Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Int J Mol Sci ; 24(8)2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37108199

RESUMEN

Heart rate variability is a useful measure for monitoring the autonomic nervous system. Heart rate variability measurements have gained significant demand not only in science, but also in the public due to the fairly low price and wide accessibility of the Internet of things. The scientific debate about one of the measures of heart rate variability, i.e., what low-frequency power is reflecting, has been ongoing for decades. Some schools reason that it represents the sympathetic loading, while an even more compelling reasoning is that it measures how the baroreflex modulates the cardiac autonomic outflow. However, the current opinion manuscript proposes that the discovery of the more precise molecular characteristics of baroreceptors, i.e., that the Piezo2 ion channel containing vagal afferents could invoke the baroreflex, may possibly resolve this debate. It is long known that medium- to high-intensity exercise diminishes low-frequency power to almost undetectable values. Moreover, it is also demonstrated that the stretch- and force-gated Piezo2 ion channels are inactivated in a prolonged hyperexcited state in order to prevent pathological hyperexcitation. Accordingly, the current author suggests that the almost undetectable value of low-frequency power at medium- to high-intensity exercise reflects the inactivation of Piezo2 from vagal afferents in the baroreceptors with some Piezo1 residual activity contribution. Consequently, this opinion paper highlights how low-frequency power of the heart rate variability could represent the activity level of Piezo2 in baroreceptors.


Asunto(s)
Corazón , Presorreceptores , Presorreceptores/fisiología , Frecuencia Cardíaca/fisiología , Corazón/fisiología , Sistema Nervioso Autónomo , Barorreflejo/fisiología
2.
Int J Mol Sci ; 24(8)2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37108693

RESUMEN

The purpose of our study was to analyze abnormal neural regeneration activity in the cornea through means of confocal microscopy in rheumatoid arthritis patients with concomitant dry eye disease. We examined 40 rheumatoid arthritis patients with variable severity and 44 volunteer age- and gender-matched healthy control subjects. We found that all examined parameters were significantly lower (p < 0.05) in rheumatoid arthritis patients as opposed to the control samples: namely, the number of fibers, the total length of the nerves, the number of branch points on the main fibers and the total nerve-fiber area. We examined further variables, such as age, sex and the duration of rheumatoid arthritis. Interestingly, we could not find a correlation between the above variables and abnormal neural structural changes in the cornea. We interpreted these findings via implementing our hypotheses. Correspondingly, one neuroimmunological link between dry eye and rheumatoid arthritis could be through the chronic Piezo2 channelopathy-induced K2P-TASK1 signaling axis. This could accelerate neuroimmune-induced sensitization on the spinal level in this autoimmune disease, with Langerhans-cell activation in the cornea and theorized downregulated Piezo1 channels in these cells. Even more importantly, suggested principal primary-damage-associated corneal keratocyte activation could be accompanied by upregulation of Piezo1. Both activation processes on the periphery would skew the plasticity of the Th17/Treg ratio, resulting in Th17/Treg imbalance in dry eye, secondary to rheumatoid arthritis. Hence, chronic somatosensory-terminal Piezo2 channelopathy-induced impaired Piezo2-Piezo1 crosstalk could result in a mixed picture of disrupted functional regeneration but upregulated morphological regeneration activity of these somatosensory axons in the cornea, providing the demonstrated abnormal neural corneal morphology.


Asunto(s)
Artritis Reumatoide , Canalopatías , Síndromes de Ojo Seco , Humanos , Canalopatías/complicaciones , Síndromes de Ojo Seco/complicaciones , Artritis Reumatoide/complicaciones , Córnea/inervación , Queratocitos de la Córnea , Microscopía Confocal/métodos , Canales Iónicos
3.
Int J Mol Sci ; 24(13)2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37445856

RESUMEN

Our objective in this study was to analyze the aberrant neural regeneration activity in the cornea by means of in vivo confocal microscopy in systemic lupus erythematosus patients with concurrent dry eye disease. We examined 29 systemic lupus erythematosus patients and 29 age-matched healthy control subjects. Corneal nerve fiber density (CNFD, the number of fibers/mm2) and peripheral Langerhans cell morphology were lower (p < 0.05) in systemic lupus erythematosus patients compared to the control group. Interestingly, corneal nerve branch density, corneal nerve fiber length, corneal nerve fiber total branch density, and corneal nerve fiber area showed a negative correlation with disease duration. A negative correlation was also demonstrated between average corneal nerve fiber density and central Langerhans cell density. This is in line with our hypothesis that corneal somatosensory terminal Piezo2 channelopathy-induced impaired Piezo2-Piezo1 crosstalk not only disrupts regeneration and keeps transcription activated, but could lead to Piezo1 downregulation and cell activation on Langerhans cells when we consider a chronic path. Hence, Piezo2 containing mechanosensory corneal nerves and dendritic Langerhans cells could also be regarded as central players in shaping the ocular surface neuroimmune homeostasis through the Piezo system. Moreover, lost autoimmune neuroinflammation compensation, lost phagocytic self-eating capacity, and lost transcription regulation, not to mention autoantibodies against vascular heparin sulfate proteoglycans and phospholipids, could all contribute to the progressive fashion of dry eye disease in systemic lupus erythematosus.


Asunto(s)
Artritis Reumatoide , Síndromes de Ojo Seco , Tejido Nervioso , Humanos , Córnea/inervación , Fibras Nerviosas , Artritis Reumatoide/complicaciones , Microscopía Confocal
4.
Int J Mol Sci ; 24(20)2023 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-37895134

RESUMEN

This study aimed at analyzing the corneal neural regeneration in ankylosing spondylitis patients using in vivo corneal confocal microscopy in correlation with Langerhans cell density, morphology, and dry eye parameters. Approximately 24 ankylosing spondylitis subjects and 35 age- and gender-matched control subjects were enrolled. Data analysis showed that all corneal nerve-fiber descriptives were lower in the ankylosing spondylitis group, implicating disrupted neural regeneration. Peripheral Langerhans cell density showed a negative correlation with nerve fiber descriptions. A negative correlation between tear film break-up time and corneal nerve fiber total branch density was detected. The potential role of somatosensory terminal Piezo2 channelopathy in the pathogenesis of dry eye disease and ankylosing spondylitis is highlighted in our study, exposing the neuroimmunological link between these diseases. We hypothesized earlier that spinal neuroimmune-induced sensitization due to this somatosensory terminal primary damage could lead to Langerhans cell activation in the cornea, in association with downregulated Piezo1 channels on these cells. This activation could lead to a Th17/Treg imbalance in dry eye secondary to ankylosing spondylitis. Hence, the corneal Piezo2 channelopathy-induced impaired Piezo2-Piezo1 crosstalk could explain the disrupted neural regeneration. Moreover, the translation of our findings highlights the link between Piezo2 channelopathy-induced gateway to pathophysiology and the gateway reflex, not to mention the potential role of spinal wide dynamic range neurons in the evolution of neuropathic pain and the flare-ups in ankylosing spondylitis and dry eye disease.


Asunto(s)
Canalopatías , Síndromes de Ojo Seco , Espondilitis Anquilosante , Humanos , Canalopatías/complicaciones , Córnea/patología , Síndromes de Ojo Seco/patología , Fibras Nerviosas/patología , Reflejo , Espondilitis Anquilosante/patología
5.
Int J Mol Sci ; 23(19)2022 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-36233237

RESUMEN

Psoriasis is considered a multifactorial and heterogeneous systemic disease with many underlying pathologic mechanisms having been elucidated; however, the pathomechanism is far from entirely known. This opinion article will demonstrate the potential relevance of the somatosensory Piezo2 microinjury-induced quad-phasic non-contact injury model in psoriasis through a multidisciplinary approach. The primary injury is suggested to be on the Piezo2-containing somatosensory afferent terminals in the Merkel cell−neurite complex, with the concomitant impairment of glutamate vesicular release machinery in Merkel cells. Part of the theory is that the Merkel cell−neurite complex contributes to proprioception; hence, to the stretch of the skin. Piezo2 channelopathy could result in the imbalanced control of Piezo1 on keratinocytes in a clustered manner, leading to dysregulated keratinocyte proliferation and differentiation. Furthermore, the author proposes the role of mtHsp70 leakage from damaged mitochondria through somatosensory terminals in the initiation of autoimmune and autoinflammatory processes in psoriasis. The secondary phase is harsher epidermal tissue damage due to the primary impaired proprioception. The third injury phase refers to re-injury and sensitization with the derailment of healing to a state when part of the wound healing is permanently kept alive due to genetical predisposition and environmental risk factors. Finally, the quadric damage phase is associated with the aging process and associated inflammaging. In summary, this opinion piece postulates that the primary microinjury of our "sixth sense", or the Piezo2 channelopathy of the somatosensory terminals contributing to proprioception, could be the principal gateway to pathology due to the encroachment of our preprogrammed genetic encoding.


Asunto(s)
Canalopatías , Psoriasis , Glutamatos , Humanos , Canales Iónicos/genética , Canales Iónicos/metabolismo , Mecanotransducción Celular/genética , Psoriasis/genética
6.
Int J Mol Sci ; 23(16)2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36012312

RESUMEN

Osteoporosis is a disorder, with a largely unknown pathomechanism, that is often marked as a "silent thief", because it usually only becomes undisguised when fractures occur. This implies that the pathological damage occurs earlier than the sensation of pain. The current authors put forward a non-contact injury model in which the chronic overloading of an earlier autologously microinjured Piezo2 ion channel of the spinal proprioceptor terminals could lead the way to re-injury and earlier aging in a dose-limiting and threshold-driven way. As a result, the aging process could eventually lead the way to the metabolic imbalance of primary osteoporosis in a quad-phasic non-contact injury pathway. Furthermore, it is emphasised that delayed onset muscle soreness, non-contact anterior cruciate injury and osteoporosis could have the same initiating proprioceptive non-contact Piezo2 channelopathy, at different locations, however, with different environmental risk factors and a different genetic predisposition, therefore producing different outcomes longitudinally. The current injury model does not intend to challenge any running pathogenic theories or findings, but rather to highlight a principal injury mechanism.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Osteoporosis , Carrera , Humanos , Mialgia , Osteoporosis/etiología
7.
Int J Mol Sci ; 23(19)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36232420

RESUMEN

The purpose of the study was to carry out an immunophenotypical characterization with a special focus on natural killer cells of junior swimmers from the Hungarian National Swim Team before and after an intensive acute exercise. Nineteen swimmers, ten females and nine males, completed the exercise protocol. Sixteen swimmers experienced delayed-onset muscle soreness. Most of our findings substantiated earlier results, such as the increase in the percentage of the CD3-/CD56+ natural killer cells and the CD3-/CD56dim+ NK cells, and the decrease in the percentage of CD3+ T cells among lymphocytes after the exercise protocol. The drop of natural killer cell activity back to the pre-exercise level was in line with earlier findings. Interestingly, the percentage of CD3+/CD56+ NKT-like cells did not change significantly in those three swimmers who did not report delayed-onset muscle soreness. On the contrary, the percentage of CD3+/CD56+ NKT-like cells among lymphocytes increased in fourteen and decreased in two swimmers reporting delayed-onset muscle soreness. This study for the first time demonstrated a link between the delayed-onset muscle soreness and the imbalanced control of CD3+/CD56+ NKT-like cells among lymphocytes. However, validation of this association in a larger sample size study will be necessary.


Asunto(s)
Células T Asesinas Naturales , Complejo CD3/metabolismo , Antígeno CD56/metabolismo , Ejercicio Físico , Femenino , Humanos , Masculino , Mialgia/etiología , Mialgia/metabolismo , Células T Asesinas Naturales/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo
8.
Cells ; 13(6)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38534336

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a mysterious lethal multisystem neurodegenerative disease that gradually leads to the progressive loss of motor neurons. A recent non-contact dying-back injury mechanism theory for ALS proposed that the primary damage is an acquired irreversible intrafusal proprioceptive terminal Piezo2 channelopathy with underlying genetic and environmental risk factors. Underpinning this is the theory that excessively prolonged proprioceptive mechanotransduction under allostasis may induce dysfunctionality in mitochondria, leading to Piezo2 channelopathy. This microinjury is suggested to provide one gateway from physiology to pathophysiology. The chronic, but not irreversible, form of this Piezo2 channelopathy is implicated in many diseases with unknown etiology. Dry eye disease is one of them where replenishing synthetic proteoglycans promote nerve regeneration. Syndecans, especially syndecan-3, are proposed as the first critical link in this hierarchical ordered depletory pathomechanism as proton-collecting/distributing antennas; hence, they may play a role in ALS pathomechanism onset. Even more importantly, the shedding or charge-altering variants of Syndecan-3 may contribute to the Piezo2 channelopathy-induced disruption of the Piezo2-initiated proton-based ultrafast long-range signaling through VGLUT1 and VGLUT2. Thus, these alterations may not only cause disruption to ultrafast signaling to the hippocampus in conscious proprioception, but could disrupt the ultrafast proprioceptive signaling feedback to the motoneurons. Correspondingly, an inert Piezo2-initiated proton-based ultrafast signaled proprioceptive skeletal system is coming to light that is suggested to be progressively lost in ALS. In addition, the lost functional link of the MyoD family of inhibitor proteins, as auxiliary subunits of Piezo2, may not only contribute to the theorized acquired Piezo2 channelopathy, but may explain how these microinjured ion channels evolve to be principal transcription activators.


Asunto(s)
Esclerosis Amiotrófica Lateral , Canalopatías , Enfermedades Neurodegenerativas , Humanos , Esclerosis Amiotrófica Lateral/metabolismo , Sindecano-3 , Mecanotransducción Celular , Protones , Propiocepción/fisiología
9.
Life (Basel) ; 13(3)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36983813

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a lethal neurodegenerative multisystem disease, with an unknown pathomechanism, resulting in progressive motoneuron loss. In 90-95% of cases, ALS is sporadic, but close to 10% of ALS is familial with inherited gene mutations from family members. Recently, a non-contact dying-back injury mechanism theory of ALS postulated that irreversible intrafusal proprioceptive terminal degeneration induces the non-resolving progressive impairment of the proprioceptive circuitry, leading to motoneuron loss, progressive overloading and depletion of the central nervous system, and eventually to death. The current manuscript proposes that irreversible Piezo2 channelopathy of this proprioceptive terminal degeneration induces constantly activated and dysregulated transcription process in ALS, providing access to underlying pathogenic gene variants and letting the cell-type-specific noncoding DNA mutations become more apparent. This opinion piece proposes that ALS genes are associated with the Piezo2 channelopathy mechanism both downstream and upstream, and their mutations, along with the aging process, could explain the non-contact dying-back injury mechanism theory of ALS. Moreover, irreversible microinjury of the Piezo2 ion channel could be the primary damage or the root cause of death in ALS. Finally, the current manuscript also depicts the pathomechanism as to why ALS is considered a painless disease.

10.
Sports (Basel) ; 11(11)2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37999426

RESUMEN

The aim of the study was to investigate any indication of diminished orthostatic tolerance as a result of fatiguing intensive acute concentric exercise with a successive isometric wall-sit followed by an orthostatic stress test, with a special focus on any distinguishable alterations due to a delayed-onset muscle soreness effect. The exercise protocol was carried out among nineteen (10 female, 9 male) junior swimmers from the Hungarian National Swim Team. All athletes showed a positive orthostatic stress test right after our exercise protocol. The diastolic blood pressure was significantly lower due to the delayed-onset muscle soreness effect in the standing position after the supine position of the orthostatic stress test, in contrast to the athletes who did not experience delayed-onset muscle soreness. Furthermore, the heart rate was dysregulated in athletes with a delayed-onset muscle soreness effect when they assumed a supine position after the sustained standing position during the orthostatic stress test, in contrast to the athletes without delayed-onset muscle soreness. Interesting to note is that, in three subjects, the sustained standing position decreased the heart rate below the level of the initial supine position and six athletes experienced dizziness in the standing position, and all of these athletes were from the group that experienced delayed-onset muscle soreness. Accordingly, this study, for the first time, demonstrated that delayed-onset muscle soreness impairs orthostasis after unaccustomed fatiguing intensive acute concentric exercise with a successive isometric weight-loaded wall-sit; however, validation of this association should be investigated in a larger sample size.

11.
Biomedicines ; 11(3)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36979911

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a lethal multisystem neurodegenerative disease associated with progressive loss of motor neurons, leading to death. Not only is the clinical picture of ALS heterogenous, but also the pain sensation due to different types of pain involvement. ALS used to be considered a painless disease, but research has been emerging and depicting a more complex pain representation in ALS. Pain has been detected even a couple years before the symptomatic stage of ALS, referring to primary pain associated with muscle denervation, although secondary pain due to nociceptive causes is also a part of the clinical picture. A new non-contact dying-back injury mechanism theory of ALS recently postulated that the irreversible intrafusal proprioceptive Piezo2 microinjury could be the primary damage, with underlying genetic and environmental risk factors. Moreover, this Piezo2 primary damage is also proposed to dysregulate the primary pain pathways in the spinal dorsal horn in ALS due to the lost imbalanced subthreshold Ca2+ currents, NMDA activation and lost L-type Ca2+ currents, leading to the lost activation of wide dynamic range neurons. Our investigation is the first to show that the likely pathogenic variants of the Cav1.3 encoding CACNA1D gene may play a role in ALS pathology and the associated dysregulation or loss of the pain sensation. Furthermore, our reanalysis also shows that the SCN1A gene might also contribute to the dysregulated pain sensation in ALS. Finally, the absence of pathogenic variants of Piezo2 points toward the new non-contact dying-back injury mechanism theory of ALS. However, molecular and genetic investigations are needed to identify the functionally diverse features of this proposed novel critical pathway.

12.
Biomolecules ; 12(9)2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-36139045

RESUMEN

Piezo2 transmembrane excitatory mechanosensitive ion channels were identified as the principal mechanotransduction channels for proprioception. Recently, it was postulated that Piezo2 channels could be acutely microdamaged on an autologous basis at proprioceptive Type Ia terminals in a cognitive demand-induced acute stress response time window when unaccustomed or strenuous eccentric contractions are executed. One consequence of this proposed transient Piezo2 microinjury could be a VGLUT1/Ia synaptic disconnection on motoneurons, as we can learn from platinum-analogue chemotherapy. A secondary, harsher injury phase with the involvement of polymodal Aδ and nociceptive C-fibers could follow the primary impairment of proprioception of delayed onset muscle soreness. Repetitive reinjury of these channels in the form of repeated bout effects is proposed to be the tertiary injury phase. Notably, the use of proprioception is associated with motor learning and memory. The impairment of the monosynaptic static phase firing sensory encoding of the affected stretch reflex could be the immediate consequence of the proposed Piezo2 microdamage leading to impaired proprioception, exaggerated contractions and reduced range of motion. These transient Piezo2 channelopathies in the primary afferent terminals could constitute the critical gateway to the pathophysiology of delayed onset muscle soreness. Correspondingly, fatiguing eccentric contraction-based pathological hyperexcitation of the Type Ia afferents induces reactive oxygen species production-associated neuroinflammation and neuronal activation in the spinal cord of delayed onset muscle soreness.


Asunto(s)
Mecanotransducción Celular , Mialgia , Humanos , Canales Iónicos/metabolismo , Enfermedades Neuroinflamatorias , Platino (Metal) , Especies Reactivas de Oxígeno
13.
Metabolites ; 12(9)2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36144262

RESUMEN

The pathophysiology of delayed onset muscle soreness is not entirely known. It seems to be a simple, exercise-induced delayed pain condition, but has remained a mystery for over 120 years. The buildup of lactic acid used to be blamed for muscle fatigue and delayed onset muscle soreness; however, studies in the 1980s largely refuted the role of lactate in delayed onset muscle soreness. Regardless, this belief is widely held even today, not only in the general public, but within the medical and scientific community as well. Current opinion is highlighting lactate's role in delayed onset muscle soreness, if neural dimension and neuro-energetics are not overlooked. By doing so, lactate seems to have an essential role in the initiation of the primary damage phase of delayed onset muscle soreness within the intrafusal space. Unaccustomed or strenuous eccentric contractions are suggested to facilitate lactate nourishment of proprioceptive sensory neurons in the muscle spindle under hyperexcitation. However, excessive acidosis and lactate could eventually contribute to impaired proprioception and increased nociception under pathological condition. Furthermore, lactate could also contribute to the secondary damage phase of delayed onset muscle soreness in the extrafusal space, primarily by potentiating the role of bradykinin. After all, neural interpretation may help us to dispel a 40-year-old controversy about lactate's role in the pathophysiology of delayed onset muscle soreness.

14.
Open Med (Wars) ; 17(1): 397-402, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35340618

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal, multisystem neurodegenerative disease that causes the death of motoneurons (MNs) progressively and eventually leads to paralysis. In contrast, delayed onset muscle soreness (DOMS) is defined as delayed onset soreness, muscle stiffness, loss of force-generating capacity, reduced joint range of motion, and decreased proprioceptive function. Sensory deficits and impaired proprioception are common symptoms of both ALS and DOMS, as impairment at the proprioceptive sensory terminals in the muscle spindle is theorized to occur in both. The important clinical distinction is that extraocular muscles (EOM) are relatively spared in ALS, in contrast to limb skeletal muscles; however, the blink reflex goes through a gradual impairment in a later stage of disease progression. Noteworthy is, that, the stretch of EOM induces the blink reflex. The current authors suggest that the impairment of proprioceptive sensory nerve terminals in the EOM muscle spindles are partially responsible for lower blink reflex, beyond central origin, and implies the critical role of Piezo2 ion channels and Wnt-PIP2 signaling in this pathomechanism. The proposed microinjury of Piezo2 on muscle spindle proprioceptive terminals could provide an explanation for the painless dying-back noncontact injury mechanism theory of ALS.

15.
J Funct Morphol Kinesiol ; 7(2)2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35736014

RESUMEN

Unaccustomed or strenuous eccentric exercise is known to cause delayed-onset muscle soreness. A recent hypothesis postulated that mechano-energetic microinjury of the primary afferent sensory neuron terminals in the muscle spindles, namely a transient Piezo2 channelopathy, could be the critical cause of delayed-onset muscle soreness in the form of a bi-phasic non-contact injury mechanism. This theory includes that this microlesion could delay the medium-latency response of the stretch reflex. Our aim with this study was to investigate this hypothesis. According to our knowledge, no study has examined the effect of delayed-onset muscle soreness on the medium-latency response of the stretch reflex. Our findings demonstrated that a significant delay in the medium-latency stretch reflex could be observed right after a multi-stage fitness test in the quadriceps femoris muscles of Hungarian professional handball players who consequently experienced delayed-onset muscle soreness. The long-latency stretch reflex and most likely short-latency stretch reflex were unaffected by delayed-onset muscle soreness in our study, which is in line with earlier findings. We translate these findings as indicative of proprioceptive Type Ia terminal microdamage in the muscle spindle in line with the aforementioned new acute non-contact compression axonopathy theory of delayed-onset muscles soreness.

16.
J Mol Neurosci ; 72(8): 1598-1608, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35507012

RESUMEN

Dry eye disease (DED) is a multifactorial disorder with recognized pathology, but not entirely known pathomechanism. It is suggested to represent a continuum with neuropathic corneal pain with the paradox that DED is a pain-free disease in most cases, although it is regarded as a pain condition. The current paper puts into perspective that one gateway from physiology to pathophysiology could be a Piezo2 channelopathy, opening the pathway to a potentially quad-phasic non-contact injury mechanism on a multifactorial basis and with a heterogeneous clinical picture. The primary non-contact injury phase could be the pain-free microinjury of the Piezo2 ion channel at the corneal somatosensory nerve terminal. The secondary non-contact injury phase involves harsher corneal tissue damage with C-fiber contribution due to the lost or inadequate intimate cross-talk between somatosensory Piezo2 and peripheral Piezo1. The third injury phase of this non-contact injury is the neuronal sensitization process with underlying repeated re-injury of the Piezo2, leading to the proposed chronic channelopathy. Notably, sensitization may evolve in certain cases in the absence of the second injury phase. Finally, the quadric injury phase is the lingering low-grade neuroinflammation associated with aging, called inflammaging. This quadric phase could clinically initiate or augment DED, explaining why increasing age is a risk factor. We highlight the potential role of the NGF-TrkA axis as a signaling mechanism that could further promote the microinjury of the corneal Piezo2 in a stress-derived hyperexcited state. The NGF-TrkA-Piezo2 axis might explain why female sex represents a risk factor for DED.


Asunto(s)
Canalopatías , Síndromes de Ojo Seco , Canales Iónicos , Neuralgia , Caracteres Sexuales , Canalopatías/genética , Canalopatías/fisiopatología , Síndromes de Ojo Seco/genética , Síndromes de Ojo Seco/fisiopatología , Femenino , Humanos , Canales Iónicos/genética , Masculino , Factor de Crecimiento Nervioso/genética , Receptor trkA/genética
17.
PLoS One ; 17(12): e0277978, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36584041

RESUMEN

Hemoconcentration during exercise is a well-known phenomenon, however, the extent to which dehydration is involved is unclear. In our study, the effect of dehydration on exercise-induced hemoconcentration was examined in 12 elite Hungarian kayak-canoe athletes. The changes of blood markers were examined during acute maximal workload in hydrated and dehydrated states. Dehydration was achieved by exercise, during a 120-minute extensive-aerobic preload. Our research is one of the first studies in which the changes in blood components were examined with a higher time resolution and a wider range of the measured parameters. Hydration status had no effect on the dynamics of hemoconcentration during both the hydrated (HS) and dehydrated (DHS) load, although lower maximal power output were measured after the 120-minute preload [HS Hemoglobin(Hgb)Max median 17.4 (q1 17.03; q3 17.9) g/dl vs. DHS HgbMax median 16.9 (q1 16.43; q3 17.6) g/dl (n.s); HS Hematocrit(Hct)Max 53.50 (q1 52.28; q3 54.8) % vs. DHS HctMax 51.90 (q1 50.35; q3 53.93) % (n.s)]. Thirty minutes after the maximal loading, complete hemodilution was confirmed in both exercises. Dehydration had no effect on hemoconcentration or hemodilution in the recovery period [HS HgbR30' 15.7 (q1 15.15; q3 16.05) g/dl (n.s.) vs. DHS HgbR30' 15.75 (q1 15.48; q3 16.13) g/dl (n.s.), HS HctR30' 48.15 (q1 46.5; q3 49.2) % vs. DHS HctR30' 48.25 (q1 47.48; q3 49.45) % (n.s.)], however, plasma osmolality did not follow a corresponding decrease in hemoglobin and hematocrit in the dehydrated group. Based on our data, metabolic products (glucose, lactate, sodium, potassium, chloride, bicarbonate ion, blood urea nitrogen) induced osmolality may not play a major role in the regulation of hemoconcentration and post-exercise hemodilution. From our results, we can conclude that hemoconcentration depends mainly on the intensity of the exercise.


Asunto(s)
Deshidratación , Hemodilución , Humanos , Hemodilución/métodos , Hungría , Hemoglobinas , Atletas
18.
Brain Sci ; 11(1)2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33467407

RESUMEN

Delayed onset muscle soreness (DOMS) is hypothesized to be caused by glutamate excitotoxicity-induced acute compression axonopathy of the sensory afferents in the muscle spindle. Degeneration of the same sensory afferents is implicated in the disease onset and progression of amyotrophic lateral sclerosis (ALS). A series of "silent" acute compression proprioceptive axonopathies with underlying genetic/environmental factors, damaging eccentric contractions and the non-resolving neuroinflammatory process of aging could lead to ALS disease progression. Since the sensory terminals in the muscle spindle could not regenerate from the micro-damage in ALS, unlike in DOMS, the induced protective microcircuits and their long-term functional plasticity (the equivalent of the repeated bout effect in DOMS) will be dysfunctional. The acute stress invoking osteocalcin, bradykinin, COX1, COX2, GDNF, PGE2, NGF, glutamate and N-methyl-D-aspartate (NMDA) receptors are suggested to be the critical signalers of this theory. The repeated bout effect of DOMS and the dysfunctional microcircuits in ALS are suggested to involve several dimensions of memory and learning, like pain memory, inflammation, working and episodic memory. The spatial encoding of these memory dimensions is compromised in ALS due to blunt position sense from the degenerating proprioceptive axon terminals of the affected muscle spindles. Dysfunctional microcircuits progressively and irreversibly interfere with postural control, with motor command and locomotor circuits, deplete the neuroenergetic system, and ultimately interfere with life-sustaining central pattern generators in ALS. The activated NMDA receptor is suggested to serve the "gate control" function in DOMS and ALS in line with the gate control theory of pain. Circumvention of muscle spindle-loading could be a choice of exercise therapy in muscle spindle-affected neurodegenerative diseases.

19.
Front Pharmacol ; 12: 764396, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34916942

RESUMEN

Persistent ocular pain caused by corneal inflammation and/or nerve injury is accompanied by significant alterations along the pain axis. Both primary sensory neurons in the trigeminal nerves and secondary neurons in the spinal trigeminal nucleus are subjected to profound morphological and functional changes, leading to peripheral and central pain sensitization. Several studies using animal models of inflammatory and neuropathic ocular pain have provided insight about the mechanisms involved in these maladaptive changes. Recently, the advent of new techniques such as optogenetics or genetic neuronal labelling has allowed the investigation of identified circuits involved in nociception, both at the spinal and trigeminal level. In this review, we will describe some of the mechanisms that contribute to the perception of ocular pain at the periphery and at the spinal trigeminal nucleus. Recent advances in the discovery of molecular and cellular mechanisms contributing to peripheral and central pain sensitization of the trigeminal pathways will be also presented.

20.
Cells ; 10(8)2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-34440637

RESUMEN

Post orgasmic illness syndrome is a rare, mysterious condition with an unknown pathomechanism and uncertain treatment. The symptoms of post orgasmic illness syndrome last about 2-7 days after an ejaculation. The current hypothesis proposes that the primary injury in post orgasmic illness syndrome is an acute compression proprioceptive axonopathy in the muscle spindle, as is suspected in delayed onset muscle soreness. The terminal arbor degeneration-like lesion of delayed onset muscle soreness is theorized to be an acute stress response energy-depleted dysfunctional mitochondria-induced impairment of Piezo2 channels and glutamate vesicular release. The recurring symptoms of post orgasmic illness syndrome after each ejaculation are suggested to be analogous to the repeated bout effect of delayed onset muscle soreness. However, there are differences in the pathomechanism, mostly attributed to the extent of secondary tissue damage and to the extent of spermidine depletion. The spermidine depletion-induced differences are as follows: modulation of the acute stress response, flu-like symptoms, opioid-like withdrawal and enhanced deregulation of the autonomic nervous system. The longitudinal dimension of delayed onset muscle soreness, in the form of post orgasmic illness syndrome and the repeated bout effect, have cognitive and memory consequences, since the primary injury is learning and memory-related.


Asunto(s)
Eyaculación , Canales Iónicos/metabolismo , Husos Musculares/inervación , Músculo Esquelético/inervación , Mialgia/etiología , Orgasmo , Enfermedades del Sistema Nervioso Periférico/etiología , Propiocepción , Animales , Humanos , Masculino , Contracción Muscular , Husos Musculares/metabolismo , Mialgia/metabolismo , Mialgia/fisiopatología , Enfermedades del Sistema Nervioso Periférico/metabolismo , Enfermedades del Sistema Nervioso Periférico/fisiopatología , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores Opioides/metabolismo , Espermidina/metabolismo , Estrés Fisiológico , Síndrome , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA