Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 40(13): 6122-34, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22457064

RESUMEN

Mitochondrial translation is essentially bacteria-like, reflecting the bacterial endosymbiotic ancestry of the eukaryotic organelle. However, unlike the translation system of its bacterial ancestors, mitochondrial translation is limited to just a few mRNAs, mainly coding for components of the respiratory complex. The classical bacterial initiation factors (IFs) IF1, IF2 and IF3 are universal in bacteria, but only IF2 is universal in mitochondria (mIF2). We analyse the distribution of mitochondrial translation initiation factors and their sequence features, given two well-propagated claims: first, a sequence insertion in mitochondrial IF2 (mIF2) compensates for the universal lack of IF1 in mitochondria, and secondly, no homologue of mitochondrial IF3 (mIF3) is identifiable in Saccharomyces cerevisiae. Our comparative sequence analysis shows that, in fact, the mIF2 insertion is highly variable and restricted in length and primary sequence conservation to vertebrates, while phylogenetic and in vivo complementation analyses reveal that an uncharacterized S. cerevisiae mitochondrial protein currently named Aim23p is a bona fide evolutionary and functional orthologue of mIF3. Our results highlight the lineage-specific nature of mitochondrial translation and emphasise that comparative analyses among diverse taxa are essential for understanding whether generalizations from model organisms can be made across eukaryotes.


Asunto(s)
Factor 3 de Iniciación Eucariótica/genética , Proteínas Mitocondriales/genética , Proteínas de Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Secuencia Conservada , Factor 2 Eucariótico de Iniciación/química , Factor 2 Eucariótico de Iniciación/clasificación , Factor 2 Eucariótico de Iniciación/genética , Factor 3 de Iniciación Eucariótica/química , Factor 3 de Iniciación Eucariótica/clasificación , Prueba de Complementación Genética , Proteínas Mitocondriales/química , Proteínas Mitocondriales/clasificación , Datos de Secuencia Molecular , Filogenia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/clasificación , Alineación de Secuencia
2.
Sci Rep ; 5: 7712, 2015 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-25578614

RESUMEN

Although ribosomes are very stable under most conditions, ribosomal degradation does occur in diverse groups of organisms in response to specific stresses or environmental conditions. While non-functional ribosome decay (NRD) in yeast is well characterized, very little is known of the mechanisms that initiate ribosomal degradation in bacteria. Here we test ribosome degradation in growing Escherichia coli expressing mutant ribosomes. We found that mutations in the 16S rRNA decoding centre (G530U and A1492C) and 23S rRNA active site (A2451G) do not lead to ribosomal degradation. In contrast, 23S rRNA mutation U2585A causes degradation of both the large and small ribosomal subunits in E. coli. We further tested mutations in 23S rRNA, which disrupt ribosomal intersubunit bridges B2a and B3. Deletion of helix 69 of 23S rRNA and the point mutation A1912G in the same helix did not destabilize ribosomes, while expression of mutations A1919G in H69 and A1960G in H71 led to degradation of both mutant and wild-type ribosomes. Our results suggest an actively induced mechanism requiring de novo protein synthesis for ribosomal degradation in E. coli, which degrades both structurally inactive and active ribosomes.


Asunto(s)
Dominio Catalítico , Escherichia coli/metabolismo , Estabilidad del ARN , ARN Ribosómico 16S/metabolismo , ARN Ribosómico 23S/metabolismo , Ribosomas/metabolismo , Escherichia coli/crecimiento & desarrollo , Mutación , Estabilidad Proteica
3.
Sci Rep ; 2: 843, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23150791

RESUMEN

Translational GTPases (trGTPases) are involved in all four stages of protein biosynthesis: initiation, elongation, termination and ribosome recycling. The trGTPases Initiation Factor 2 (IF2) and Elongation Factor G (EF-G) respectively orchestrate initiation complex formation and translocation of the peptidyl-tRNA:mRNA complex through the bacterial ribosome. The ribosome regulates the GTPase cycle and efficiently discriminates between the GDP- and GTP-bound forms of these proteins. Using Isothermal Titration Calorimetry, we have investigated interactions of IF2 and EF-G with the sarcin-ricin loop of the 23S rRNA, a crucial element of the GTPase-associated center of the ribosome. We show that binding of IF2 and EF-G to a 27 nucleotide RNA fragment mimicking the sarcin-ricin loop is mutually exclusive with that of GDP, but not of GTP, providing a mechanism for destabilization of the ribosome-bound GDP forms of translational GTPases.


Asunto(s)
Proteínas Bacterianas/metabolismo , Guanosina Trifosfato/metabolismo , Factor G de Elongación Peptídica/metabolismo , Factor 2 Procariótico de Iniciación/metabolismo , Bacterias/metabolismo , Unión Proteica , ARN Mensajero/metabolismo , ARN Ribosómico 23S/metabolismo , Aminoacil-ARN de Transferencia/metabolismo , Ribosomas/metabolismo
4.
J Mol Biol ; 402(5): 838-46, 2010 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-20713063

RESUMEN

In addition to their natural substrates GDP and GTP, the bacterial translational GTPases initiation factor (IF) 2 and elongation factor G (EF-G) interact with the alarmone molecule guanosine tetraphosphate (ppGpp), which leads to GTPase inhibition. We have used isothermal titration calorimetry to determine the affinities of ppGpp for IF2 and EF-G at a temperature interval of 5-25 °C. We find that ppGpp has a higher affinity for IF2 than for EF-G (1.7-2.8 µM K(d)versus 9.1-13.9 µM K(d) at 10-25 °C), suggesting that during stringent response in vivo, IF2 is more responsive to ppGpp than to EF-G. We investigated the effects of ppGpp, GDP, and GTP on IF2 interactions with fMet-tRNA(fMet) demonstrating that IF2 binds to initiator tRNA with submicromolar K(d) and that affinity is altered by the G nucleotides only slightly. This--in conjunction with earlier reports on IF2 interactions with fMet-tRNA(fMet) in the context of the 30S initiation complex, where ppGpp was suggested to strongly inhibit fMet-tRNA(fMet) binding and GTP was suggested to strongly promote fMet-tRNA(fMet) binding--sheds new light on the mechanisms of the G-nucleotide-regulated fMet-tRNA(fMet) selection.


Asunto(s)
Guanosina Difosfato/metabolismo , Guanosina Tetrafosfato/metabolismo , Guanosina Trifosfato/metabolismo , Factor G de Elongación Peptídica/metabolismo , Factor 2 Procariótico de Iniciación/metabolismo , ARN de Transferencia de Metionina/metabolismo , Calorimetría , Cinética , Unión Proteica , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA