Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Nat Prod ; 87(2): 424-438, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38289177

RESUMEN

Ever since the isolation of Amycolatopsis mediterranei in 1957, this strain has been the focus of research worldwide. In the last 60 years or more, our understanding of the taxonomy, development of cloning vectors and conjugation system, physiology, genetics, genomics, and biosynthetic pathway of rifamycin B production in A. mediterranei has substantially increased. In particular, the development of cloning vectors, transformation system, characterization of the rifamycin biosynthetic gene cluster, and the regulation of rifamycin B production by the pioneering work of Heinz Floss have made the rifamycin polyketide biosynthetic gene cluster (PKS) an attractive target for extensive genetic manipulations to produce rifamycin B analogues which could be effective against multi-drug-resistant tuberculosis. Additionally, a better understanding of the regulation of rifamycin B production and the application of newer genomics tools, including CRISPR-assisted genome editing systems, might prove useful to overcome the limitations associated with low production of rifamycin analogues.


Asunto(s)
Actinomycetales , Rifamicinas , Amycolatopsis , Vías Biosintéticas/genética , Rifamicinas/metabolismo
2.
Mol Biol Rep ; 50(1): 761-775, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36308581

RESUMEN

DNA barcoding is a powerful taxonomic tool to identify and discover species. DNA barcoding utilizes one or more standardized short DNA regions for taxon identification. With the emergence of new sequencing techniques, such as Next-generation sequencing (NGS), ONT MinION nanopore sequencing, and Pac Bio sequencing, DNA barcoding has become more accurate, fast, and reliable. Rapid species identification by DNA barcodes has been used in a variety of fields, including forensic science, control of the food supply chain, and disease understanding. The Consortium for Barcode of Life (CBOL) presents various working groups to identify the universal barcode gene, such as COI in metazoans; rbcL, matK, and ITS in plants; ITS in fungi; 16S rRNA gene in bacteria and archaea, and creating a reference DNA barcode library. In this article, an attempt has been made to analyze the various proposed DNA barcode for different organisms, strengths & limitations, recent advancements in DNA barcoding, and methods to speed up the DNA barcode reference library construction. This study concludes that constructing a reference library with high species coverage would be a major step toward identifying species by DNA barcodes. This can be achieved in a short period of time by using advanced sequencing and data analysis methods.


Asunto(s)
Código de Barras del ADN Taxonómico , ADN , Código de Barras del ADN Taxonómico/métodos , ARN Ribosómico 16S/genética , Plantas/genética , Archaea/genética
3.
Antonie Van Leeuwenhoek ; 116(11): 1113-1121, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37640969

RESUMEN

The taxonomic status of 43 Psychrobacter species was examined based upon the genome sequences of their type strains. Three groups of type strains were found to be conspecific, Psychrobacter salsus Shivaji et al. (Syst Appl Microbiol 27:628-635, 2004. 10.1078/0723202042369956) and Psychrobacter submarinus Romanenko et al. (Int J Syst Evol Microbiol 52:1291-1297, 2002. 10.1099/00207713-52-4-1291); Psychrobacter oceani Matsuyama et al. (Int J Syst Evol Microbiol 65:1450-1455, 2015. 10.1099/ijs.0.000118) and Psychrobacter pacificensis Maruyama et al. (Int J Syst Evol Microbiol 50:835-846, 2000. 10.1099/00207713-50-2-835); and Psychrobacter proteolyticus Denner et al. (Syst Appl Microbiol 24:44-53, 2001. 10.1078/0723-2020-00006), Psychrobacter marincola Romanenko et al. (Int J Syst Evol Microbiol 52:1291-1297, 2002. 10.1099/00207713-52-4-1291) and Psychrobacter adeliensis Shivaji et al. (Syst Appl Microbiol 27:628-635, 2004. 10.1078/0723202042369956). For all three groups, the average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values are > 97.69% and > 80.2%, respectively. This conclusion is supported by similarities in morphology, growth properties, and fatty acid compositions. Based on this evidence, we propose the reclassification of Psychrobacter salsus Shivaji et al. (Syst Appl Microbiol 27:628-635, 2004. 10.1078/0723202042369956) as a later heterotypic synonym of Psychrobacter submarinus Romanenko et al. (Int J Syst Evol Microbiol 52:1291-1297, 2002. 10.1099/00207713-52-4-1291); Psychrobacter oceani Matsuyama et al. (Int J Syst Evol Microbiol 65:1450-1455, 2015. 10.1099/ijs.0.000118) as a later heterotypic synonym of Psychrobacter pacificensis Maruyama et al. (Int J Syst Evol Microbiol 50:835-846, 2000. 10.1099/00207713-50-2-835), and Psychrobacter marincola Romanenko et al. (Int J Syst Evol Microbiol 52:1291-1297, 2002. 10.1099/00207713-52-4-1291) and Psychrobacter adeliensis Shivaji et al. (Syst Appl Microbiol 27:628-635, 2004. 10.1078/0723202042369956) as later heterotypic synonyms of Psychrobacter proteolyticus Denner et al. (Syst Appl Microbiol 24:44-53, 2001. 10.1078/0723-2020-00006).


Asunto(s)
Psychrobacter , Psychrobacter/genética , Filogenia , ADN Bacteriano/genética
4.
Artículo en Inglés | MEDLINE | ID: mdl-35442878

RESUMEN

Strains P8930T and 478 were isolated from Antarctic glaciers located on James Ross Island and King George Island, respectively. They comprised Gram-stain-negative short rod-shaped cells forming pink pigmented colonies and exhibited identical 16S rRNA gene sequences and highly similar MALDI TOF mass spectra, and hence were assigned as representatives of the same species. Phylogenetic analysis based on 16S rRNA gene sequences assigned both isolates to the genus Pedobacter and showed Pedobacter frigidisoli and Pedobacter terrae to be their closest phylogenetic neighbours, with 97.4 and 97.2 % 16S rRNA gene sequence similarities, respectively. These low similarity values were below the threshold similarity value of 98.7%, confirming the delineation of a new bacterial species. Further genomic characterization included whole-genome sequencing accompanied by average nucleotide identity (ANI) and digital DNA-DNA hybridization calculations, and characterization of the genome features. The ANI values between P8930T and P. frigidisoli RP-3-11T and P. terrae DSM 17933T were 79.7 and 77.6 %, respectively, and the value between P. frigidisoli RP-3-11T and P. terrae DSM 17933T was 77.7 %, clearly demonstrating the phylogenetic distance and the novelty of strain P8930T. Further characterization included analysis of cellular fatty acids, quinones and polar lipids, and comprehensive biotyping. All the obtained results proved the separation of strains P8930T and 478 from the other validly named Pedobacter species, and confirmed that they represent a new species for which the name Pedobacter fastidiosus sp. nov. is proposed. The type strain is P8930T (=CCM 8938T=LMG 32098T).


Asunto(s)
Pedobacter , Regiones Antárticas , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ecosistema , Ácidos Grasos/química , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
5.
Indian J Microbiol ; 62(3): 323-337, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35974919

RESUMEN

A rigorous exploration of microbial diversity has revealed its presence on Earth, deep oceans, and vast space. The presence of microbial life in diverse environmental conditions, ranging from moderate to extreme temperature, pH, salinity, oxygen, radiations, and altitudes, has provided the necessary impetus to search for them by extending the limits of their habitats. Microbiology started as a distinct science in the mid-nineteenth century and has provided inputs for the betterment of mankind during the last 150 years. As beneficial microbes are assets and pathogens are detrimental, studying both have its own merits. Scientists are nowadays working on illustrating the microbial dynamics in Earth's subsurface, deep sea, and polar regions. In addition to studying the role of microbes in the environment, the microbe-host interactions in humans, animals and plants are also unearthing newer insights that can help us to improve the health of the host by modulating the microbiota. Microbes have the potential to remediate persistent organic pollutants. Antimicrobial resistance which is a serious concern can also be tackled only after monitoring the spread of resistant microbes using disciplines of genomics and metagenomics The cognizance of microbiology has reached the top of the world. Space Missions are now looking for signs of life on the planets (specifically Mars), the Moon and beyond them. Among the most potent pieces of evidence to support the existence of life is to look for microbial, plant, and animal fossils. There is also an urgent need to deliberate and communicate these findings to layman and policymakers that would help them to take an adequate decision for better health and the environment around us. Here, we present a glimpse of recent advancements by scientists from around the world, exploring and exploiting microbial diversity.

6.
Artículo en Inglés | MEDLINE | ID: mdl-33470925

RESUMEN

The present study was carried out to clarify the taxonomic assignment of two closely related Amycolatopsis species. Genomic information for 48 type strains was available at the time of conducting this analysis. Our analysis showed that two species, viz. Amycolatopsis eurytherma Kim et al. 2002 and Amycolatopsis thermoflava Chun et al. 1999, are conspecific. The 16S rRNA gene sequences of the two species possess 98.85 % sequence similarity. Further, whole-genome comparisons showed that A. eurytherma DSM 44348T and A. thermoflava N1165T shared 98.75 % average nucleotide identity, 98.63 % average amino acid identity and 87.8 % digital DNA-DNA hybridization values. These values exceed the threshold values for bacterial species delineation, indicating that they belong to the same species. Further, the phylogenomic analysis based on the core genome of the strains under study confirmed that A. eurytherma DSM 44348T and A. thermoflava N1165T formed a monophyletic clade. Based on this evidence we propose the reclassification of Amycolatopsis eurytherma Kim et al. 2002 as a later heterotypic synonym of Amycolatopsis thermoflava Chun et al. 1999.


Asunto(s)
Genoma Bacteriano , Filogenia , Amycolatopsis/clasificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Genómica , Hibridación de Ácido Nucleico , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
7.
Environ Sci Technol ; 55(20): 13812-13821, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34609852

RESUMEN

ß-Hexachlorocyclohexane (ß-HCH) is a remnant from former HCH pesticide production. Its removal from the environment gained attention in the last few years since it is the most stable HCH isomer. However, knowledge about the transformation of ß-HCH in soil-plant systems is still limited. Therefore, experiments with a contaminated field soil were conducted to investigate the transformation of ß-HCH in soil-plant systems by compound specific isotope analysis (CSIA). The results showed that the δ13C and δ37Cl values of ß-HCH in the soil of the planted control remained stable, revealing no transformation due to a low bioavailability. Remarkably, an increase of the δ13C and δ37Cl values in soil and plant tissues of the spiked treatments were observed, indicating the transformation of ß-HCH in both the soil and the plant. This was surprising as previously it was shown that wheat is unable to transform ß-HCH when growing in hydroponic culture or garden soil. Thus, results of this work indicate for the first time that a microbial community of the soil inoculated the wheat and then facilitated the transformation of ß-HCH in the wheat, which may have implications for the development of phytoremediation concepts. A high abundance of HCH degraders belonging to Sphingomonas sp., Mycobacterium sp., and others was detected in the ß-HCH-treated bulk and rhizosphere soil, potentially supporting the biotransformation.


Asunto(s)
Hexaclorociclohexano , Contaminantes del Suelo , Biodegradación Ambiental , Hexaclorociclohexano/análisis , Isótopos , Suelo , Contaminantes del Suelo/análisis , Triticum
8.
Int J Syst Evol Microbiol ; 70(9): 5131-5140, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32821035

RESUMEN

A taxonomic study of two fluorescent Pseudomonas strains (HJ/4T and SJ/9/1T) isolated from calcite moonmilk samples obtained from two caves in the Moravian Karst in the Czech Republic was carried out. Results of initial 16S rRNA gene sequence analysis assigned both strains into the genus Pseudomonas and showed Pseudomonas yamanorum 8H1T as their closest neighbour with 99.8 and 99.7 % 16S rRNA gene similarities to strains HJ/4T and SJ/9/1T, respectively. Subsequent sequence analysis of rpoD, rpoB and gyrB housekeeping genes confirmed the highest similarity of both isolates to P. yamanorum 8H1T, but phylogeny and sequences similarities implied that they are representatives of two novel species within the genus Pseudomonas. Further study comprising whole-genome sequencing followed by average nucleotide identity and digital DNA-DNA hybridization calculations, repetitive sequence-based PCR fingerprinting with the REP and ERIC primers, automated ribotyping with the EcoRI restriction endonuclease, cellular fatty acid analysis, quinone and polar lipid characterization, and extensive biotyping confirmed clear separation of both analysed strains from the remaining Pseudomonas species and showed that they represent two novel species within the genus Pseudomonas for which the names Pseudomonas karstica sp. nov. (type strain HJ/4T=CCM 7891T=LMG 27930T) and Pseudomonas spelaei sp. nov. (type strain SJ/9/1T=CCM 7893T=LMG 27931T) are suggested.


Asunto(s)
Carbonato de Calcio , Cuevas/microbiología , Filogenia , Pseudomonas/clasificación , Técnicas de Tipificación Bacteriana , Composición de Base , República Checa , ADN Bacteriano/genética , Ácidos Grasos/química , Genes Bacterianos , Lípidos/análisis , Hibridación de Ácido Nucleico , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
9.
Indian J Microbiol ; 60(1): 37-44, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32089572

RESUMEN

The term hygiene is deeply rooted with the concept of maintaining sound health and alertness towards cleanliness, while "hygiene hypothesis" depicts the protective role of microbial community exposure in development of early immunity and initial allergic and aesthetic reactions. The tug-of-war has now been pushed toward the literal term "hygiene" over the "hygiene hypothesis" and has continued with disinfection of all microbial loads from the related environments to avoid infections in humans. With the advancement in the microbiome studies, it became clear that humans possess warm, and significant relationships with diverse microbial community. With this opinion article, we have emphasized on the importance of hygiene hypothesis in immunological responses. We also propose the individual/targeted hygiene instead of application of unanimous hygiene hypothesis. This review also elaborates the common practices that should be employed to maintain hygiene along with the balanced microbiome.

10.
Indian J Microbiol ; 60(1): 12-25, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32089570

RESUMEN

A healthy gut is predominantly occupied by bacteria which play a vital role in nutrition and health. Any change in normal gut homeostasis imposes gut dysbiosis. So far, efforts have been made to mitigate the gastrointestinal symptoms using modern day probiotics. The majority of the probiotics strains used currently belong to the genera Lactobacillus, Clostridium, Bifidobacterium and Streptococcus. Recent advancements in culturomics by implementing newer techniques coupled with the use of gnotobiotic animal models provide a subtle ground to develop novel host specific probiotics therapies. In this review article, the recent advances in the development of microbe-based therapies which can now be implemented to treat a wide spectrum of diseases have been discussed. However, these probiotics are not classified as drugs and there is a lack of stringent law enforcement to protect the end users against the pseudo-probiotic products. While modern probiotics hold strong promise for the future, more rigorous regulations are needed to develop genuine probiotic products and characterize novel probiotics using the latest research and technology. This article also highlights the possibility of reducing antibiotic usage by utilizing probiotics developed using the latest concepts of syn and ecobiotics.

11.
Indian J Microbiol ; 60(1): 2-11, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32089569

RESUMEN

Sustainable poultry practices are needed to maintain an adequate supply of poultry products to the increasing human population without compromising human wellbeing. In order to achieve the understanding of the core microbiome that assumes an imperative role in digestion, absorption, and assimilation of feed as well as restrict the growth of pathogenic strains, a proper meta-data survey is required. The dysbiosis of the core microbiome or any external infection in chickens leads to huge losses in the poultry production worldwide. Along with this, the consumption of infected meat also impacts on human health as chicken meat is a regular staple in many diets as a vital source of protein. To tackle these losses, sub-therapeutic doses of antibiotics are being used as a feed additive along with other conventional approaches including selective breeding and modulation in feed composition. Altogether, these conventional approaches have improved the yield and quality of poultry products, however, the use of antibiotics encompasses the risk of developing multi-drug resistant pathogenic strains that can be harmful to human beings. Thus, there is an urgent need to understand the chicken microbiome in order to modulate chicken gut microbiome and provide alternatives to the conventional methods. Although there is now emerging literature available on some of these important microbiome aspects, in this article, we have analysed the relevant recent developments in understanding the chicken gut microbiome including the establishment of integrated gene catalogue for chicken microbiome. We have also focussed on novel strategies for the development of a chicken microbial library that can be used to develop novel microbial consortia as novel probiotics to improve the poultry meat production without compromising human health. Thus, it can be an alternative and advanced step compared to other conventional approaches to improve the gut milieu and pathogen-mediated loss in the poultry industry.

12.
Indian J Microbiol ; 59(3): 351-355, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31388213

RESUMEN

In the present study, we report the draft genome sequence of an obligate thermophile Geobacillus thermoleovorans strain RL isolated from Manikaran hot water spring located atop the Himalayan ranges, India. Strain RL grew optimally at 70 °C but not below 45 °C. The draft genome (3.39 Mb) obtained by Illumina sequencing contains 138 contigs with an average G + C content of 52.30%. RAST annotation showed that amino acid metabolism pathways were most dominant followed by carbohydrate metabolism. Genome-wide analysis using NCBI's Prokaryotic Genome Annotation Pipeline revealed that strain RL encodes for a cocktail of industrially important hydrolytic enzymes glycoside hydrolase, α-and ß-glucosidase, xylanase, amylase, neopullulanase, pullulanase and lipases required for white biotechnology. In addition, the presence of genes encoding green biocatalyst multicopper polyphenol oxidase (laccase) and an anticancer enzyme l-glutaminase reflects the significance of strain RL in gray and red biotechnology, respectively. Strain RL is a thermophilic multi-enzyme encoding bacterium which could be the source for the recombinant production of biotechnologically significant enzymes. In, addition whole cells of strain RL may be used in bioremediation studies.

13.
Antonie Van Leeuwenhoek ; 110(10): 1357-1371, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28831610

RESUMEN

The current prokaryotic taxonomy classifies phenotypically and genotypically diverse microorganisms using a polyphasic approach. With advances in the next-generation sequencing technologies and computational tools for analysis of genomes, the traditional polyphasic method is complemented with genomic data to delineate and classify bacterial genera and species as an alternative to cumbersome and error-prone laboratory tests. This review discusses the applications of sequence-based tools and techniques for bacterial classification and provides a scheme for more robust and reproducible bacterial classification based on genomic data. The present review highlights promising tools and techniques such as ortho-Average Nucleotide Identity, Genome to Genome Distance Calculator and Multi Locus Sequence Analysis, which can be validly employed for characterizing novel microorganisms and assessing phylogenetic relationships. In addition, the review discusses the possibility of employing metagenomic data to assess the phylogenetic associations of uncultured microorganisms. Through this article, we present a review of genomic approaches that can be included in the scheme of taxonomy of bacteria and archaea based on computational and in silico advances to boost the credibility of taxonomic classification in this genomic era.


Asunto(s)
Archaea/clasificación , Bacterias/clasificación , Técnicas de Tipificación Bacteriana , Biología Computacional , Genómica , Genoma Arqueal/genética , Genoma Bacteriano/genética , Metagenoma , Anotación de Secuencia Molecular , Filogenia
17.
FEMS Microbes ; 5: xtae003, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38450097

RESUMEN

The freshwater bodies of India are highly biodiverse but still understudied, especially concerning ciliates. Ciliates constitute a significant portion of eukaryotic diversity and play crucial roles in microbial loops, nutrient recycling, and ecosystem maintenance. The present study aimed to elucidate ciliate diversity in three freshwater sites in the Delhi region of India: Okhla Bird Sanctuary (OBS), Sanjay Lake (SL), and Raj Ghat pond (RJ). This study represents the first investigation into the taxonomic diversity and richness of freshwater ciliates in India using a high-throughput DNA metabarcoding approach. For the analysis, total environmental DNA was extracted from the three freshwater samples, followed by sequencing of the 18S V4 barcode region and subsequent phylogenetic analyses. Operational taxonomic units (OTU) analyses revealed maximum species diversity in OBS (106), followed by SL (104) and RJ (99) sites. Ciliates from the classes Oligohymenophorea, Prostomatea, and Spirotrichea were dominant in the three sites. The study discusses the ability of the metabarcoding approach to uncover unknown and rare species. The study highlights the need for refined reference databases and cautious interpretation of the high-throughput sequencing-generated data while emphasizing the complementary nature of molecular and morphological approaches in studying ciliate diversity.

18.
Microb Biotechnol ; 17(5): e14456, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38801001

RESUMEN

EXECUTIVE SUMMARY: Microbes are all pervasive in their distribution and influence on the functioning and well-being of humans, life in general and the planet. Microbially-based technologies contribute hugely to the supply of important goods and services we depend upon, such as the provision of food, medicines and clean water. They also offer mechanisms and strategies to mitigate and solve a wide range of problems and crises facing humanity at all levels, including those encapsulated in the sustainable development goals (SDGs) formulated by the United Nations. For example, microbial technologies can contribute in multiple ways to decarbonisation and hence confronting global warming, provide sanitation and clean water to the billions of people lacking them, improve soil fertility and hence food production and develop vaccines and other medicines to reduce and in some cases eliminate deadly infections. They are the foundation of biotechnology, an increasingly important and growing business sector and source of employment, and the centre of the bioeconomy, Green Deal, etc. But, because microbes are largely invisible, they are not familiar to most people, so opportunities they offer to effectively prevent and solve problems are often missed by decision-makers, with the negative consequences this entrains. To correct this lack of vital knowledge, the International Microbiology Literacy Initiative-the IMiLI-is recruiting from the global microbiology community and making freely available, teaching resources for a curriculum in societally relevant microbiology that can be used at all levels of learning. Its goal is the development of a society that is literate in relevant microbiology and, as a consequence, able to take full advantage of the potential of microbes and minimise the consequences of their negative activities. In addition to teaching about microbes, almost every lesson discusses the influence they have on sustainability and the SDGs and their ability to solve pressing problems of societal inequalities. The curriculum thus teaches about sustainability, societal needs and global citizenship. The lessons also reveal the impacts microbes and their activities have on our daily lives at the personal, family, community, national and global levels and their relevance for decisions at all levels. And, because effective, evidence-based decisions require not only relevant information but also critical and systems thinking, the resources also teach about these key generic aspects of deliberation. The IMiLI teaching resources are learner-centric, not academic microbiology-centric and deal with the microbiology of everyday issues. These span topics as diverse as owning and caring for a companion animal, the vast range of everyday foods that are produced via microbial processes, impressive geological formations created by microbes, childhood illnesses and how they are managed and how to reduce waste and pollution. They also leverage the exceptional excitement of exploration and discovery that typifies much progress in microbiology to capture the interest, inspire and motivate educators and learners alike. The IMiLI is establishing Regional Centres to translate the teaching resources into regional languages and adapt them to regional cultures, and to promote their use and assist educators employing them. Two of these are now operational. The Regional Centres constitute the interface between resource creators and educators-learners. As such, they will collect and analyse feedback from the end-users and transmit this to the resource creators so that teaching materials can be improved and refined, and new resources added in response to demand: educators and learners will thereby be directly involved in evolution of the teaching resources. The interactions between educators-learners and resource creators mediated by the Regional Centres will establish dynamic and synergistic relationships-a global societally relevant microbiology education ecosystem-in which creators also become learners, teaching resources are optimised and all players/stakeholders are empowered and their motivation increased. The IMiLI concept thus embraces the principle of teaching societally relevant microbiology embedded in the wider context of societal, biosphere and planetary needs, inequalities, the range of crises that confront us and the need for improved decisioning, which should ultimately lead to better citizenship and a humanity that is more sustainable and resilient. ABSTRACT: The biosphere of planet Earth is a microbial world: a vast reactor of countless microbially driven chemical transformations and energy transfers that push and pull many planetary geochemical processes, including the cycling of the elements of life, mitigate or amplify climate change (e.g., Nature Reviews Microbiology, 2019, 17, 569) and impact the well-being and activities of all organisms, including humans. Microbes are both our ancestors and creators of the planetary chemistry that allowed us to evolve (e.g., Life's engines: How microbes made earth habitable, 2023). To understand how the biosphere functions, how humans can influence its development and live more sustainably with the other organisms sharing it, we need to understand the microbes. In a recent editorial (Environmental Microbiology, 2019, 21, 1513), we advocated for improved microbiology literacy in society. Our concept of microbiology literacy is not based on knowledge of the academic subject of microbiology, with its multitude of component topics, plus the growing number of additional topics from other disciplines that become vitally important elements of current microbiology. Rather it is focused on microbial activities that impact us-individuals/communities/nations/the human world-and the biosphere and that are key to reaching informed decisions on a multitude of issues that regularly confront us, ranging from personal issues to crises of global importance. In other words, it is knowledge and understanding essential for adulthood and the transition to it, knowledge and understanding that must be acquired early in life in school. The 2019 Editorial marked the launch of the International Microbiology Literacy Initiative, the IMiLI. HERE, WE PRESENT: our concept of how microbiology literacy may be achieved and the rationale underpinning it; the type of teaching resources being created to realise the concept and the framing of microbial activities treated in these resources in the context of sustainability, societal needs and responsibilities and decision-making; and the key role of Regional Centres that will translate the teaching resources into local languages, adapt them according to local cultural needs, interface with regional educators and develop and serve as hubs of microbiology literacy education networks. The topics featuring in teaching resources are learner-centric and have been selected for their inherent relevance, interest and ability to excite and engage. Importantly, the resources coherently integrate and emphasise the overarching issues of sustainability, stewardship and critical thinking and the pervasive interdependencies of processes. More broadly, the concept emphasises how the multifarious applications of microbial activities can be leveraged to promote human/animal, plant, environmental and planetary health, improve social equity, alleviate humanitarian deficits and causes of conflicts among peoples and increase understanding between peoples (Microbial Biotechnology, 2023, 16(6), 1091-1111). Importantly, although the primary target of the freely available (CC BY-NC 4.0) IMiLI teaching resources is schoolchildren and their educators, they and the teaching philosophy are intended for all ages, abilities and cultural spectra of learners worldwide: in university education, lifelong learning, curiosity-driven, web-based knowledge acquisition and public outreach. The IMiLI teaching resources aim to promote development of a global microbiology education ecosystem that democratises microbiology knowledge.


Asunto(s)
Microbiología , Microbiología/educación , Humanos , Biotecnología
20.
Microb Biotechnol ; 16(6): 1091-1111, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36880421

RESUMEN

There is much human disadvantage and unmet need in the world, including deficits in basic resources and services considered to be human rights, such as drinking water, sanitation and hygiene, healthy nutrition, access to basic healthcare, and a clean environment. Furthermore, there are substantive asymmetries in the distribution of key resources among peoples. These deficits and asymmetries can lead to local and regional crises among peoples competing for limited resources, which, in turn, can become sources of discontent and conflict. Such conflicts have the potential to escalate into regional wars and even lead to global instability. Ergo: in addition to moral and ethical imperatives to level up, to ensure that all peoples have basic resources and services essential for healthy living and to reduce inequalities, all nations have a self-interest to pursue with determination all available avenues to promote peace through reducing sources of conflicts in the world. Microorganisms and pertinent microbial technologies have unique and exceptional abilities to provide, or contribute to the provision of, basic resources and services that are lacking in many parts of the world, and thereby address key deficits that might constitute sources of conflict. However, the deployment of such technologies to this end is seriously underexploited. Here, we highlight some of the key available and emerging technologies that demand greater consideration and exploitation in endeavours to eliminate unnecessary deprivations, enable healthy lives of all and remove preventable grounds for competition over limited resources that can escalate into conflicts in the world. We exhort central actors: microbiologists, funding agencies and philanthropic organisations, politicians worldwide and international governmental and non-governmental organisations, to engage - in full partnership - with all relevant stakeholders, to 'weaponise' microbes and microbial technologies to fight resource deficits and asymmetries, in particular among the most vulnerable populations, and thereby create humanitarian conditions more conducive to harmony and peace.


Asunto(s)
Microbiología Industrial , Tecnología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA