Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Chromosoma ; 131(1-2): 77-86, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35389062

RESUMEN

Passerine birds have a supernumerary chromosome in their germ cells called the germline-restricted chromosome (GRC). The GRC was first discovered more than two decades ago in zebra finch but recent studies have suggested that it is likely present in all passerines, the most species rich avian order, encompassing more than half of all modern bird species. Despite its wide taxonomic distribution, studies on this chromosome are still scarce and limited to a few species. Here, we cytogenetically analyzed the GRC in five closely related estrildid finch species of the genus Lonchura. We show that the GRC varies enormously in size, ranging from a tiny micro-chromosome to one of the largest macro-chromosomes in the cell, not only among recently diverged species but also within species and sometimes even between germ cells of a single individual. In Lonchura atricapilla, we also observed variation in GRC copy number among male germ cells of a single individual. Finally, our analysis of hybrids between two Lonchura species with noticeably different GRC size directly supported maternal inheritance of the GRC. Our results reveal the extraordinarily dynamic nature of the GRC, which might be caused by frequent gains and losses of sequences on this chromosome leading to substantial differences in genetic composition of the GRC between and even within species. Such differences might theoretically contribute to reproductive isolation between species and thus accelerate the speciation rate of passerine birds compared to other bird lineages.


Asunto(s)
Pinzones , Passeriformes , Animales , Cromosomas/genética , Femenino , Pinzones/genética , Células Germinativas , Masculino , Passeriformes/genética
2.
Am Nat ; 202(2): E31-E52, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37531273

RESUMEN

AbstractEcological and evolutionary processes underlying spatial variation in signals involved in mate recognition and reproductive isolation are crucial to understanding the causes of population divergence and speciation. Here, to test hypotheses concerning the causes of song divergence, we examine how songs of two sister species of Atlantic Forest suboscine birds with innate songs, the Pyriglena fire-eye antbirds, vary across their ranges. Specifically, we evaluated the influence of isolation by distance and introgressive hybridization, as well as morphological and environmental variation, on geographic variation in male songs. Analyses based on 496 male vocalizations from 63 locations across a 2,200-km latitudinal transect revealed clinal changes in the structure of songs and showed that introgressive hybridization increases both the variability and the homogenization of songs in the contact zone between the two species. We also found that isolation by distance, morphological constraints, the environment, and genetic introgression independently predicted song variation across geographic space. Our study shows the importance of an integrative approach that investigates the roles of distinct ecological and evolutionary processes that influence acoustic signal evolution.


Asunto(s)
Evolución Biológica , Passeriformes , Animales , Masculino , Vocalización Animal , Passeriformes/genética , Aislamiento Reproductivo
3.
Chromosome Res ; 30(2-3): 255-272, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35416568

RESUMEN

Germline-restricted chromosomes (GRCs) are accessory chromosomes that occur only in germ cells. They are eliminated from somatic cells through programmed DNA elimination during embryo development. GRCs have been observed in several unrelated animal taxa and show peculiar modes of non-Mendelian inheritance and within-individual elimination. Recent cytogenetic and phylogenomic evidence suggests that a GRC is present across the species-rich songbirds, but absent in non-passerine birds, implying that over half of all 10,500 bird species have extensive germline/soma genome differences. Here, we review recent insights gained from genomic, transcriptomic, and cytogenetic approaches with regard to the genetic content, phylogenetic distribution, and inheritance of the songbird GRC. While many questions remain unsolved in terms of GRC inheritance, elimination, and function, we discuss plausible scenarios and future directions for understanding this widespread form of programmed DNA elimination.


Asunto(s)
Pájaros Cantores , Animales , Cromosomas/genética , ADN , Sueños , Células Germinativas , Filogenia , Pájaros Cantores/genética
4.
Mol Phylogenet Evol ; 148: 106820, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32283137

RESUMEN

In order to gain insights into the biogeographic processes underlying biotic diversification in the Atlantic Forest (AF), we used a multi-locus approach to examine the evolutionary history of the White-shouldered Fire-eye (Pyriglena leucoptera) and the Fringe-backed Fire-eye (Pyriglena atra), two parapatric sister species endemic to the AF. We sequenced one mitochondrial, three Z chromosome-linked and three anonymous markers of 556 individuals from 66 localities. We recovered four lineages throughout the AF: P. atra and three populations within P. leucoptera. All populations diverged during the late Pleistocene and presented varying levels of admixture. One Z-linked locus showed the highest level of differentiation between the two species. On the other hand, a mitochondrial haplotype was shared extensively between them. Our data supported vicariance driving speciation along with extinction and dispersal as processes underlying intraspecific diversification. Furthermore, signatures of demographic expansion in most populations and areas of genetic admixture were recovered throughout the AF, suggesting that forest fragmentation was also important in differentiation. Genetic admixture areas are located between large rivers suggesting that AF rivers may diminish gene flow. Our results indicated a complex and dynamic biogeographic history of Pyriglena in the AF, with vicariance, extinction, dispersal and secondary contact followed by introgression likely influencing the current patterns of genetic distribution.


Asunto(s)
Distribución Animal/fisiología , Evolución Biológica , Extinción Biológica , Bosques , Hibridación Genética , Passeriformes/genética , Animales , Secuencia de Bases , Teorema de Bayes , ADN Mitocondrial/genética , Flujo Génico , Variación Genética , Genética de Población , Haplotipos/genética , Filogenia , Filogeografía , Probabilidad , Recombinación Genética/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA