully convolutional network to distinguish the foreground from background in a pixel-to-pixel manner. The parameter in TmpNet is the learned channel-wise target template, which initializes in the first frame and performs fast template tracking in the test frames. To enable each component to work closely with each other, we use a multi-task loss to end-to-end train the proposed framework. In online tracking, we combine the score maps from TmpNet and FgNet to find the optimal tracking results. Experimental results on object tracking benchmarks demonstrate that our approach achieves favorable tracking accuracy against the state-of-the-art trackers while running at a real-time speed of 38 fps.

15.
BMC Cancer ; 18(1): 255, 2018 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-29534690

RESUMEN

BACKGROUND: Breast cancer is one of the leading causes of death in women worldwide. Fast growth is the important character of breast cancer, which makes sure the subsequent metastasize and invasion breast cancer. Golgi related genes GOLPH3 has been reported to regulate many kinds of cancers proliferation. However, its upregulator remains largely unknown. miRNA modulate gene expression by post-transcriptional repression to participate in many signaling pathway of breast cancer cell proliferation. miR-590 has been reported to regulate tumorgenesis and could be regulated by its own target ATF-3. But whether miR-590 can be the modulator of Golgi related genes to regulate the breast cancer proliferation is unclear. METHODS: We performed the bioinformatics analysis of survival rate and expression differences of patients using the data of The Cancer Genome Atlas (TCGA).Both of MTS and BrdU assays were used for cell proliferation analysis. Cell cycle was detected by flow cytometry .qRT-PCR was used for detecting the cell cycle related gene expression. Student's t-test or One way anova was used for statistics. RESULTS: We found the upregulation of GOLPH3 in breast cancer samples compared with normal breast tissues, which also was related to the poor prognosis. Overexpression of GOLPH3 significantly promoted proliferation both of MDA-MB-231 cells (ER negative) and MCF-7 cells (ER positive). We further found that miRNA-590-3p could directly target the 3'-UTR of GOLPH3 mRNA to repress its expression. Overexpression of miR-590-3p inhibited the proliferation of MDA-MB-231 and MCF-7 cells. The rescue experiments indicated that overexpression of GOLPH3 significantly resorted the proliferation inhibited by miR-590-3p. We also found that ATF-3 repressed miR-590-3p expression to modulate miR-590/GOLPH3 pathway to regulate breast cancer cells proliferation. CONCLUSIONS: This study not only suggests that the ATF-3/miR-590/GOLPH3 signaling pathway is critically involved in the proliferation of breast cancer cells, but provides a novel therapeutic target and new insight base on epigenetic regulation for future breast cancer diagnosis and clinical treatment.


Asunto(s)
Factor de Transcripción Activador 3/metabolismo , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/patología , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Proteínas de la Membrana/metabolismo , MicroARNs/genética , Regiones no Traducidas 3' , Factor de Transcripción Activador 3/genética , Biomarcadores de Tumor/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Ciclo Celular , Movimiento Celular , Epigénesis Genética , Femenino , Humanos , Proteínas de la Membrana/genética , Pronóstico , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , Tasa de Supervivencia , Células Tumorales Cultivadas
16.
J Magn Reson Imaging ; 47(4): 954-966, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28906567

RESUMEN

BACKGROUND: It is highly desirable in clinical abdominal MR scans to accelerate single-shot fast spin echo (SSFSE) imaging and reduce blurring due to T2 decay and partial-Fourier acquisition. PURPOSE: To develop and investigate the clinical feasibility of wave-encoded variable-density SSFSE imaging for improved image quality and scan time reduction. STUDY TYPE: Prospective controlled clinical trial. SUBJECTS: With Institutional Review Board approval and informed consent, the proposed method was assessed on 20 consecutive adult patients (10 male, 10 female, range, 24-84 years). FIELD STRENGTH/SEQUENCE: A wave-encoded variable-density SSFSE sequence was developed for clinical 3.0T abdominal scans to enable high acceleration (3.5×) with full-Fourier acquisitions by: 1) introducing wave encoding with self-refocusing gradient waveforms to improve acquisition efficiency; 2) developing self-calibrated estimation of wave-encoding point-spread function and coil sensitivity to improve motion robustness; and 3) incorporating a parallel imaging and compressed sensing reconstruction to reconstruct highly accelerated datasets. ASSESSMENT: Image quality was compared pairwise with standard Cartesian acquisition independently and blindly by two radiologists on a scale from -2 to 2 for noise, contrast, confidence, sharpness, and artifacts. The average ratio of scan time between these two approaches was also compared. STATISTICAL TESTS: A Wilcoxon signed-rank tests with a P value under 0.05 considered statistically significant. RESULTS: Wave-encoded variable-density SSFSE significantly reduced the perceived noise level and improved the sharpness of the abdominal wall and the kidneys compared with standard acquisition (mean scores 0.8, 1.2, and 0.8, respectively, P < 0.003). No significant difference was observed in relation to other features (P = 0.11). An average of 21% decrease in scan time was achieved using the proposed method. DATA CONCLUSION: Wave-encoded variable-density sampling SSFSE achieves improved image quality with clinically relevant echo time and reduced scan time, thus providing a fast and robust approach for clinical SSFSE imaging. LEVEL OF EVIDENCE: 1 Technical Efficacy: Stage 6 J. Magn. Reson. Imaging 2018;47:954-966.


Asunto(s)
Abdomen/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Factibilidad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Adulto Joven
17.
Zootaxa ; 3964(5): 577-82, 2015 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-26249469

RESUMEN

The paper describes one new species, i.e. Conanalus bilobus sp. nov., and provides additional information on Conanalus brevicaudus Shi, Mao & Ou, 2008 (including female description for the first time), and Conanalus robustus Shi, Mao & Ou, 2008 from Yunnan, as well as illustrations of important morphological characters of Conanalus axinus Shi, Wang & Fu, 2005. A distribution map of the species of Conanalus from Yunnan, China is presented. The type material is deposited in the Museum of Hebei University.


Asunto(s)
Ortópteros/clasificación , Distribución Animal , Estructuras Animales/anatomía & histología , Estructuras Animales/crecimiento & desarrollo , Animales , Tamaño Corporal , China , Femenino , Masculino , Museos , Tamaño de los Órganos , Ortópteros/anatomía & histología , Ortópteros/crecimiento & desarrollo
18.
Histol Histopathol ; : 18765, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38841987

RESUMEN

BACKGROUND: This study was designed to explore whether hsa_circ_0070440 was dysregulated in prostate cancer (PCa), and assess the effects of hsa_circ_0070440 alteration on PCa prognosis and cell function. METHODS: The expression levels of hsa_circ_0070440 were assessed in PCa tissues and cell lines. After the classification of patients with PCa based on mean hsa_circ_0070440 level in 138 cases, Chi-square test and survival analyses (Kaplan-Meier method and multivariable Cox proportional hazards analysis) were performed to assess the predictive value of hsa_circ_0070440 in treatment failure (TTF), time to PSA progression (TTPP) and overall survival time. To examine the function of hsa_circ_0070440 in PCa cells, 22Rv1 and C4-2B cells were used for CCK-8 proliferation and Transwell migration assays. Hsa_circ_0070440- and TXNDC5-specific bindings with miR-382/383-5p were validated by bioinformatic analysis and luciferase gene reporter assay. RESULTS: An increased expression of hsa_circ_0070440 was found in PCA tissues and cell lines, associated with clinical T stage (p=0.021) and lymph node metastasis. Hsa_circ_0070440 predicted poor overall survival, TTPP, and TTF, acting as independent prognostic factors for overall survival, TTPP, and TTF in patients with PCa. Knockdown of hsa_circ_0070440 inhibited cell proliferation and migration in vitro. Furthermore, hsa_circ_0070440 could sponge miR-382/383-5p. TXNDC5 was a common target gene for miR-382/383-5p in PCa cells. CONCLUSION: This study demonstrated that hsa_circ_0070440 can predict the prognosis of PCa patients. Hsa_circ_0070440 can facilitate the proliferation and migration of PCa cells, possibly by sponging miR-382/383-5p.

19.
Anthropol Anz ; 81(1): 61-68, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-37539591

RESUMEN

This study examined forty skull samples of ancient children, aged 2-15 years, excavated from the Zaghunluq cemetery in Xinjiang, China. The purpose of the study was to analyze the patterns of age-related physiological development and growth spurts in the skulls of these ancient children by comparing the projected areas of the bottom view of the skull, the occipital bone, and the maxilla among different age groups. The analysis of variance (ANOVA) revealed significant differences in the projected areas of the skull's bottom view, occipital bone, and maxilla among five age groups (2 years old, 3-5 years old, 6-8 years old, 9-11 years old, and 12-15 years old). The growth spurts in the projected area of the occipital bone occurred at ages 3-5 years and 6-8 years. As for the maxilla, the growth spurts took place at ages 6-8 years and 12-15 years. Meanwhile, the projected area of the skull's bottom view exhibited a continuous increase without any periods of rapid growth. These findings may reflect the patterns of age-related growth in the skulls of ancient children in Xinjiang, China.


Asunto(s)
Cementerios , Cráneo , Niño , Humanos , Preescolar , Cráneo/anatomía & histología , Cabeza , China
20.
Am J Transl Res ; 15(4): 2903-2910, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37193162

RESUMEN

OBJECTIVE: To assess the dietary quality of patients with severe cerebrovascular disease using Diet Balance Index-16 (DBI-16) and to provide scientific evidence for the establishment of targeted dietary intervention and related dietary nutritional education for patients. METHODS: The general information of 214 hospitalized patients with severe cerebrovascular disease, including gender and age etc., were investigated by a self-made questionnaire on health risk factors, and the dietary quality conditions of patients was evaluated by DBI-16 scoring method. RESULTS: The dietary quality of patients with severe cerebrovascular disease had low levels of imbalanced conditions, accompanied with low levels of inadequate intake and excessive intake. The degree of excessive intake in female patients was clearly less than that in male patients. The degree of inadequate intake and total scores in patients younger than 55 years old was lower than those in the other two groups. The intake of vegetables, fruits, milk and soybeans in most of patients did not reach the recommended nutrient intake and the animal product amount was insufficient. In addition, the intake of low quality food and condiments such as oil and salt were excessive in patients with severe cerebrovascular disease. Dietary pattern A was the main model. CONCLUSIONS: The overall diet structure of patients with severe cerebrovascular disease is not rational. It is recommended to appropriately balance the intake of grains and animal products, increase the intake of milk, soybeans, vegetables and fruits, and strictly control the amount of oil and salt.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA