Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Small ; : e2401426, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38686686

RESUMEN

The current high-capacity lithium-ion batteries (LIBs), reliant on flammable liquid electrolytes (LEs) and nickel-rich cathodes, are plagued by safety hazards, especially the risk of hazardous gas release stemming from internal side reactions. To address these safety concerns, an electron beam (E-beam)-induced gel polymer electrolyte (E-Gel) is introduced, employing dipentaerythritol hexaacrylate (DPH) as a bi-functional cross-linkable additive (CIA). The dual roles of DPH are exploited through a strategically designed E-beam irradiation process. Applying E-beam irradiation on the pre-cycled cells allows DPH to function as an additive during the initial cycle, establishing a protective layer on the surface of the anode and cathode and as a cross-linker during the E-beam irradiation step, forming a polymer framework. The prepared E-Gel with CIA has superior interfacial compatibility, facilitating lithium-ion diffusion at the electrode/E-Gel interface. The electrochemical assessment of 1.2 Ah pouch cells demonstrates that E-Gel substantially reduces gas release by 2.5 times compared to commercial LEs during the initial formation stage and ensures superior reversible capacity retention even after prolonged cycling at 55 °C. The research underscores the synergy of bifunctional CIA with E-beam technology, paving the way for large-scale production of safe, high-capacity, and commercially viable LIBs.

2.
BMC Vet Res ; 20(1): 375, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39174969

RESUMEN

BACKGROUND: The aim of this study was to evaluate the adverse effects of allogeneic mesenchymal stem cells (MSCs) transplanted via intravenous infusion in dogs and examine their safety. We performed a retrospective analysis of various clinical assessments, including physical examination, blood tests, and radiographs, and monitored the formation of neoplasms during a 6-month follow-up period in 40 client-owned dogs that received intravenous infusion of adipose tissue-derived MSCs (AT-MSCs) for the treatment of various underlying diseases between 2012 and 2018. RESULTS: No significant adverse effects of MSC therapy were detected by clinical assessment, blood tests, or radiographic examination in the 6-month follow-up period after the first MSC treatment. Additionally no new neoplasms were observed during this period. CONCLUSIONS: To our knowledge, this study is the first to evaluate the safety aspects (≥ 6 months) associated with intravenous allogeneic AT-MSC infusion. These results suggest that allogenic AT-MSC infusion could be a useful and relatively safe therapeutic approach in canines.


Asunto(s)
Enfermedades de los Perros , Trasplante de Células Madre Mesenquimatosas , Animales , Perros , Trasplante de Células Madre Mesenquimatosas/veterinaria , Trasplante de Células Madre Mesenquimatosas/efectos adversos , Trasplante de Células Madre Mesenquimatosas/métodos , Femenino , Masculino , Estudios Retrospectivos , Enfermedades de los Perros/terapia , Células Madre Mesenquimatosas , Trasplante Homólogo/veterinaria , Inyecciones Intravenosas/veterinaria , Tejido Adiposo/citología
3.
Arch Plast Surg ; 51(3): 332-336, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38737843

RESUMEN

Reconstructive surgeons face challenges when considering limb salvage methods for the treatment of diabetic foot ulcers (DFUs). In this article, we present our experience with autologous fat grafting as a viable alternative in cases where flap reconstruction is difficult. We encountered a 78-year-old female patient with a nonhealing DFU who had multiple comorbidities, including renal failure and severe peripheral arterial disease. During the initial multidisciplinary meeting, due to extensive necrosis and osteomyelitis, amputation was recommended. However, the patient expressed a strong preference for a salvage procedure and refused amputation. After careful consideration, we opted to reconstruct the patient's foot using three-dimensional bioprinted autologous minimally manipulated homologous adipose tissue. The AMHAT was engrafted well without complications such as autolysis, graft failure, or infection. After the operation, the large defect with partial bone exposure was covered with healthy granulation tissue. The size of the wound decreased to less than half its original size after 6 weeks of surgery, and it decreased to less than 25% after 12 weeks of surgery. The AMHAT may be an appealing treatment option for diabetic foot patients who are unsuitable for flap reconstruction due to comorbidities.

4.
Arch Craniofac Surg ; 25(3): 150-154, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38977400

RESUMEN

This case report describes a rare occurrence of pyogenic granuloma (PG) in the hard palate deviating from its typical gingival location that led to the formation of an alveolar cleft. The aggressive growth pattern of the lesion, with atypical progression from a pedunculated nodule to an alveolar cleft, raised concern. The diagnosis was based on magnetic resonance imaging and computed tomography findings, which revealed a tadpole-shaped lesion originating from the midline hard palate. The differential diagnosis included a minor salivary gland tumor. Surgical excision was performed under general anesthesia and resulted in a mucosal defect without nasolabial fistula formation or bone exposure. The palatal defect was packed with oxidized regenerated cellulose and closed with Vicryl Rapide sutures, both of which contributed to the patient's successful outcomes. Our comprehensive approach, extending across the stages of surgical planning, execution, and postoperative care, demonstrated the advantages of a multidisciplinary strategy for the accurate diagnosis and effective treatment of palatal PGs. This report makes a meaningful contribution to the existing literature on common oral lesions by emphasizing the importance of a broad differential diagnosis and a systematic approach to oral pathologies. It also raises clinical awareness of PGs with atypical presentations and the diagnostic challenge that they pose.

5.
Sci Rep ; 14(1): 9157, 2024 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-38644456

RESUMEN

Brown adipose tissue (BAT) which is a critical regulator of energy homeostasis, and its activity is inhibited by obesity and low-grade chronic inflammation. Ginsenoside Rg3, the primary constituent of Korean red ginseng (steamed Panax ginseng CA Meyer), has shown therapeutic potential in combating inflammatory and metabolic diseases. However, it remains unclear whether Rg3 can protect against the suppression of browning or activation of BAT induced by inflammation. In this study, we conducted a screening of ginsenoside composition in red ginseng extract (RGE) and explored the anti-adipogenic effects of both RGE and Rg3. We observed that RGE (exist 0.25 mg/mL of Rg3) exhibited significant lipid-lowering effects in adipocytes during adipogenesis. Moreover, treatment with Rg3 (60 µM) led to the inhibition of triglyceride accumulation, subsequently promoting enhanced fatty acid oxidation, as evidenced by the conversion of radiolabeled 3H-fatty acids into 3H-H2O with mitochondrial activation. Rg3 alleviated the attenuation of browning in lipopolysaccharide (LPS)-treated beige adipocytes and primary brown adipocytes by recovered by uncoupling protein 1 (UCP1) and the oxygen consumption rate compared to the LPS-treated group. These protective effects of Rg3 on inflammation-induced inhibition of beige and BAT-derived thermogenesis were confirmed in vivo by treating with CL316,243 (a beta-adrenergic receptor agonist) and LPS to induce browning and inflammation, respectively. Consistent with the in vitro data, treatment with Rg3 (2.5 mg/kg, 8 weeks) effectively reversed the LPS-induced inhibition of brown adipocyte features in C57BL/6 mice. Our findings confirm that Rg3-rich foods are potential browning agents that counteract chronic inflammation and metabolic complications.


Asunto(s)
Tejido Adiposo Pardo , Ginsenósidos , Lipopolisacáridos , Mitocondrias , Panax , Extractos Vegetales , Termogénesis , Ginsenósidos/farmacología , Animales , Termogénesis/efectos de los fármacos , Panax/química , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Ratones , Extractos Vegetales/farmacología , Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Beige/metabolismo , Tejido Adiposo Beige/efectos de los fármacos , Ratones Endogámicos C57BL , Masculino , Adipogénesis/efectos de los fármacos
6.
Brain Res ; 1829: 148770, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38266888

RESUMEN

The brain and peripheral organs communicate through hormones and neural connections. Proper communication is required to maintain normal whole-body energy homeostasis. In addition to endocrine system, from the perspective of neural connections for metabolic homeostasis, the role of the sympathetic nervous system has been extensively studied, but understanding of the parasympathetic nervous system is limited. The liver plays a central role in glucose and lipid metabolism. This study aimed to clarify the innervation of parasympathetic nervous system in the liver and its functional roles in metabolic homeostasis. The liver-specific parasympathetic nervous system innervation (PNS) was shown by tissue clearing, immunofluorescence and transgenic mice at the three-dimensional histological level. The parasympathetic efferent signals were manipulated using a chemogenetic technique and the activation of ChAT+ parasympathetic neurons in dorsal motor vagus (DMV) results in the increased blood glucose through the elevated hepatic gluconeogenic and lipogenic gene expression in the liver. Thus, our study showed the evidence of ChAT+ parasympathetic neurons in the liver and its role for hepatic parasympathetic nervous signaling in glucose homeostasis through the regulation of hepatic gene expression.


Asunto(s)
Glucemia , Nervio Vago , Ratones , Animales , Glucemia/metabolismo , Nervio Vago/fisiología , Neuronas/metabolismo , Hígado/metabolismo , Glucosa/metabolismo , Ratones Transgénicos , Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA