Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(5): 1177-1190.e18, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38366593

RESUMEN

Phospholipids containing a single polyunsaturated fatty acyl tail (PL-PUFA1s) are considered the driving force behind ferroptosis, whereas phospholipids with diacyl-PUFA tails (PL-PUFA2s) have been rarely characterized. Dietary lipids modulate ferroptosis, but the mechanisms governing lipid metabolism and ferroptosis sensitivity are not well understood. Our research revealed a significant accumulation of diacyl-PUFA phosphatidylcholines (PC-PUFA2s) following fatty acid or phospholipid treatments, correlating with cancer cell sensitivity to ferroptosis. Depletion of PC-PUFA2s occurred in aging and Huntington's disease brain tissue, linking it to ferroptosis. Notably, PC-PUFA2s interacted with the mitochondrial electron transport chain, generating reactive oxygen species (ROS) for initiating lipid peroxidation. Mitochondria-targeted antioxidants protected cells from PC-PUFA2-induced mitochondrial ROS (mtROS), lipid peroxidation, and cell death. These findings reveal a critical role for PC-PUFA2s in controlling mitochondria homeostasis and ferroptosis in various contexts and explain the ferroptosis-modulating mechanisms of free fatty acids. PC-PUFA2s may serve as diagnostic and therapeutic targets for modulating ferroptosis.


Asunto(s)
Grasas de la Dieta , Ferroptosis , Fosfolípidos , Ácidos Grasos , Fosfatidilcolinas , Fosfolípidos/química , Fosfolípidos/metabolismo , Especies Reactivas de Oxígeno , Grasas de la Dieta/metabolismo
2.
Immunity ; 54(4): 721-736.e10, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33725478

RESUMEN

Hyperglycemia and hyperlipidemia are often observed in individuals with type II diabetes (T2D) and related mouse models. One dysmetabolic biochemical consequence is the non-enzymatic reaction between sugars, lipids, and proteins, favoring protein glycation, glycoxidation, and lipoxidation. Here, we identified oxidative alterations in key components of the major histocompatibility complex (MHC) class II molecule antigen processing and presentation machinery in vivo under conditions of hyperglycemia-induced metabolic stress. These modifications were linked to epitope-specific changes in endosomal processing efficiency, MHC class II-peptide binding, and DM editing activity. Moreover, we observed some quantitative and qualitative changes in the MHC class II immunopeptidome of Ob/Ob mice on a high-fat diet compared with controls, including changes in the presentation of an apolipoprotein B100 peptide associated previously with T2D and metabolic syndrome-related clinical complications. These findings highlight a link between glycation reactions and altered MHC class II antigen presentation that may contribute to T2D complications.


Asunto(s)
Presentación de Antígeno/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Estrés Fisiológico/inmunología , Animales , Células Presentadoras de Antígenos/inmunología , Diabetes Mellitus Experimental/inmunología , Diabetes Mellitus Tipo 2/inmunología , Modelos Animales de Enfermedad , Epítopos/inmunología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Péptidos/inmunología , Unión Proteica/inmunología
3.
Nature ; 607(7920): 808-815, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35794478

RESUMEN

Diffuse large B cell lymphoma (DLBCL) is the most common B cell non-Hodgkin lymphoma and remains incurable in around 40% of patients. Efforts to sequence the coding genome identified several genes and pathways that are altered in this disease, including potential therapeutic targets1-5. However, the non-coding genome of DLBCL remains largely unexplored. Here we show that active super-enhancers are highly and specifically hypermutated in 92% of samples from individuals with DLBCL, display signatures of activation-induced cytidine deaminase activity, and are linked to genes that encode B cell developmental regulators and oncogenes. As evidence of oncogenic relevance, we show that the hypermutated super-enhancers linked to the BCL6, BCL2 and CXCR4 proto-oncogenes prevent the binding and transcriptional downregulation of the corresponding target gene by transcriptional repressors, including BLIMP1 (targeting BCL6) and the steroid receptor NR3C1 (targeting BCL2 and CXCR4). Genetic correction of selected mutations restored repressor DNA binding, downregulated target gene expression and led to the counter-selection of cells containing corrected alleles, indicating an oncogenic dependency on the super-enhancer mutations. This pervasive super-enhancer mutational mechanism reveals a major set of genetic lesions deregulating gene expression, which expands the involvement of known oncogenes in DLBCL pathogenesis and identifies new deregulated gene targets of therapeutic relevance.


Asunto(s)
Elementos de Facilitación Genéticos , Regulación Neoplásica de la Expresión Génica , Linfoma de Células B Grandes Difuso , Mutación , Oncogenes , Regulación hacia Abajo , Elementos de Facilitación Genéticos/genética , Humanos , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/metabolismo , Oncogenes/genética , Factor 1 de Unión al Dominio 1 de Regulación Positiva/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-6/genética , Receptores CXCR4/genética , Receptores de Glucocorticoides/metabolismo , Proteínas Represoras/metabolismo
4.
EMBO J ; 42(11): e112721, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37070548

RESUMEN

Different mutations in the RNA-binding protein Pumilio1 (PUM1) cause divergent phenotypes whose severity tracks with dosage: a mutation that reduces PUM1 levels by 25% causes late-onset ataxia, whereas haploinsufficiency causes developmental delay and seizures. Yet PUM1 targets are derepressed to equal degrees in both cases, and the more severe mutation does not hinder PUM1's RNA-binding ability. We therefore considered the possibility that the severe mutation might disrupt PUM1 interactions, and identified PUM1 interactors in the murine brain. We find that mild PUM1 loss derepresses PUM1-specific targets, but the severe mutation disrupts interactions with several RNA-binding proteins and the regulation of their targets. In patient-derived cell lines, restoring PUM1 levels restores these interactors and their targets to normal levels. Our results demonstrate that dosage sensitivity does not always signify a linear relationship with protein abundance but can involve distinct mechanisms. We propose that to understand the functions of RNA-binding proteins in a physiological context will require studying their interactions as well as their targets.


Asunto(s)
Encéfalo , Proteínas de Unión al ARN , Animales , Ratones , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Mutación , Encéfalo/metabolismo , Convulsiones
5.
PLoS Biol ; 22(3): e3002522, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38483887

RESUMEN

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has affected approximately 800 million people since the start of the Coronavirus Disease 2019 (COVID-19) pandemic. Because of the high rate of mutagenesis in SARS-CoV-2, it is difficult to develop a sustainable approach for prevention and treatment. The Envelope (E) protein is highly conserved among human coronaviruses. Previous studies reported that SARS-CoV-1 E deficiency reduced viral propagation, suggesting that E inhibition might be an effective therapeutic strategy for SARS-CoV-2. Here, we report inhibitory peptides against SARS-CoV-2 E protein named iPep-SARS2-E. Leveraging E-induced alterations in proton homeostasis and NFAT/AP-1 pathway in mammalian cells, we developed screening platforms to design and optimize the peptides that bind and inhibit E protein. Using Vero-E6 cells, human-induced pluripotent stem cell-derived branching lung organoid and mouse models with SARS-CoV-2, we found that iPep-SARS2-E significantly inhibits virus egress and reduces viral cytotoxicity and propagation in vitro and in vivo. Furthermore, the peptide can be customizable for E protein of other human coronaviruses such as Middle East Respiratory Syndrome Coronavirus (MERS-CoV). The results indicate that E protein can be a potential therapeutic target for human coronaviruses.


Asunto(s)
COVID-19 , SARS-CoV-2 , Ratones , Animales , Chlorocebus aethiops , Humanos , Línea Celular , Células Vero , Péptidos/farmacología , Mamíferos
6.
Nature ; 597(7876): 430-434, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34471289

RESUMEN

Extracellular electron transfer by Geobacter species through surface appendages known as microbial nanowires1 is important in a range of globally important environmental phenomena2, as well as for applications in bio-remediation, bioenergy, biofuels and bioelectronics. Since 2005, these nanowires have been thought to be type 4 pili composed solely of the PilA-N protein1. However, previous structural analyses have demonstrated that, during extracellular electron transfer, cells do not produce pili but rather nanowires made up of the cytochromes OmcS2,3 and OmcZ4. Here we show that Geobacter sulfurreducens binds PilA-N to PilA-C to assemble heterodimeric pili, which remain periplasmic under nanowire-producing conditions that require extracellular electron transfer5. Cryo-electron microscopy revealed that C-terminal residues of PilA-N stabilize its copolymerization with PilA-C (to form PilA-N-C) through electrostatic and hydrophobic interactions that position PilA-C along the outer surface of the filament. PilA-N-C filaments lack π-stacking of aromatic side chains and show a conductivity that is 20,000-fold lower than that of OmcZ nanowires. In contrast with surface-displayed type 4 pili, PilA-N-C filaments show structure, function and localization akin to those of type 2 secretion pseudopili6. The secretion of OmcS and OmcZ nanowires is lost when pilA-N is deleted and restored when PilA-N-C filaments are reconstituted. The substitution of pilA-N with the type 4 pili of other microorganisms also causes a loss of secretion of OmcZ nanowires. As all major phyla of prokaryotes use systems similar to type 4 pili, this nanowire translocation machinery may have a widespread effect in identifying the evolution and prevalence of diverse electron-transferring microorganisms and in determining nanowire assembly architecture for designing synthetic protein nanowires.


Asunto(s)
Fimbrias Bacterianas/química , Fimbrias Bacterianas/metabolismo , Geobacter , Nanocables , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Biopolímeros , Conductividad Eléctrica , Proteínas Fimbrias/química , Proteínas Fimbrias/metabolismo , Geobacter/citología , Geobacter/metabolismo , Multimerización de Proteína
7.
J Immunol ; 213(1): 40-51, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38809096

RESUMEN

NK cells are innate immune effectors that kill virally infected or malignant cells. NK cell deficiency (NKD) occurs when NK cell development or function is impaired and variants in MCM4, GINS1, MCM10, and GINS4 result in NKD. Although NK cells are strongly impacted by mutational deficiencies in helicase proteins, the mechanisms underlying this specific susceptibility are poorly understood. In this study, we induced replication stress in activated NK cells or T cells by chemical and genetic methods. We found that the CD56bright subset of NK cells accumulates more DNA damage and replication stress during activation than do CD56dim NK cells or T cells. Aphidicolin treatment increases apoptosis of CD56bright NK cells through increased pan-caspase expression and decreases perforin expression in surviving cells. These findings show that sensitivity to replication stress affects NK cell survival and function and contributes to NKD.


Asunto(s)
Apoptosis , Células Asesinas Naturales , Activación de Linfocitos , Humanos , Células Asesinas Naturales/inmunología , Apoptosis/inmunología , Activación de Linfocitos/inmunología , Daño del ADN , Replicación del ADN , Antígeno CD56/metabolismo , Estrés Fisiológico/inmunología , Linfocitos T/inmunología , Células Cultivadas
8.
Nature ; 578(7793): E11, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31937917

RESUMEN

An Amendment to this paper has been published and can be accessed via a link at the top of the paper.

9.
Nature ; 577(7791): 566-571, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31915377

RESUMEN

Epithelial-to-mesenchymal transitions (EMTs) are phenotypic plasticity processes that confer migratory and invasive properties to epithelial cells during development, wound-healing, fibrosis and cancer1-4. EMTs are driven by SNAIL, ZEB and TWIST transcription factors5,6 together with microRNAs that balance this regulatory network7,8. Transforming growth factor ß (TGF-ß) is a potent inducer of developmental and fibrogenic EMTs4,9,10. Aberrant TGF-ß signalling and EMT are implicated in the pathogenesis of renal fibrosis, alcoholic liver disease, non-alcoholic steatohepatitis, pulmonary fibrosis and cancer4,11. TGF-ß depends on RAS and mitogen-activated protein kinase (MAPK) pathway inputs for the induction of EMTs12-19. Here we show how these signals coordinately trigger EMTs and integrate them with broader pathophysiological processes. We identify RAS-responsive element binding protein 1 (RREB1), a RAS transcriptional effector20,21, as a key partner of TGF-ß-activated SMAD transcription factors in EMT. MAPK-activated RREB1 recruits TGF-ß-activated SMAD factors to SNAIL. Context-dependent chromatin accessibility dictates the ability of RREB1 and SMAD to activate additional genes that determine the nature of the resulting EMT. In carcinoma cells, TGF-ß-SMAD and RREB1 directly drive expression of SNAIL and fibrogenic factors stimulating myofibroblasts, promoting intratumoral fibrosis and supporting tumour growth. In mouse epiblast progenitors, Nodal-SMAD and RREB1 combine to induce expression of SNAIL and mesendoderm-differentiation genes that drive gastrulation. Thus, RREB1 provides a molecular link between RAS and TGF-ß pathways for coordinated induction of developmental and fibrogenic EMTs. These insights increase our understanding of the regulation of epithelial plasticity and its pathophysiological consequences in development, fibrosis and cancer.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Transición Epitelial-Mesenquimal , Fibrosis/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Proteínas ras/metabolismo , Animales , Línea Celular Tumoral , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Células Epiteliales/metabolismo , Células Epiteliales/patología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Femenino , Fibrosis/patología , Gastrulación , Humanos , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Neoplasias/enzimología , Organoides/metabolismo , Organoides/patología , Proteínas Smad/metabolismo , Factores de Transcripción de la Familia Snail/metabolismo , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Factor de Crecimiento Transformador beta/farmacología
11.
Nature ; 584(7820): 304-309, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32581365

RESUMEN

The human GABAB receptor-a member of the class C family of G-protein-coupled receptors (GPCRs)-mediates inhibitory neurotransmission and has been implicated in epilepsy, pain and addiction1. A unique GPCR that is known to require heterodimerization for function2-6, the GABAB receptor has two subunits, GABAB1 and GABAB2, that are structurally homologous but perform distinct and complementary functions. GABAB1 recognizes orthosteric ligands7,8, while GABAB2 couples with G proteins9-14. Each subunit is characterized by an extracellular Venus flytrap (VFT) module, a descending peptide linker, a seven-helix transmembrane domain and a cytoplasmic tail15. Although the VFT heterodimer structure has been resolved16, the structure of the full-length receptor and its transmembrane signalling mechanism remain unknown. Here we present a near full-length structure of the GABAB receptor, captured in an inactive state by cryo-electron microscopy. Our structure reveals several ligands that preassociate with the receptor, including two large endogenous phospholipids that are embedded within the transmembrane domains to maintain receptor integrity and modulate receptor function. We also identify a previously unknown heterodimer interface between transmembrane helices 3 and 5 of both subunits, which serves as a signature of the inactive conformation. A unique 'intersubunit latch' within this transmembrane interface maintains the inactive state, and its disruption leads to constitutive receptor activity.


Asunto(s)
Microscopía por Crioelectrón , Receptores de GABA-B/química , Receptores de GABA-B/ultraestructura , Calcio/metabolismo , Etanolaminas/química , Etanolaminas/metabolismo , Humanos , Ligandos , Modelos Moleculares , Fosforilcolina/química , Fosforilcolina/metabolismo , Dominios Proteicos , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Receptores de GABA-B/metabolismo , Relación Estructura-Actividad
12.
Mol Cell ; 72(1): 152-161.e7, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30174294

RESUMEN

Infection with Mycobacterium tuberculosis continues to cause substantial human mortality, in part because of the emergence of antimicrobial resistance. Antimicrobial resistance in tuberculosis is solely the result of chromosomal mutations that modify drug activators or targets, yet the mechanisms controlling the mycobacterial DNA-damage response (DDR) remain incompletely defined. Here, we identify RecA serine 207 as a multifunctional signaling hub that controls the DDR in mycobacteria. RecA S207 is phosphorylated after DNA damage, which suppresses the emergence of antibiotic resistance by selectively inhibiting the LexA coprotease function of RecA without affecting its ATPase or strand exchange functions. Additionally, RecA associates with the cytoplasmic membrane during the mycobacterial DDR, where cardiolipin can specifically inhibit the LexA coprotease function of unmodified, but not S207 phosphorylated, RecA. These findings reveal that RecA S207 controls mutagenesis and antibiotic resistance in mycobacteria through phosphorylation and cardiolipin-mediated inhibition of RecA coprotease function.


Asunto(s)
Farmacorresistencia Bacteriana/genética , Mycobacterium tuberculosis/genética , Rec A Recombinasas/genética , Tuberculosis/genética , Adenosina Trifosfatasas/genética , Cardiolipinas/genética , Daño del ADN/genética , Humanos , Mutagénesis/genética , Mycobacterium tuberculosis/patogenicidad , Fosforilación , Serina/genética , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología
13.
Proc Natl Acad Sci U S A ; 120(1): e2219054120, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36574676

RESUMEN

Bioprosthetic heart valves (BHV), made from glutaraldehyde-fixed xenografts, are widely used for surgical and transcatheter valve interventions but suffer from limited durability due to structural valve degeneration (SVD). We focused on metabolic syndrome (MetS), a risk factor for SVD and a highly prevalent phenotype in patients affected by valvular heart disease with a well-recognized cluster of comorbidities. Multicenter patient data (N = 251) revealed that patients with MetS were at significantly higher risk of accelerated SVD and required BHV replacement sooner. Using a next-generation proteomics approach, we identified significantly differential proteomes from leaflets of explanted BHV from MetS and non-MetS patients (N = 24). Given the significance of protein infiltration in MetS-induced SVD, we then demonstrated the protective effects of polyoxazoline modification of BHV leaflets to mitigate MetS-induced BHV biomaterial degeneration (calcification, tissue cross-linking, and microstructural changes) in an ex vivo serum model and an in vivo with MetS rat subcutaneous implants.


Asunto(s)
Bioprótesis , Prótesis Valvulares Cardíacas , Síndrome Metabólico , Humanos , Animales , Ratas , Síndrome Metabólico/complicaciones , Válvulas Cardíacas , Factores de Riesgo , Válvula Aórtica/cirugía
14.
Proc Natl Acad Sci U S A ; 120(11): e2218330120, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36893259

RESUMEN

Heterozygous inactivating mutations of the KMT2D methyltransferase and the CREBBP acetyltransferase are among the most common genetic alterations in B cell lymphoma and co-occur in 40 to 60% of follicular lymphoma (FL) and 30% of EZB/C3 diffuse large B cell lymphoma (DLBCL) cases, suggesting they may be coselected. Here, we show that combined germinal center (GC)-specific haploinsufficiency of Crebbp and Kmt2d synergizes in vivo to promote the expansion of abnormally polarized GCs, a common preneoplastic event. These enzymes form a biochemical complex on select enhancers/superenhancers that are critical for the delivery of immune signals in the GC light zone and are only corrupted upon dual Crebbp/Kmt2d loss, both in mouse GC B cells and in human DLBCL. Moreover, CREBBP directly acetylates KMT2D in GC-derived B cells, and, consistently, its inactivation by FL/DLBCL-associated mutations abrogates its ability to catalyze KMT2D acetylation. Genetic and pharmacologic loss of CREBBP and the consequent decrease in KMT2D acetylation lead to reduced levels of H3K4me1, supporting a role for this posttranslational modification in modulating KMT2D activity. Our data identify a direct biochemical and functional interaction between CREBBP and KMT2D in the GC, with implications for their role as tumor suppressors in FL/DLBCL and for the development of precision medicine approaches targeting enhancer defects induced by their combined loss.


Asunto(s)
Linfoma Folicular , Linfoma de Células B Grandes Difuso , Animales , Humanos , Ratones , Acetilación , Linfocitos B/metabolismo , Proteína de Unión a CREB/genética , Proteína de Unión a CREB/metabolismo , Centro Germinal , Linfoma Folicular/genética , Linfoma Folicular/metabolismo , Linfoma Folicular/patología , Linfoma de Células B Grandes Difuso/patología , Mutación , Procesamiento Proteico-Postraduccional
15.
Proc Natl Acad Sci U S A ; 120(6): e2114747120, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36716374

RESUMEN

Biomolecular condensates, membraneless organelles found throughout the cell, play critical roles in many aspects of cellular function. Ribonucleoprotein granules (RNPs) are a type of biomolecular condensate necessary for local protein synthesis and are involved in synaptic plasticity and long-term memory. Most of the proteins in RNPs possess low-complexity motifs (LCM), allowing for increased promiscuity of protein-protein interactions. Here, we describe the importance of protein-protein interactions mediated by the LCM of RNA-binding protein cytoplasmic polyadenylation element binding protein 3 (CPEB3). CPEB3 is necessary for long-term synaptic plasticity and memory persistence, but the mechanisms involved are still not completely elucidated. We now present key mechanisms involved in its regulation of synaptic plasticity. We find that CPEB3-LCM plays a role in appropriate local protein synthesis of messenger ribonucleic acid (mRNA) targets, through crucial protein-protein interactions that drive localization to neuronal Decapping protein 1 (DCP1)-bodies. Translation-promoting CPEB3 and translation-inhibiting CPEB1 are packaged into neuronal RNP granules immediately after chemical long-term potentiation is induced, but only translation-promoting CPEB3 is repackaged to these organelles at later time points. This localization to neuronal RNP granules is critical for functional influence on translation as well as overall local protein synthesis (measured as α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) insertion into the membrane and localization to the synapse). We therefore conclude that protein-protein interaction between the LCM of CPEB3 plays a critical role in local protein synthesis by utilizing neuronal RNP granules.


Asunto(s)
Memoria a Largo Plazo , Neuronas , Neuronas/metabolismo , ARN Mensajero/metabolismo , Plasticidad Neuronal/fisiología , Proteínas de Unión al ARN/metabolismo , Gránulos Citoplasmáticos/metabolismo
16.
J Neurosci ; 44(3)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38050142

RESUMEN

ZCCHC17 is a putative master regulator of synaptic gene dysfunction in Alzheimer's disease (AD), and ZCCHC17 protein declines early in AD brain tissue, before significant gliosis or neuronal loss. Here, we investigate the function of ZCCHC17 and its role in AD pathogenesis using data from human autopsy tissue (consisting of males and females) and female human cell lines. Co-immunoprecipitation (co-IP) of ZCCHC17 followed by mass spectrometry analysis in human iPSC-derived neurons reveals that ZCCHC17's binding partners are enriched for RNA-splicing proteins. ZCCHC17 knockdown results in widespread RNA-splicing changes that significantly overlap with splicing changes found in AD brain tissue, with synaptic genes commonly affected. ZCCHC17 expression correlates with cognitive resilience in AD patients, and we uncover an APOE4-dependent negative correlation of ZCCHC17 expression with tangle burden. Furthermore, a majority of ZCCHC17 interactors also co-IP with known tau interactors, and we find a significant overlap between alternatively spliced genes in ZCCHC17 knockdown and tau overexpression neurons. These results demonstrate ZCCHC17's role in neuronal RNA processing and its interaction with pathology and cognitive resilience in AD, and suggest that the maintenance of ZCCHC17 function may be a therapeutic strategy for preserving cognitive function in the setting of AD pathology.


Asunto(s)
Enfermedad de Alzheimer , Resiliencia Psicológica , Femenino , Humanos , Masculino , Enfermedad de Alzheimer/metabolismo , Cognición , Neuronas/metabolismo , ARN , Empalme del ARN/genética , Proteínas tau/metabolismo
17.
Clin Proteomics ; 21(1): 43, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38902643

RESUMEN

Biomarkers play a crucial role in advancing precision medicine by enabling more targeted and individualized approaches to diagnosis and treatment. Various biofluids, including serum, plasma, cerebrospinal fluid (CSF), saliva, tears, pancreatic cyst fluids, and urine, have been identified as rich sources of potential for the early detection of disease biomarkers in conditions such as cancer, cardiovascular diseases, and neurodegenerative disorders. The analysis of plasma and serum in proteomics research encounters challenges due to their high complexity and the wide dynamic range of protein abundance. These factors impede the sensitivity, coverage, and precision of protein detection when employing mass spectrometry, a widely utilized technology in discovery proteomics. Conventional approaches such as Neat Plasma workflow are inefficient in accurately quantifying low-abundant proteins, including those associated with tissue leakage, immune response molecules, interleukins, cytokines, and interferons. Moreover, the manual nature of the workflow poses a significant hurdle in conducting large cohort studies. In this study, our focus is on comparing workflows for plasma proteomic profiling to establish a methodology that is not only sensitive and reproducible but also applicable for large cohort studies in biomarker discovery. Our investigation revealed that the Proteograph XT workflow outperforms other workflows in terms of plasma proteome depth, quantitative accuracy, and reproducibility while offering complete automation of sample preparation. Notably, Proteograph XT demonstrates versatility by applying it to various types of biofluids. Additionally, the proteins quantified widely cover secretory proteins in peripheral blood, and the pathway analysis enriched with relevant components such as interleukins, tissue necrosis factors, chemokines, and B and T cell receptors provides valuable insights. These proteins, often challenging to quantify in complex biological samples, hold potential as early detection markers for various diseases, thereby contributing to the improvement of patient care quality.

18.
BMC Genomics ; 24(1): 139, 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36944971

RESUMEN

BACKGROUND: Non-human primates, such as Rhesus macaques, are a powerful model for studies of the cellular and physiological effects of radiation, development of radiation biodosimetry, and for understanding the impact of radiation on human health. Here, we study the effects of 4 Gy total body irradiation (TBI) at the molecular level out to 28 days and at the cytogenetic level out to 56 days after exposure. We combine the global transcriptomic and proteomic responses in peripheral whole blood to assess the impact of acute TBI exposure at extended times post irradiation. RESULTS: The overall mRNA response in the first week reflects a strong inflammatory reaction, infection response with neutrophil and platelet activation. At 1 week, cell cycle arrest and re-entry processes were enriched among mRNA changes, oncogene-induced senescence and MAPK signaling among the proteome changes. Influenza life cycle and infection pathways initiated earlier in mRNA and are reflected among the proteomic changes during the first week. Transcription factor proteins SRC, TGFß and NFATC2 were immediately induced at 1 day after irradiation with increased transcriptional activity as predicted by mRNA changes persisting up to 1 week. Cell counts revealed a mild / moderate hematopoietic acute radiation syndrome (H-ARS) reaction to irradiation with expected lymphopenia, neutropenia and thrombocytopenia that resolved within 30 days. Measurements of micronuclei per binucleated cell levels in cytokinesis-blocked T-lymphocytes remained high in the range 0.27-0.33 up to 28 days and declined to 0.1 by day 56. CONCLUSIONS: Overall, we show that the TBI 4 Gy dose in NHPs induces many cellular changes that persist up to 1 month after exposure, consistent with damage, death, and repopulation of blood cells.


Asunto(s)
Transcriptoma , Irradiación Corporal Total , Animales , Macaca mulatta , Proteoma , Proteómica , Multiómica , Células Sanguíneas , Dosis de Radiación
19.
Am J Kidney Dis ; 81(1): 114-117, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35931341

RESUMEN

Rare cases of immunoglobulin G (IgG)-dominant immune complex-mediated glomerulonephritis demonstrate immunoglobulin subclass restriction without light chain restriction. Some of these cases may represent proliferative glomerulonephritis with monotypic immunoglobulin deposits (PGNMID) in which monotypic immunoglobulin is obscured by coexisting polytypic immunoglobulin. However, rigorous demonstration of this possibility is lacking to date. Here, we describe a case of IgG3-restricted immune complex-mediated glomerulonephritis without light chain restriction that apparently "transformed" into IgG3κ-PGNMID in a subsequent biopsy. We demonstrate, using several ancillary techniques, including use of the newly described antibodies directed against the conformational epitope at the junctions of heavy and light chains (HLC-IF), that the first biopsy likely represents IgG3κ-PGNMID in which monotypic IgG3κ was hidden by polytypic IgM. This case underscores the need to consider PGNMID in a differential diagnosis of IgG-dominant immune complex-mediated glomerulonephritis without light chain restriction and highlights the potential utility of IgG subclass staining and HLC-IF in such cases to detect monotypic immunoglobulin that may be obscured by coexisting IgM and/or IgA deposits.


Asunto(s)
Glomerulonefritis Membranoproliferativa , Glomerulonefritis , Humanos , Complejo Antígeno-Anticuerpo , Glomerulonefritis/patología , Inmunoglobulina G , Inmunoglobulina M
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA