Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Infect Dis ; 221(4): 578-588, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-31562500

RESUMEN

BACKGROUND: Chronic norovirus infection in immunocompromised patients can be severe, and presently there is no effective treatment. Adoptive transfer of virus-specific T cells has proven to be safe and effective for the treatment of many viral infections, and this could represent a novel treatment approach for chronic norovirus infection. Hence, we sought to generate human norovirus-specific T cells (NSTs) that can recognize different viral sequences. METHODS: Norovirus-specific T cells were generated from peripheral blood of healthy donors by stimulation with overlapping peptide libraries spanning the entire coding sequence of the norovirus genome. RESULTS: We successfully generated T cells targeting multiple norovirus antigens with a mean 4.2 ± 0.5-fold expansion after 10 days. Norovirus-specific T cells comprised both CD4+ and CD8+ T cells that expressed markers for central memory and effector memory phenotype with minimal expression of coinhibitory molecules, and they were polyfunctional based on cytokine production. We identified novel CD4- and CD8-restricted immunodominant epitopes within NS6 and VP1 antigens. Furthermore, NSTs showed a high degree of cross-reactivity to multiple variant epitopes from clinical isolates. CONCLUSIONS: Our findings identify immunodominant human norovirus T-cell epitopes and demonstrate that it is feasible to generate potent NSTs from third-party donors for use in antiviral immunotherapy.


Asunto(s)
Traslado Adoptivo/métodos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Infecciones por Caliciviridae/terapia , Reacciones Cruzadas/inmunología , Norovirus/inmunología , Donantes de Tejidos , Secuencia de Aminoácidos , Antígenos Virales/inmunología , Infecciones por Caliciviridae/virología , Técnicas de Cultivo de Célula/métodos , Células Cultivadas , Epítopos de Linfocito T/inmunología , Estudios de Factibilidad , Voluntarios Sanos , Humanos , Huésped Inmunocomprometido , Epítopos Inmunodominantes/inmunología , Norovirus/genética
2.
J Immunol ; 200(12): 4157-4169, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29735480

RESUMEN

Murine norovirus (NoV) is genetically similar to human NoV and offers both an efficient in vitro cell culture system and an animal model by which to investigate the molecular basis of replication. In this study, we present a detailed global view of host alterations to cellular pathways that occur during the progression of a NoV infection. This was accomplished for both Mus musculus BALB/c-derived RAW264.7 (RAW) cells, an immortalized cell line widely used in in vitro replication studies, and primary bone marrow-derived macrophages (BMDM), representing a permissive in vivo target cell in the host. Murine NoV replicated in both cell types, although detected genome copies were approximately one log lower in BMDM compared with RAW cells. RAW and BMDM cells shared an IRF3/7-based IFN response that occurred early in infection. In RAW cells, transcriptional upregulation and INF-ß expression were not coupled in that a significant delay in the detection of secreted INF-ß was observed. In contrast, primary BMDM showed an early upregulation of transcripts and immediate release of INF-ß that might account for lower virus yield. Differences in the transcriptional pathway responses included a marked decrease in expression of key genes in the cell cycle and lipid pathways in RAW cells compared with that of BMDM. Our comparative analysis indicates the existence of varying host responses to virus infection in populations of permissive cells. Awareness of these differences at the gene level will be important in the application of a given permissive culture system to the study of NoV immunity, pathogenesis, and drug development.


Asunto(s)
Infecciones por Caliciviridae/genética , Macrófagos/virología , Transcriptoma/genética , Animales , Infecciones por Caliciviridae/virología , Ciclo Celular/genética , Línea Celular , Replicación del ADN/genética , Factor 3 Regulador del Interferón/genética , Factor 7 Regulador del Interferón/genética , Interferón beta/genética , Ratones , Ratones Endogámicos BALB C , Norovirus/genética , Células RAW 264.7 , Transcripción Genética/genética
3.
PLoS Pathog ; 13(1): e1006136, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28103318

RESUMEN

Noroviruses are major pathogens associated with acute gastroenteritis worldwide. Their RNA genomes are diverse, with two major genogroups (GI and GII) comprised of at least 28 genotypes associated with human disease. To elucidate mechanisms underlying norovirus diversity and evolution, we used a large-scale genomics approach to analyze human norovirus sequences. Comparison of over 2000 nearly full-length ORF2 sequences representing most of the known GI and GII genotypes infecting humans showed a limited number (≤5) of distinct intra-genotypic variants within each genotype, with the exception of GII.4. The non-GII.4 genotypes were comprised of one or more intra-genotypic variants, with each variant containing strains that differed by only a few residues over several decades (remaining "static") and that have co-circulated with no clear epidemiologic pattern. In contrast, the GII.4 genotype presented the largest number of variants (>10) that have evolved over time with a clear pattern of periodic variant replacement. To expand our understanding of these two patterns of diversification ("static" versus "evolving"), we analyzed using NGS the nearly full-length norovirus genome in healthy individuals infected with GII.4, GII.6 or GII.17 viruses in different outbreak settings. The GII.4 viruses accumulated mutations rapidly within and between hosts, while the GII.6 and GII.17 viruses remained relatively stable, consistent with their diversification patterns. Further analysis of genetic relationships and natural history patterns identified groupings of certain genotypes into larger related clusters designated here as "immunotypes". We propose that "immunotypes" and their evolutionary patterns influence the prevalence of a particular norovirus genotype in the human population.


Asunto(s)
Infecciones por Caliciviridae/epidemiología , Infecciones por Caliciviridae/genética , Infecciones por Caliciviridae/inmunología , Norovirus/genética , Evolución Molecular , Genómica , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Epidemiología Molecular
4.
J Virol ; 91(3)2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-27881660

RESUMEN

Norovirus (NoV) infections are a significant health burden to society, yet the lack of reliable tissue culture systems has hampered the development of appropriate antiviral therapies. Here we show that the NoV NS3 protein, derived from murine NoV (MNV), is intimately associated with the MNV replication complex and the viral replication intermediate double-stranded RNA (dsRNA). We observed that when expressed individually, MNV NS3 and NS3 encoded by human Norwalk virus (NV) induced the formation of distinct vesicle-like structures that did not colocalize with any particular protein markers to cellular organelles but localized to cellular membranes, in particular those with a high cholesterol content. Both proteins also showed some degree of colocalization with the cytoskeleton marker ß-tubulin. Although the distribution of MNV and NV NS3s were similar, NV NS3 displayed a higher level of colocalization with the Golgi apparatus and the endoplasmic reticulum (ER). However, we observed that although both proteins colocalized in membranes counterstained with filipin, an indicator of cholesterol content, MNV NS3 displayed a greater association with flotillin and stomatin, proteins known to associate with sphingolipid- and cholesterol-rich microdomains. Utilizing time-lapse epifluorescence microscopy, we observed that the membrane-derived vesicular structures induced by MNV NS3 were highly motile and dynamic in nature, and their movement was dependent on intact microtubules. These results begin to interrogate the functions of NoV proteins during virus replication and highlight the conserved properties of the NoV NS3 proteins among the seven Norovirus genogroups. IMPORTANCE: Many mechanisms involved in the replication of norovirus still remain unclear, including the role for the NS3 protein, one of seven nonstructural viral proteins, which remains to be elucidated. This study reveals that murine norovirus (MNV) NS3 is intimately associated with the viral replication complex and dsRNA. We observed that the NS3 proteins of both MNV and Norwalk virus (NV) induce prominent vesicular structures and that this formation is dependent on microtubules and cellular cholesterol. Thus, this study contributes to our understanding of protein function within different Norovirus genogroups and expands a growing knowledge base on the interaction between positive-strand RNA [(+)RNA] viruses and cellular membranes that contribute to the biogenesis of virus-induced membrane organelles. This study contributes to our understanding of viral protein function and the ability of a viral protein to recruit specific cellular organelles and lipids that enable replication.


Asunto(s)
Infecciones por Caliciviridae/metabolismo , Infecciones por Caliciviridae/virología , Metabolismo de los Lípidos , Microtúbulos/metabolismo , Norovirus/fisiología , Proteínas no Estructurales Virales/metabolismo , Replicación Viral , Secuencia de Aminoácidos , Animales , Línea Celular , Chlorocebus aethiops , Colesterol/metabolismo , Interacciones Huésped-Patógeno , Espacio Intracelular , Microdominios de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Unión Proteica , Transporte de Proteínas , ARN Bicatenario/metabolismo , ARN Viral/metabolismo , Células Vero , Proteínas no Estructurales Virales/química
5.
J Virol ; 91(14)2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28468886

RESUMEN

The emergence of pandemic GII.4 norovirus (NoV) strains has been proposed to occur due to changes in receptor usage and thereby to lead to immune evasion. To address this hypothesis, we measured the ability of human sera collected between 1979 and 2010 to block glycan binding of four pandemic GII.4 noroviruses isolated in the last 4 decades. In total, 268 sera were investigated for 50% blocking titer (BT50) values of virus-like particles (VLPs) against pig gastric mucin (PGM) using 4 VLPs that represent different GII.4 norovirus variants identified between 1987 and 2012. Pre- and postpandemic sera (sera collected before and after isolation of the reference NoV strain) efficiently prevented binding of VLP strains MD145 (1987), Grimsby (1995), and Houston (2002), but not the Sydney (2012) strain, to PGM. No statistically significant difference in virus-blocking titers was observed between pre- and postpandemic sera. Moreover, paired sera showed that blocking titers of ≥160 were maintained over a 6-year period against MD145, Grimsby, and Houston VLPs. Significantly higher serum blocking titers (geometric mean titer [GMT], 1,704) were found among IgA-deficient individuals than among healthy blood donors (GMT, 90.9) (P < 0.0001). The observation that prepandemic sera possess robust blocking capacity for viruses identified decades later suggests a common attachment factor, at least until 2002. Our results indicate that serum IgG possesses antibody-blocking capacity and that blocking titers can be maintained for at least 6 years against 3 decades of pandemic GII.4 NoV.IMPORTANCE Human noroviruses (NoVs) are the major cause of acute gastroenteritis worldwide. Histo-blood group antigens (HBGAs) in saliva and gut recognize NoV and are the proposed ligands that facilitate infection. Polymorphisms in HBGA genes, and in particular a nonsense mutation in FUT2 (G428A), result in resistance to global dominating GII.4 NoV. The emergence of new pandemic GII.4 strains occurs at intervals of several years and is proposed to be attributable to epochal evolution, including amino acid changes and immune evasion. However, it remains unclear whether exposure to a previous pandemic strain stimulates immunity to a pandemic strain identified decades later. We found that prepandemic sera possess robust virus-blocking capacity against viruses identified several decades later. We also show that serum lacking IgA antibodies is sufficient to block NoV VLP binding to HBGAs. This is essential, considering that 1 in every 600 Caucasian children is IgA deficient.


Asunto(s)
Anticuerpos Bloqueadores/sangre , Infecciones por Caliciviridae/inmunología , Infecciones por Caliciviridae/virología , Mucinas/metabolismo , Norovirus/inmunología , Norovirus/fisiología , Acoplamiento Viral , Adulto , Anciano , Genotipo , Humanos , Persona de Mediana Edad , Norovirus/clasificación , Norovirus/genética
6.
J Virol ; 87(6): 3003-17, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23269802

RESUMEN

Open reading frame 2 (ORF2) of the feline calicivirus (FCV) genome encodes a capsid precursor that is posttranslationally processed to release the mature capsid protein (VP1) and a small protein of 124 amino acids, designated the leader of the capsid (LC). To investigate the role of the LC protein in the virus life cycle, mutations and deletions were introduced into the LC coding region of an infectious FCV cDNA clone. Three cysteine residues that are conserved among all vesivirus LC sequences were found to be critical for the recovery of FCV with a characteristic cytopathic effect in feline kidney cells. A cell-rounding phenotype associated with the transient expression of wild-type and mutagenized forms of the LC correlated with the cytopathic and growth properties of the corresponding engineered viruses. The host cellular protein annexin A2 was identified as a binding partner of the LC protein, consistent with a role for the LC in mediating host cell interactions that alter the integrity of the cell and enable virus spread.


Asunto(s)
Calicivirus Felino/patogenicidad , Proteínas de la Cápside/metabolismo , Efecto Citopatogénico Viral , Factores de Virulencia/metabolismo , Animales , Anexina A2/metabolismo , Proteínas de la Cápside/genética , Gatos , Línea Celular , Interacciones Huésped-Patógeno , Mutación Puntual , Unión Proteica , Procesamiento Proteico-Postraduccional , Eliminación de Secuencia , Factores de Virulencia/genética
7.
J Virol ; 87(17): 9547-57, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23785216

RESUMEN

Passive immunoprophylaxis or immunotherapy with norovirus-neutralizing monoclonal antibodies (MAbs) could be a useful treatment for high-risk populations, including infants and young children, the elderly, and certain patients who are debilitated or immunocompromised. In order to obtain antinorovirus MAbs with therapeutic potential, we stimulated a strong adaptive immune response in chimpanzees to the prototype norovirus strain Norwalk virus (NV) (genogroup I.1). A combinatorial phage Fab display library derived from mRNA of the chimpanzees' bone marrow was prepared, and four distinct Fabs reactive with Norwalk recombinant virus-like particles (rVLPs) were recovered, with estimated binding affinities in the subnanomolar range. Mapping studies showed that the four Fabs recognized three different conformational epitopes in the protruding (P) domain of NV VP1, the major capsid protein. The epitope of one of the Fabs, G4, was further mapped to a specific site involving a key amino acid residue, Gly365. One additional specific Fab (F11) was recovered months later from immortalized memory B cells and partially characterized. The anti-NV Fabs were converted into full-length IgG (MAbs) with human γ1 heavy chain constant regions. The anti-NV MAbs were tested in the two available surrogate assays for Norwalk virus neutralization, which showed that the MAbs could block carbohydrate binding and inhibit hemagglutination by NV rVLP. By mixing a single MAb with live Norwalk virus prior to challenge, MAbs D8 and B7 neutralized the virus and prevented infection in a chimpanzee. Because chimpanzee immunoglobulins are virtually identical to human immunoglobulins, these chimpanzee anticapsid MAbs may have a clinical application.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Neutralizantes/uso terapéutico , Infecciones por Caliciviridae/terapia , Gastroenteritis/terapia , Virus Norwalk/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/aislamiento & purificación , Anticuerpos Neutralizantes/genética , Anticuerpos Neutralizantes/aislamiento & purificación , Especificidad de Anticuerpos , Infecciones por Caliciviridae/inmunología , Infecciones por Caliciviridae/prevención & control , Mapeo Epitopo , Gastroenteritis/inmunología , Gastroenteritis/prevención & control , Humanos , Inmunización Pasiva , Fragmentos Fab de Inmunoglobulinas/genética , Fragmentos Fab de Inmunoglobulinas/aislamiento & purificación , Fragmentos Fab de Inmunoglobulinas/uso terapéutico , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Pan troglodytes , Biblioteca de Péptidos , Conformación Proteica , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Proteínas Estructurales Virales/química , Proteínas Estructurales Virales/genética , Proteínas Estructurales Virales/inmunología
8.
J Virol ; 87(10): 5318-30, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23487472

RESUMEN

We report the solution structures of the VPg proteins from feline calicivirus (FCV) and murine norovirus (MNV), which have been determined by nuclear magnetic resonance spectroscopy. In both cases, the core of the protein adopts a compact helical structure flanked by flexible N and C termini. Remarkably, while the core of FCV VPg contains a well-defined three-helix bundle, the MNV VPg core has just the first two of these secondary structure elements. In both cases, the VPg cores are stabilized by networks of hydrophobic and salt bridge interactions. The Tyr residue in VPg that is nucleotidylated by the viral NS7 polymerase (Y24 in FCV, Y26 in MNV) occurs in a conserved position within the first helix of the core. Intriguingly, given its structure, VPg would appear to be unable to bind to the viral polymerase so as to place this Tyr in the active site without a major conformation change to VPg or the polymerase. However, mutations that destabilized the VPg core either had no effect on or reduced both the ability of the protein to be nucleotidylated and virus infectivity and did not reveal a clear structure-activity relationship. The precise role of the calicivirus VPg core in virus replication remains to be determined, but knowledge of its structure will facilitate future investigations.


Asunto(s)
Calicivirus Felino/química , Norovirus/química , Proteínas Virales/química , Animales , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Conformación Proteica
9.
Virus Genes ; 48(1): 96-110, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24217871

RESUMEN

Feline calicivirus (FCV) is a common cause of mild to severe upper respiratory tract disease (URTD) in cats. FCV strain 21223 was isolated from a kitten with severe pneumonia in a disease outbreak with unusually high mortality (35 %) that occurred in a Missouri feline colony in 1995-1996. Phylogenetic analysis of the genome sequence of strain 21223 indicated the emergence of a new FCV strain. Analysis of the full-length genome sequence of a closely related (99.5 % nucleotide identity) strain, 3786, obtained from an asymptomatic animal in the same colony four months later, showed the presence of seven amino acid substitutions, with six of them located in the VP1 capsid sequence encoded by ORF2. Comparative analysis of the E-region sequences (426-521 aa ORF2) presumably involved in virus-host cell receptor interactions did not identify amino acid substitutions unique to the virulent strain. We determined the complete genome sequences of four virus isolates that were collected in regional catteries in the months following the outbreak that were associated with different manifestations of the disease (URTD, chronic stomatitis, and gingivitis). We show that genetically distinct FCV strains were cocirculating in the area, and no apparent correlation could be made between overall sequence and observed disease.


Asunto(s)
Infecciones por Caliciviridae/veterinaria , Calicivirus Felino/clasificación , Calicivirus Felino/genética , Enfermedades de los Gatos/patología , Enfermedades de los Gatos/virología , Animales , Enfermedades Asintomáticas , Infecciones por Caliciviridae/patología , Infecciones por Caliciviridae/virología , Calicivirus Felino/aislamiento & purificación , Proteínas de la Cápside/genética , Gatos , Análisis por Conglomerados , Brotes de Enfermedades , Genoma Viral , Missouri/epidemiología , Datos de Secuencia Molecular , Mutación Missense , Filogenia , ARN Viral/genética , Análisis de Secuencia de ADN , Homología de Secuencia
10.
Proc Natl Acad Sci U S A ; 108(1): 325-30, 2011 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-21173246

RESUMEN

Noroviruses are global agents of acute gastroenteritis, but the development of control strategies has been hampered by the absence of a robust animal model. Studies in chimpanzees have played a key role in the characterization of several fastidious hepatitis viruses, and we investigated the feasibility of such studies for the noroviruses. Seronegative chimpanzees inoculated i.v. with the human norovirus strain Norwalk virus (NV) did not show clinical signs of gastroenteritis, but the onset and duration of virus shedding in stool and serum antibody responses were similar to that observed in humans. NV RNA was detected in intestinal and liver biopsies concurrent with the detection of viral shedding in stool, and NV antigen expression was observed in cells of the small intestinal lamina propria. Two infected chimpanzees rechallenged 4, 10, or 24 mo later with NV were resistant to reinfection, and the presence of NV-specific serum antibodies correlated with protection. We evaluated the immunogenicity and efficacy of virus-like particles (VLPs) derived from NV (genogroup I, GI) and MD145 (genogroup II, GII) noroviruses as vaccines. Chimpanzees vaccinated intramuscularly with GI VLPs were protected from NV infection when challenged 2 and 18 mo after vaccination, whereas chimpanzees that received GII VLPs vaccine or a placebo were not. This study establishes the chimpanzee as a viable animal model for the study of norovirus replication and immunity, and shows that NV VLP vaccines could induce protective homologous immunity even after extended periods of time.


Asunto(s)
Modelos Animales de Enfermedad , Gastroenteritis/prevención & control , Virus Norwalk/genética , Pan troglodytes , Vacunas de Partículas Similares a Virus/inmunología , Vacunas Virales/inmunología , Animales , Anticuerpos Antivirales/sangre , Secuencia de Bases , Técnica del Anticuerpo Fluorescente , Gastroenteritis/inmunología , Gastroenteritis/virología , Humanos , Inmunohistoquímica , Inyecciones Intramusculares , Intestino Delgado/virología , Datos de Secuencia Molecular , Membrana Mucosa/virología , Análisis de Secuencia de ADN , Factores de Tiempo , Vacunas de Partículas Similares a Virus/administración & dosificación , Vacunas Virales/administración & dosificación
11.
Nat Microbiol ; 9(3): 776-786, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38321182

RESUMEN

Norovirus infection can cause gastrointestinal disease in humans. Development of therapies and vaccines against norovirus have been limited by the lack of a suitable and reliable animal model. Here we established rhesus macaques as an animal model for human norovirus infection. We show that rhesus macaques are susceptible to oral infection with human noroviruses from two different genogroups. Variation in duration of virus shedding (days to weeks) between animals, evolution of the virus over the time of infection, induction of virus-specific adaptive immune responses, susceptibility to reinfection and preferential replication of norovirus in the jejunum of rhesus macaques was similar to infection reported in humans. We found minor pathological signs and changes in epithelial cell surface glycosylation patterns in the small intestine during infection. Detection of viral protein and RNA in intestinal biopsies confirmed the presence of the virus in chromogranin A-expressing epithelial cells, as it does in humans. Thus, rhesus macaques are a promising non-human primate model to evaluate vaccines and therapeutics against norovirus disease.


Asunto(s)
Infecciones por Caliciviridae , Norovirus , Vacunas , Humanos , Animales , Macaca mulatta , Intestino Delgado
12.
J Virol ; 86(13): 7414-26, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22532688

RESUMEN

Noroviruses are major etiological agents of acute viral gastroenteritis. In 2002, a GII.4 variant (Farmington Hills cluster) spread so rapidly in the human population that it predominated worldwide and displaced previous GII.4 strains. We developed and characterized a panel of six monoclonal antibodies (MAbs) directed against the capsid protein of a Farmington Hills-like GII.4 norovirus strain that was associated with a large hospital outbreak in Maryland in 2004. The six MAbs reacted with high titers against homologous virus-like particles (VLPs) by enzyme-linked immunoassay but did not react with denatured capsid protein in immunoblots. The expression and self-assembly of newly developed genogroup I/II chimeric VLPs showed that five MAbs bound to the GII.4 protruding (P) domain of the capsid protein, while one recognized the GII.4 shell (S) domain. Cross-competition assays and mutational analyses showed evidence for at least three distinct antigenic sites in the P domain and one in the S domain. MAbs that mapped to the P domain but not the S domain were able to block the interaction of VLPs with ABH histo-blood group antigens (HBGA), suggesting that multiple antigenic sites of the P domain are involved in HBGA blocking. Further analysis showed that two MAbs mapped to regions of the capsid that had been associated with the emergence of new GII.4 variants. Taken together, our data map antibody and HBGA carbohydrate binding to proximal regions of the norovirus capsid, showing that evolutionary pressures on the norovirus capsid protein may affect both antigenic and carbohydrate recognition phenotypes.


Asunto(s)
Sistema del Grupo Sanguíneo ABO/metabolismo , Infecciones por Caliciviridae/virología , Proteínas de la Cápside/metabolismo , Norovirus/patogenicidad , Mapeo de Interacción de Proteínas , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Infecciones por Caliciviridae/epidemiología , Proteínas de la Cápside/genética , Brotes de Enfermedades , Ensayo de Inmunoadsorción Enzimática , Mapeo Epitopo , Genotipo , Humanos , Maryland/epidemiología , Ratones , Ratones Endogámicos BALB C , Norovirus/genética , Norovirus/aislamiento & purificación , Unión Proteica
13.
mBio ; : e0217723, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37905910

RESUMEN

Noroviruses are a major cause of acute gastroenteritis worldwide and can establish chronic infection in immunocompromised individuals. To investigate the mechanisms of norovirus evolution during chronic infection, we selected seven representative patients from a National Institutes of Health study cohort who sustained norovirus infection for periods ranging from 73 to 1,492 days. Six patients shed viruses belonging to a single genotype (GII.2[PNA], GII.4 New Orleans[P4], GII.4 Den Haag[P4], GII.3[P21], GII.6[P7], or GII.14[P7]) over the period examined, while one patient sequentially shed two genotypes (GII.6[P7] followed by GII.4 Sydney[P31]). Norovirus genomes from consecutive stool samples were sequenced at high resolution (>3,300 reads/nucleotide position) using the Illumina platform and subjected to bioinformatics analysis. Norovirus sequences could be resolved into one or more discrete clonal RNA genomes that persisted within these patients over time. Phylogenetic analyses inferred that clonal populations originated from a single founder virus and not by reinfection with community strains. Estimated evolutionary rates of clonal populations during persistent infection were similar to those of noroviruses from acute infection in the global database, suggesting that inherently higher RNA-dependent polymerase error rates were not associated with the ability to persist. The high-resolution analysis of norovirus diversity and evolution at the population level described here should allow a better understanding of adaptive mutations sustained during chronic infection. IMPORTANCE Noroviruses are an important cause of chronic diarrhea in patients with compromised immune systems. Presently, there are no effective therapies to clear the virus, which can persist for years in the intestinal tract. The goal of our study was to develop a better understanding of the norovirus strains that are associated with these long-term infections. With the remarkable diversity of norovirus strains detected in the immunocompromised patient cohort we studied, it appears that most, if not all, noroviruses circulating in nature may have the capacity to establish a chronic infection when a person is unable to mount an effective immune response. Our work is the most comprehensive genetic data set generated to date in which near full-length genomes from noroviruses associated with chronic infection were analyzed by high-resolution next-generation sequencing. Analysis of this data set led to our discovery that certain patients in our cohort were shedding noroviruses that could be subdivided into distinct haplotypes or populations of viruses that were co-evolving independently. The ability to track haplotypes of noroviruses during chronic infection will allow us to fine-tune our understanding of how the virus adapts and maintains itself in the human host, and how selective pressures such as antiviral drugs can affect these distinct populations.

14.
Nat Commun ; 14(1): 6516, 2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37845211

RESUMEN

Acute gastroenteritis caused by human noroviruses (HuNoVs) is a significant global health and economic burden and is without licensed vaccines or antiviral drugs. The GII.4 HuNoV causes most epidemics worldwide. This virus undergoes epochal evolution with periodic emergence of variants with new antigenic profiles and altered specificity for histo-blood group antigens (HBGA), the determinants of cell attachment and susceptibility, hampering the development of immunotherapeutics. Here, we show that a llama-derived nanobody M4 neutralizes multiple GII.4 variants with high potency in human intestinal enteroids. The crystal structure of M4 complexed with the protruding domain of the GII.4 capsid protein VP1 revealed a conserved epitope, away from the HBGA binding site, fully accessible only when VP1 transitions to a "raised" conformation in the capsid. Together with dynamic light scattering and electron microscopy of the GII.4 VLPs, our studies suggest a mechanism in which M4 accesses the epitope by altering the conformational dynamics of the capsid and triggering its disassembly to neutralize GII.4 infection.


Asunto(s)
Antígenos de Grupos Sanguíneos , Infecciones por Caliciviridae , Norovirus , Humanos , Proteínas de la Cápside/química , Cápside/metabolismo , Norovirus/genética , Sitios de Unión , Epítopos/metabolismo , Antígenos de Grupos Sanguíneos/metabolismo
15.
Virol J ; 9: 297, 2012 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-23190937

RESUMEN

BACKGROUND: Vesiviruses in the family Caliciviridae infect a broad range of animal hosts including mammals, birds, fish, amphibians and reptiles. The vesivirus Cro1 strains were isolated from diseased snakes in the San Diego zoo in 1978 and reported as the first caliciviruses found in reptiles. The goal of this study was to characterize the Cro1 strain 780032I that was isolated in cell culture from a rock rattlesnake (Crotalus lepidus) in the original outbreak. RESULTS: We re-amplified the original virus stock in Vero cells, and determined its full-length genome sequence. The Cro1 genome is 8296 nucleotides (nt) in length and has a typical vesivirus organization, with three open reading frames (ORF), ORF1 (5643 nt), ORF2 (2121 nt), and ORF3 (348 nt) encoding a nonstructural polyprotein, the major capsid protein precursor, and a minor structural protein, respectively. Phylogenetic analysis of the full-length genome sequence revealed that the Cro1 virus clustered most closely with the VESV species of the genus Vesivirus, but was genetically distinct (82-83% identities with closest strains). CONCLUSIONS: This is the first description of a full-length genome sequence from a reptile calicivirus (Cro1). The availability of the Cro1 genome sequence should facilitate investigation of the molecular mechanisms involved in Cro1 virus evolution and host range.


Asunto(s)
Infecciones por Caliciviridae/veterinaria , Crotalus/virología , Brotes de Enfermedades , Genoma Viral , ARN Viral/genética , Análisis de Secuencia de ADN , Vesivirus/genética , Animales , Animales de Zoológico , Infecciones por Caliciviridae/epidemiología , Infecciones por Caliciviridae/virología , California , Chlorocebus aethiops , Análisis por Conglomerados , Datos de Secuencia Molecular , Filogenia , Homología de Secuencia de Ácido Nucleico , Células Vero , Vesivirus/aislamiento & purificación , Cultivo de Virus
16.
J Virol Methods ; 297: 114196, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34019938

RESUMEN

BACKGROUND: Noroviruses are the most common cause of viral gastroenteritis worldwide, yet there is a deficit in the understanding of protective immunity. Surrogate neutralization assays have been widely used that measure the ability of antibodies to block virus-like particle (VLP) binding to histo-blood group antigens (HBGAs). However, screening large sample sets against multiple antigens using the traditional HBGA blocking assay requires significant investment in terms of time, equipment, and technical expertise, largely associated with the generation of purified VLPs. METHODS: To address these issues, a luciferase immunoprecipitation system (LIPS) assay was modified to measure the norovirus-specific HBGA blockade activity of antibodies. The assay (designated LIPS-Blockade) was validated using a panel of well-characterized homotypic and heterotypic hyperimmune sera as well as strain-specific HBGA blocking monoclonal antibodies. RESULTS: The LIPS-Blockade assay was comparable in specificity to a standard HBGA blocking protocol performed with VLPs. Using time-ordered patient sera, the luciferase-based approach was also able to detect changes in HBGA blocking titers following viral challenge and natural infection with norovirus. CONCLUSION: In this study we developed a rapid, robust, and scalable surrogate neutralization assay for noroviruses that circumvented the need for purified VLPs. This LIPS-Blockade assay should streamline the process of large-scale immunological studies, ultimately aiding in the characterization of protective immunity to human noroviruses.


Asunto(s)
Anticuerpos Antivirales , Antígenos de Grupos Sanguíneos , Norovirus , Anticuerpos Monoclonales/análisis , Anticuerpos Antivirales/análisis , Antígenos de Grupos Sanguíneos/metabolismo , Genotipo , Humanos , Luciferasas/metabolismo , Pruebas de Neutralización
17.
J Gen Virol ; 91(Pt 3): 739-49, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19906938

RESUMEN

In common with other positive-strand RNA viruses, replication of feline calicivirus (FCV) results in rearrangement of intracellular membranes and production of numerous membrane-bound vesicular structures on which viral genome replication is thought to occur. In this study, bioinformatics approaches have identified three of the FCV non-structural proteins, namely p32, p39 and p30, as potential transmembrane proteins. These proteins were able to target enhanced cyan fluorescent protein to membrane fractions where they behaved as integral membrane proteins. Immunofluorescence microscopy of these proteins expressed in cells showed co-localization with endoplasmic reticulum (ER) markers. Further electron microscopy analysis of cells co-expressing FCV p39 or p30 with a horseradish peroxidase protein containing the KDEL ER retention motif demonstrated gross morphological changes to the ER. Similar reorganization patterns, especially for those produced by p30, were observed in naturally infected Crandel-Rees feline kidney cells. Together, the data demonstrate that the p32, p39 and p30 proteins of FCV locate to the ER and lead to reorganization of ER membranes. This suggests that they may play a role in the generation of FCV replication complexes and that the endoplasmic reticulum may represent the potential source of the membrane vesicles induced during FCV infection.


Asunto(s)
Calicivirus Felino/fisiología , Retículo Endoplásmico/química , Proteínas de la Membrana/análisis , Proteínas no Estructurales Virales/análisis , Replicación Viral , Animales , Gatos , Línea Celular , Células Cultivadas , Retículo Endoplásmico/ultraestructura , Microscopía Confocal/métodos , Microscopía Electrónica de Transmisión
18.
J Virol ; 83(8): 3647-56, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19211757

RESUMEN

Noroviruses (NVs) are recognized as a major cause of nonbacterial gastroenteritis in humans. Studies of the human NVs continue to be hampered by the inability to propagate them in any cell culture system. Until recently, most data concerning NV replication were derived from studies of feline calicivirus and rabbit hemorrhagic disease virus, which are cultivable members of the family Caliciviridae. From such studies, it was proposed that caliciviruses induce apoptosis to facilitate the dissemination of viral progeny in the host. The discovery that MNV type 1 (MNV-1) grows in RAW264.7 cells provided the first cell culture system for use in studying the role of apoptosis in NV infection. We first showed that MNV-1 replication triggered apoptosis in infected RAW264.7 cells and then demonstrated that cell death was associated with activation of caspase-9 and caspase-3 through the mitochondrial pathway. This process was dependent on virus replication, since inactivated virus failed to induce signs of apoptosis. In order to better understand the apoptotic process induced by MNV-1 infection of RAW264.7 cells, we investigated the expression profiles of MNV-1-infected versus mock-infected cells. Survivin, a member of the inhibitor of apoptosis protein family, was found to be significantly downregulated in an inverse relationship with the virus genome replication. This study showed that, unlike other viruses that upregulate survivin, MNV-1 is the first virus found to downregulate the levels of survivin. We observed that MNV-1 replication in RAW264.7 cells activated caspases, resulting in apoptosis through the mitochondrial pathway, possibly as a result of downregulation of survivin.


Asunto(s)
Apoptosis , Regulación hacia Abajo , Macrófagos/virología , Proteínas Asociadas a Microtúbulos/biosíntesis , Norovirus/patogenicidad , Animales , Caspasas/biosíntesis , Perfilación de la Expresión Génica , Proteínas Inhibidoras de la Apoptosis , Ratones , Proteínas Represoras , Survivin , Regulación hacia Arriba
19.
J Virol ; 83(11): 5683-92, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19297466

RESUMEN

Human noroviruses are responsible for more than 95% of nonbacterial epidemic gastroenteritis worldwide. Both onset and resolution of disease symptoms are rapid, suggesting that components of the innate immune response are critical in norovirus control. While the study of the human noroviruses has been hampered by the lack of small animal and tissue culture systems, our recent discovery of a murine norovirus (MNV) and its in vitro propagation have allowed us to begin addressing norovirus replication strategies and immune responses to norovirus infection. We have previously demonstrated that interferon responses are critical to control MNV-1 infection in vivo and to directly inhibit viral replication in vitro. We now extend these studies to define the molecular basis for interferon-mediated inhibition. Viral replication intermediates were not detected in permissive cells pretreated with type I interferon after either infection or transfection of virion-associated RNA, demonstrating a very early block to virion production that is after virus entry and uncoating. A similar absence of viral replication intermediates was observed in infected primary macrophages and dendritic cells pretreated with type I IFN. This was not due to degradation of incoming genomes in interferon-pretreated cells since similar levels of genomes were present in untreated and pretreated cells through 6 h of infection, and these genomes retained their integrity. Surprisingly, this block to the translation of viral proteins was not dependent on the well-characterized interferon-induced antiviral molecule PKR. Similar results were observed in cells pretreated with type II interferon, except that the inhibition of viral translation was dependent on PKR. Thus, both type I and type II interferon signaling inhibit norovirus translation in permissive myeloid cells, but they display distinct dependence on PKR for this inhibition.


Asunto(s)
Interferón Tipo I/farmacología , Interferón gamma/farmacología , Norovirus/efectos de los fármacos , Norovirus/metabolismo , Animales , Línea Celular , Genoma Viral/genética , Ratones , Norovirus/genética , Transporte de Proteínas , Transducción de Señal/efectos de los fármacos , Proteínas no Estructurales Virales/metabolismo , Virión/metabolismo , Replicación Viral , eIF-2 Quinasa/metabolismo
20.
J Virol ; 83(22): 11890-901, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19759138

RESUMEN

Noroviruses are a major cause of epidemic gastroenteritis in children and adults, and GII.4 has been the predominant genotype since its first documented occurrence in 1987. This study examined the evolutionary dynamics of GII.4 noroviruses over more than three decades to investigate possible mechanisms by which these viruses have emerged to become predominant. Stool samples (n = 5,424) from children hospitalized at the Children's Hospital in Washington, DC, between 1974 and 1991 were screened for the presence of noroviruses by a custom multiplex real-time reverse transcription-PCR. The complete genome sequences of five GII.4 noroviruses (three of which predate 1987 by more than a decade) in this archival collection were determined and compared to the sequences of contemporary strains. Evolutionary analysis determined that the GII.4 VP1 capsid gene evolved at a rate of 4.3 x 10(-3) nucleotide substitutions/site/year. Only six sites in the VP1 capsid protein were found to evolve under positive selection, most of them located in the shell domain. No unique mutations were observed in or around the two histoblood group antigen (HBGA) binding sites in the P region, indicating that this site has been conserved since the 1970s. The VP1 proteins from the 1974 to 1977 noroviruses contained a unique sequence of four consecutive amino acids in the P2 region, which formed an exposed protrusion on the modeled capsid structure. This protrusion and other observed sequence variations did not affect the HBGA binding profiles of recombinant virus-like particles derived from representative 1974 and 1977 noroviruses compared with more recent noroviruses. Our analysis of archival GII.4 norovirus strains suggests that this genotype has been circulating for more than three decades and provides new ancestral strain sequences for the analysis of GII.4 evolution.


Asunto(s)
Evolución Molecular , Norovirus/genética , Infecciones por Caliciviridae/virología , Niño , Variación Genética/genética , Genoma Viral/genética , Humanos , Datos de Secuencia Molecular , Filogenia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA