Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Biol Chem ; 297(6): 101405, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34774801

RESUMEN

Several amyotrophic lateral sclerosis (ALS)-related proteins such as FUS, TDP-43, and hnRNPA1 demonstrate liquid-liquid phase separation, and their disease-related mutations correlate with a transition of their liquid droplet form into aggregates. Missense mutations in SQSTM1/p62, which have been identified throughout the gene, are associated with ALS, frontotemporal degeneration (FTD), and Paget's disease of bone. SQSTM1/p62 protein forms liquid droplets through interaction with ubiquitinated proteins, and these droplets serve as a platform for autophagosome formation and the antioxidative stress response via the LC3-interacting region (LIR) and KEAP1-interacting region (KIR) of p62, respectively. However, it remains unclear whether ALS/FTD-related p62 mutations in the LIR and KIR disrupt liquid droplet formation leading to defects in autophagy, the stress response, or both. To evaluate the effects of ALS/FTD-related p62 mutations in the LIR and KIR on a major oxidative stress system, the Keap1-Nrf2 pathway, as well as on autophagic turnover, we developed systems to monitor each of these with high sensitivity. These methods such as intracellular protein-protein interaction assay, doxycycline-inducible gene expression system, and gene expression into primary cultured cells with recombinant adenovirus revealed that some mutants, but not all, caused reduced NRF2 activation and delayed autophagic cargo turnover. In contrast, while all p62 mutants demonstrated sufficient ability to form liquid droplets, all of these droplets also exhibited reduced inner fluidity. These results indicate that like other ALS-related mutant proteins, p62 missense mutations result in a primary defect in ALS/FTD via a qualitative change in p62 liquid droplet fluidity.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Proteína Sequestosoma-1/metabolismo , Esclerosis Amiotrófica Lateral/genética , Animales , Células HEK293 , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Ratones , Mutación Missense , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Proteína Sequestosoma-1/genética
2.
EMBO Rep ; 21(3): e48902, 2020 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-31916398

RESUMEN

p62/SQSTM1 is a multivalent protein that has the ability to cause liquid-liquid phase separation and serves as a receptor protein that participates in cargo isolation during selective autophagy. This protein is also involved in the non-canonical activation of the Keap1-Nrf2 system, a major oxidative stress response pathway. Here, we show a role of neighbor of BRCA1 gene 1 (NBR1), an autophagy receptor structurally similar to p62/SQSTM1, in p62-liquid droplet formation and Keap1-Nrf2 pathway activation. Overexpression of NBR1 blocks selective degradation of p62/SQSTM1 through autophagy and promotes the accumulation and phosphorylation of p62/SQSTM1 in liquid-like bodies, which is required for the activation of Nrf2. NBR1 is induced in response to oxidative stress, which triggers p62-mediated Nrf2 activation. Conversely, loss of Nbr1 suppresses not only the formation of p62/SQSTM1-liquid droplets, but also of p62-dependent Nrf2 activation during oxidative stress. Taken together, our results show that NBR1 mediates p62/SQSTM1-liquid droplet formation to activate the Keap1-Nrf2 pathway.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Transducción de Señal , Animales , Autofagia , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Ratones , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo
3.
Mol Cell ; 56(2): 261-274, 2014 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-25219498

RESUMEN

Biological roles for UFM1, a ubiquitin-like protein, are largely unknown, and therefore we screened for targets of ufmylation. Here we show that ufmylation of the nuclear receptor coactivator ASC1 is a key step for ERα transactivation in response to 17ß-estradiol (E2). In the absence of E2, the UFM1-specific protease UfSP2 was bound to ASC1, which maintains ASC1 in a nonufmylated state. In the presence of E2, ERα bound ASC1 and displaced UfSP2, leading to ASC1 ufmylation. Polyufmylation of ASC1 enhanced association of p300, SRC1, and ASC1 at promoters of ERα target genes. ASC1 overexpression or UfSP2 knockdown promoted ERα-mediated tumor formation in vivo, which could be abrogated by treatment with the anti-breast cancer drug tamoxifen. In contrast, expression of ufmylation-deficient ASC1 mutant or knockdown of the UFM1-activating E1 enzyme UBA5 prevented tumor growth. These findings establish a role for ASC1 ufmylation in breast cancer development by promoting ERα transactivation.


Asunto(s)
Sistema de Transporte de Aminoácidos y+/metabolismo , Neoplasias de la Mama/patología , Receptor alfa de Estrógeno/metabolismo , Proteínas/química , Sistema de Transporte de Aminoácidos y+/química , Sistema de Transporte de Aminoácidos y+/genética , Animales , Neoplasias de la Mama/metabolismo , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Cisteína Endopeptidasas/metabolismo , Proteína p300 Asociada a E1A/genética , Activación Enzimática/genética , Estradiol/genética , Estradiol/metabolismo , Antagonistas de Estrógenos/farmacología , Receptor alfa de Estrógeno/genética , Femenino , Células HEK293 , Humanos , Células MCF-7 , Ratones , Ratones Desnudos , Coactivador 1 de Receptor Nuclear/genética , Regiones Promotoras Genéticas/genética , Unión Proteica/genética , Proteínas/metabolismo , Tamoxifeno/farmacología , Activación Transcripcional , Ubiquitina/metabolismo , Enzimas Activadoras de Ubiquitina/genética , Ubiquitina-Proteína Ligasas/metabolismo
4.
Mol Cell ; 51(5): 618-31, 2013 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-24011591

RESUMEN

The Keap1-Nrf2 system and autophagy are both involved in the oxidative-stress response, metabolic pathways, and innate immunity, and dysregulation of these processes is associated with pathogenic processes. However, the interplay between these two pathways remains largely unknown. Here, we show that phosphorylation of the autophagy-adaptor protein p62 markedly increases p62's binding affinity for Keap1, an adaptor of the Cul3-ubiquitin E3 ligase complex responsible for degrading Nrf2. Thus, p62 phosphorylation induces expression of cytoprotective Nrf2 targets. p62 is assembled on selective autophagic cargos such as ubiquitinated organelles and subsequently phosphorylated in an mTORC1-dependent manner, implying coupling of the Keap1-Nrf2 system to autophagy. Furthermore, persistent activation of Nrf2 through accumulation of phosphorylated p62 contributes to the growth of human hepatocellular carcinomas (HCCs). These results demonstrate that selective autophagy and the Keap1-Nrf2 pathway are interdependent, and that inhibitors of the interaction between phosphorylated p62 and Keap1 have potential as therapeutic agents against human HCC.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autofagia/fisiología , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Adenoma/metabolismo , Adenoma/patología , Secuencia de Aminoácidos , Animales , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Cristalografía por Rayos X , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Datos de Secuencia Molecular , Complejos Multiproteicos/metabolismo , Fosforilación , Proteína Sequestosoma-1 , Serina-Treonina Quinasas TOR/metabolismo
5.
Mol Cell ; 33(4): 505-16, 2009 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-19250911

RESUMEN

Autophagy is a catabolic process where cytosolic cellular components are delivered to the lysosome for degradation. Recent studies have indicated the existence of specific receptors, such as p62, which link ubiquitinated targets to autophagosomal degradation pathways. Here we show that NBR1 (neighbor of BRCA1 gene 1) is an autophagy receptor containing LC3- and ubiquitin (Ub)-binding domains. NBR1 is recruited to Ub-positive protein aggregates and degraded by autophagy depending on an LC3-interacting region (LIR) and LC3 family modifiers. Although NBR1 and p62 interact and form oligomers, they can function independently, as shown by autophagosomal clearance of NBR1 in p62-deficient cells. NBR1 was localized to Ub-positive inclusions in patients with liver dysfunction, and depletion of NBR1 abolished the formation of Ub-positive p62 bodies upon puromycin treatment of cells. We propose that NBR1 and p62 act as receptors for selective autophagosomal degradation of ubiquitinated targets.


Asunto(s)
Autofagia , Proteínas/metabolismo , Ubiquitina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Sitios de Unión , Células Cultivadas , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular , Ratones , Microscopía Confocal , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas/análisis , Proteína Sequestosoma-1 , Especificidad por Sustrato
6.
J Biol Chem ; 289(36): 24944-55, 2014 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-25049227

RESUMEN

The ubiquitin-proteasome system and autophagy are crucially important for proteostasis in cells. These pathways are interdependent, and dysfunction in either pathway causes accumulation of ubiquitin-positive aggregates, a hallmark of human pathological conditions. To elucidate in vivo compensatory action(s) against proteasomal dysfunction, we developed mice with reduced proteasome activity in their livers. The mutant mice exhibited severe liver damage, accompanied by formation of aggregates positive for ubiquitin and p62/Sqstm1, an adaptor protein for both selective autophagy and the anti-oxidative Keap1-Nrf2 pathway. These aggregates were selectively entrapped by autophagosomes, and pathological features of livers with impaired proteasome activity were exacerbated by simultaneous suppression of autophagy. In contrast, concomitant loss of p62/Sqstm1 had no apparent effect on the liver pathology though p62/Sqstm1 was indispensable for the aggregates formation. Furthermore, defective proteasome function led to transcriptional activation of the Nrf2, which served as a physiological adaptation. Our in vivo data suggest that cells contain networks of cellular defense mechanisms against defective proteostasis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autofagia , Proteínas del Citoesqueleto/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteínas del Citoesqueleto/genética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Immunoblotting , Proteína 1 Asociada A ECH Tipo Kelch , Hígado/metabolismo , Hígado/patología , Hígado/ultraestructura , Ratones Noqueados , Ratones Transgénicos , Microscopía Confocal , Microscopía Inmunoelectrónica , Factor 2 Relacionado con NF-E2/genética , Fagosomas/genética , Fagosomas/metabolismo , Fosforilación , Complejo de la Endopetidasa Proteasomal/genética , Proteína Sequestosoma-1 , Factores de Tiempo , Ubiquitina/metabolismo
7.
Biochem Biophys Res Commun ; 446(1): 309-15, 2014 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-24582747

RESUMEN

Autophagy is a unique intracellular protein degradation system accompanied by autophagosome formation. Besides its important role through bulk degradation in supplying nutrients, this system has an ability to degrade certain proteins, organelles, and invading bacteria selectively to maintain cellular homeostasis. In yeasts, Atg8p plays key roles in both autophagosome formation and selective autophagy based on its membrane fusion property and interaction with autophagy adaptors/specific substrates. In contrast to the single Atg8p in yeast, mammals have 6 homologs of Atg8p comprising LC3 and GABARAP families. However, it is not clear these two families have different or similar functions. The aim of this study was to determine the separate roles of LC3 and GABARAP families in basal/constitutive and/or selective autophagy. While the combined knockdown of LC3 and GABARAP families caused a defect in long-lived protein degradation through lysosomes, knockdown of each had no effect on the degradation. Meanwhile, knockdown of LC3B but not GABARAPs resulted in significant accumulation of p62/Sqstm1, one of the selective substrate for autophagy. Our results suggest that while mammalian Atg8 homologs are functionally redundant with regard to autophagosome formation, selective autophagy is regulated by specific Atg8 homologs.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Autofagia/fisiología , Proteínas Asociadas a Microtúbulos/fisiología , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteínas Reguladoras de la Apoptosis , Autofagia/genética , Familia de las Proteínas 8 Relacionadas con la Autofagia , Células Cultivadas , Células HEK293 , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/fisiología , Humanos , Ratones , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/fisiología , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Modelos Moleculares , ARN Interferente Pequeño/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteína Sequestosoma-1 , Electricidad Estática
8.
J Biol Chem ; 286(36): 31864-74, 2011 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-21715324

RESUMEN

p62/SQSTM1/A170 is a multimodular protein that is found in ubiquitin-positive inclusions associated with neurodegenerative diseases. Recent findings indicate that p62 mediates the interaction between ubiquitinated proteins and autophagosomes, leading these proteins to be degraded via the autophagy-lysosomal pathway. This ubiquitin-mediated selective autophagy is thought to begin with recognition of the ubiquitinated proteins by the C-terminal ubiquitin-associated (UBA) domain of p62. We present here the crystal structure of the UBA domain of mouse p62 and the solution structure of its ubiquitin-bound form. The p62 UBA domain adopts a novel dimeric structure in crystals, which is distinctive from those of other UBA domains. NMR analyses reveal that in solution the domain exists in equilibrium between the dimer and monomer forms, and binding ubiquitin shifts the equilibrium toward the monomer to form a 1:1 complex between the UBA domain and ubiquitin. The dimer-to-monomer transition is associated with a structural change of the very C-terminal end of the p62 UBA domain, although the UBA fold itself is essentially maintained. Our data illustrate that dimerization and ubiquitin binding of the p62 UBA domain are incompatible with each other. These observations reveal an autoinhibitory mechanism in the p62 UBA domain and suggest that autoinhibition plays a role in the function of p62.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas de Choque Térmico/química , Dominios y Motivos de Interacción de Proteínas , Ubiquitina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Animales , Cristalografía por Rayos X , Proteínas de Choque Térmico/antagonistas & inhibidores , Espectroscopía de Resonancia Magnética , Ratones , Transición de Fase , Multimerización de Proteína , Proteína Sequestosoma-1 , Ubiquitina/química
9.
FEBS Lett ; 596(22): 2873-2888, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36056653

RESUMEN

The Golgi pH regulator (GPHR) is essential for maintaining the function and morphology of the Golgi apparatus through the regulation of luminal acidic pH. Abnormal morphology of the Golgi apparatus is associated with neurodegenerative diseases. Here, we found that knockout of GPHR in the mouse brain led to morphological changes in the Golgi apparatus and neurodegeneration, which included brain atrophy, neuronal cell death, and gliosis. Furthermore, in the GPHR knockout mouse brain, transcriptional activity of sterol regulatory element-binding protein 2 (SREBP2) decreased, resulting in a reduction in cholesterol levels. GPHR-deficient cells exhibited suppressed neurite outgrowth, which was recovered by exogenous expression of the active form of SREBP2. Our results show that GPHR-mediated luminal acidification of the Golgi apparatus maintains proper cholesterol levels and, thereby, neuronal morphology.


Asunto(s)
Aparato de Golgi , Proteína 2 de Unión a Elementos Reguladores de Esteroles , Animales , Ratones , Aparato de Golgi/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Ratones Noqueados , Colesterol/metabolismo , Concentración de Iones de Hidrógeno , Encéfalo/metabolismo
10.
J Biol Chem ; 285(8): 5417-27, 2010 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-20018847

RESUMEN

The ubiquitin fold modifier 1 (Ufm1) is the most recently discovered ubiquitin-like modifier whose conjugation (ufmylation) system is conserved in multicellular organisms. Ufm1 is known to covalently attach with cellular protein(s) via a specific E1-activating enzyme (Uba5) and an E2-conjugating enzyme (Ufc1), but its E3-ligating enzyme(s) as well as the target protein(s) remain unknown. Herein, we report both a novel E3 ligase for Ufm1, designated Ufl1, and an Ufm1-specific substrate ligated by Ufl1, C20orf116. Ufm1 was covalently conjugated with C20orf116. Although Ufl1 has no obvious sequence homology to any other known E3s for ubiquitin and ubiquitin-like modifiers, the C20orf116 x Ufm1 formation was greatly accelerated by Ufl1. The C20orf116 x Ufm1 conjugate was cleaved by Ufm1-specific proteases, implying the reversibility of ufmylation. The conjugation was abundant in the liver and lungs of Ufm1-transgenic mice, fractionated into membrane fraction, and impaired in Uba5 knock-out cells. Intriguingly, immunological analysis revealed localizations of Ufl1 and C20orf116 mainly to the endoplasmic reticulum. Our results provide novel insights into the Ufm1 system involved in cellular regulation of multicellular organisms.


Asunto(s)
Proteínas Portadoras/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Animales , Proteínas Portadoras/genética , Retículo Endoplásmico/genética , Humanos , Ratones , Ratones Noqueados , Proteínas/genética , Ubiquitina/genética , Enzimas Activadoras de Ubiquitina/genética , Enzimas Activadoras de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética
11.
Genes Cells ; 15(8): 887-900, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20604804

RESUMEN

PINK1 and Parkin were first identified as the causal genes responsible for familial forms of early-onset Parkinson's disease (PD), a prevalent neurodegenerative disorder. PINK1 encodes a mitochondrial serine/threonine protein kinase, whereas Parkin encodes an ubiquitin-protein ligase. PINK1 and Parkin cooperate to maintain mitochondrial integrity; however, the detailed molecular mechanism of how Parkin-catalyzed ubiquitylation results in mitochondrial integrity remains an enigma. In this study, we show that Parkin-catalyzed K63-linked polyubiquitylation of depolarized mitochondria resulted in ubiquitylated mitochondria being transported along microtubules to cluster in the perinuclear region, which was interfered by pathogenic mutations of Parkin. In addition, p62/SQSTM1 (hereafter referred to as p62) was recruited to depolarized mitochondria after Parkin-directed ubiquitylation. Intriguingly, deletion of p62 in mouse embryonic fibroblasts resulted in a gross loss of mitochondrial perinuclear clustering but did not hinder mitochondrial degradation. Thus, p62 is required for ubiquitylation-dependent clustering of damaged mitochondria, which resembles p62-mediated 'aggresome' formation of misfolded/unfolded proteins after ubiquitylation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Núcleo Celular/metabolismo , Mitocondrias/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Proteínas Adaptadoras Transductoras de Señales/genética , Biocatálisis , Células Cultivadas , ADN Mitocondrial/genética , Células HeLa , Humanos , Pliegue de Proteína , Proteína Sequestosoma-1 , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
12.
Nat Commun ; 12(1): 16, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33397898

RESUMEN

Autophagy contributes to the selective degradation of liquid droplets, including the P-Granule, Ape1-complex and p62/SQSTM1-body, although the molecular mechanisms and physiological relevance of selective degradation remain unclear. In this report, we describe the properties of endogenous p62-bodies, the effect of autophagosome biogenesis on these bodies, and the in vivo significance of their turnover. p62-bodies are low-liquidity gels containing ubiquitin and core autophagy-related proteins. Multiple autophagosomes form on the p62-gels, and the interaction of autophagosome-localizing Atg8-proteins with p62 directs autophagosome formation toward the p62-gel. Keap1 also reversibly translocates to the p62-gels in a p62-binding dependent fashion to activate the transcription factor Nrf2. Mice deficient for Atg8-interaction-dependent selective autophagy show that impaired turnover of p62-gels leads to Nrf2 hyperactivation in vivo. These results indicate that p62-gels are not simple substrates for autophagy but serve as platforms for both autophagosome formation and anti-oxidative stress.


Asunto(s)
Autofagosomas/metabolismo , Estrés Oxidativo , Proteína Sequestosoma-1/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagosomas/ultraestructura , Autofagia , Línea Celular , Geles , Hepatocitos/metabolismo , Hepatocitos/ultraestructura , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Hígado/lesiones , Hígado/patología , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Unión Proteica , Liposomas Unilamelares
13.
Life Sci Alliance ; 3(1)2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31879337

RESUMEN

Lipid droplets (LDs) are dynamic organelles that store neutral lipids during times of energy excess, such as after a meal. LDs serve as an energy reservoir during fasting and have a buffering capacity that prevents lipotoxicity. Autophagy and the autophagic machinery have been proposed to play a role in LD biogenesis, but the underlying molecular mechanism remains unclear. Here, we show that when nuclear receptor co-repressor 1 (NCoR1), which inhibits the transactivation of nuclear receptors, accumulates because of autophagy suppression, LDs decrease in size and number. Ablation of ATG7, a gene essential for autophagy, suppressed the expression of gene targets of liver X receptor α, a nuclear receptor responsible for fatty acid and triglyceride synthesis in an NCoR1-dependent manner. LD accumulation in response to fasting and after hepatectomy was hampered by the suppression of autophagy. These results suggest that autophagy controls physiological hepatosteatosis by fine-tuning NCoR1 protein levels.


Asunto(s)
Proteína 7 Relacionada con la Autofagia/genética , Autofagia/genética , Hígado Graso/metabolismo , Co-Represor 1 de Receptor Nuclear/metabolismo , Animales , Ayuno/metabolismo , Ácidos Grasos/biosíntesis , Técnicas de Inactivación de Genes , Células Hep G2 , Humanos , Gotas Lipídicas/metabolismo , Lipogénesis/genética , Receptores X del Hígado/genética , Receptores X del Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Co-Represor 1 de Receptor Nuclear/genética , Transfección , Triglicéridos/biosíntesis
14.
eNeuro ; 6(3)2019.
Artículo en Inglés | MEDLINE | ID: mdl-31118204

RESUMEN

The Golgi apparatus plays an indispensable role in posttranslational modification and transport of proteins to their target destinations. Although it is well established that the Golgi apparatus requires an acidic luminal pH for optimal activity, morphological and functional abnormalities at the neuronal circuit level because of perturbations in Golgi pH are not fully understood. In addition, morphological alteration of the Golgi apparatus is associated with several neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis. Here, we used anatomical and electrophysiological approaches to characterize morphological and functional abnormalities of neuronal circuits in Golgi pH regulator (GPHR) conditional knock-out mice. Purkinje cells (PCs) from the mutant mice exhibited vesiculation and fragmentation of the Golgi apparatus, followed by axonal degeneration and progressive cell loss. Morphological analysis provided evidence for the disruption of basket cell (BC) terminals around PC soma, and electrophysiological recordings showed selective loss of large amplitude responses, suggesting BC terminal disassembly. In addition, the innervation of mutant PCs was altered such that climbing fiber (CF) terminals abnormally synapsed on the somatic spines of mutant PCs in the mature cerebellum. The combined results describe an essential role for luminal acidification of the Golgi apparatus in maintaining proper neuronal morphology and neuronal circuitry.


Asunto(s)
Cerebelo/metabolismo , Cerebelo/ultraestructura , Aparato de Golgi/ultraestructura , Plasticidad Neuronal , Neuronas/ultraestructura , Receptores Acoplados a Proteínas G/metabolismo , Animales , Ataxia Cerebelosa/metabolismo , Ataxia Cerebelosa/patología , Modelos Animales de Enfermedad , Femenino , Aparato de Golgi/metabolismo , Concentración de Iones de Hidrógeno , Masculino , Ratones Noqueados , Vías Nerviosas/metabolismo , Vías Nerviosas/ultraestructura , Neuronas/metabolismo , Cultivo Primario de Células , Células de Purkinje/metabolismo , Células de Purkinje/ultraestructura
15.
J Mol Biol ; 355(4): 612-8, 2006 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-16325851

RESUMEN

Autophagy is an evolutionarily conserved pathway in which the cytoplasm and organelles are engulfed within double-membrane vesicles, termed autophagosomes, for the turnover and recycling of these cellular constituents. The yeast Atg8 and its human orthologs, such as LC3 and GABARAP, have a unique feature as they conjugate covalently to phospholipids, differing from ubiquitin and other ubiquitin-like modifiers that attach only to protein substrates. The lipidated Atg8 and LC3 localize to autophagosomal membranes and play indispensable roles for maturation of autophagosomes. Upon completion of autophagosome formation, some populations of lipidated Atg8 and LC3 are delipidated for recycling. Atg4b, a specific protease for LC3 and GABARAP, catalyzes the processing reaction of LC3 and GABARAP precursors to mature forms and de-conjugating reaction of the modifiers from phospholipids. Atg4b is a unique enzyme whose primary structure differs from that of any other proteases that function as processing and/or de-conjugating enzymes of ubiquitin and ubiquitin-like modifiers. However, the tertiary structures of the substrates considerably resemble that of ubiquitin except for the N-terminal additional domain. Here we determined the crystal structure of human Atg4b by X-ray crystallography at 2.0 A resolution, and show that Atg4b is a cysteine protease whose active catalytic triad site consists of Cys74, His280 and Asp278. The structure is comprised of a left lobe and a small right lobe, designated the "protease domain" and the "auxiliary domain", respectively. Whereas the protease domain structure of Atg4b matches that of papain superfamily cysteine proteinases, the auxiliary domain contains a unique structure with yet-unknown function. We propose that the R229 and W142 residues in Atg4b are specifically essential for recognition of substrates and catalysis of both precursor processing and de-conjugation of phospholipids.


Asunto(s)
Autofagia , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/metabolismo , Precursores de Proteínas/química , Precursores de Proteínas/metabolismo , Proteínas Relacionadas con la Autofagia , Sitios de Unión , Catálisis , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Unión Proteica , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Homología Estructural de Proteína , Especificidad por Sustrato
16.
Nat Microbiol ; 2: 17066, 2017 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-28481361

RESUMEN

Ubiquitination of invading Salmonella Typhimurium triggers autophagy of cytosolic bacteria and restricts their spread in epithelial cells. Ubiquitin (Ub) chains recruit autophagy receptors such as p62/SQSTM1, NDP52/CALCOCO and optineurin (OPTN), which initiate the formation of double-membrane autophagosomal structures and lysosomal destruction in a process known as xenophagy. Besides this, the functional consequences and mechanistic regulation of differentially linked Ub chains at the host-Salmonella interface have remained unexplored. Here, we show, for the first time, that distinct Ub chains on cytosolic S. Typhimurium serve as a platform triggering further signalling cascades. By using single-molecule localization microscopy, we visualized the balance and nanoscale distribution pattern of linear (M1-linked) Ub chain formation at the surface of cytosolic S. Typhimurium. In addition, we identified the deubiquitinase OTULIN as central regulator of these M1-linked Ub chains on the bacterial coat. OTULIN depletion leads to enhanced formation of linear Ub chains, resulting in local recruitment of NEMO, activation of IKKα/IKKß and ultimately NF-κB, which in turn promotes secretion of pro-inflammatory cytokines and restricts bacterial proliferation. Our results establish a role for the linear Ub coat around cytosolic S. Typhimurium as the local NF-κB signalling platform and provide insights into the function of OTULIN in NF-κB activation during bacterial pathogenesis.


Asunto(s)
Citosol/microbiología , Endopeptidasas/metabolismo , FN-kappa B/metabolismo , Salmonella typhimurium/metabolismo , Transducción de Señal , Ubiquitinación , Autofagia , Proliferación Celular , Citosol/metabolismo , Endopeptidasas/genética , Células Epiteliales/microbiología , Células HEK293 , Células HeLa , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/fisiología , Humanos , Quinasa I-kappa B/genética , Quinasa I-kappa B/metabolismo , FN-kappa B/genética , Salmonella typhimurium/patogenicidad , Ubiquitina/metabolismo
17.
FEBS J ; 273(11): 2553-62, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16704426

RESUMEN

Murine Atg8L/Apg8L has significant homology with the other known mammalian Atg8 homologs, LC3, GABARAP and GATE-16. However, it is unclear whether murine Atg8L modification is mediated by human Atg4B, Atg7 and Atg3. Expression of Atg8L in HEK293 cells led to cleavage of its C-terminus. In vitro, the C-terminus of Atg8L was cleaved by human Atg4B, but not human Atg4A or Atg4C. Atg8L-I formed an E1-substrate intermediate with Atg7(C572S), and an E2-substrate intermediate with Atg3(C264S). A modified form of Atg8L was detected in the pelletable fraction in the presence of lysosomal protease inhibitors under nutrient-rich conditions. Cyan fluorescent protein (CFP)-Atg8L colocalized with yellow fluorescent protein (YFP)-LC3 in HeLa cells in the presence of the inhibitors. However, little accumulation of the modified form of Atg8L was observed under conditions of starvation. These results indicate that Atg8L is the fourth modifier of mammalian Atg8 conjugation.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Enzimas Activadoras de Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitinas/fisiología , Animales , Proteína 7 Relacionada con la Autofagia , Proteínas Relacionadas con la Autofagia , Línea Celular , Células HeLa , Humanos , Riñón , Ratones , Proteínas Asociadas a Microtúbulos , Mutagénesis Sitio-Dirigida , Fragmentos de Péptidos/farmacología , Plásmidos , Proteínas Recombinantes de Fusión/metabolismo
18.
Nat Commun ; 6: 6116, 2015 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-25600778

RESUMEN

Ubiquitin is known to be one of the most soluble and stably folded intracellular proteins, but it is often found in inclusion bodies associated with various diseases including neurodegenerative disorders and cancer. To gain insight into this contradictory behaviour, we have examined the physicochemical properties of ubiquitin and its polymeric chains that lead to aggregate formation. We find that the folding stability of ubiquitin chains unexpectedly decreases with increasing chain length, resulting in the formation of amyloid-like fibrils. Furthermore, when expressed in cells, polyubiquitin chains covalently linked to EGFP also form aggregates depending on chain length. Notably, these aggregates are selectively degraded by autophagy. We propose a novel model in which the physical and chemical instability of polyubiquitin chains drives the formation of fibrils, which then serve as an initiation signal for autophagy.


Asunto(s)
Poliubiquitina/química , Poliubiquitina/metabolismo , Animales , Autofagia , Rastreo Diferencial de Calorimetría , Dicroismo Circular , Escherichia coli/metabolismo , Inmunohistoquímica , Ratones , Microscopía Electrónica de Transmisión , Poliubiquitina/ultraestructura , Células Sf9 , Espectrometría de Fluorescencia , Ubiquitina/química , Ubiquitina/metabolismo
19.
Mol Cell Biol ; 34(9): 1695-706, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24591649

RESUMEN

Recent findings have suggested that the autophagic isolation membrane (IM) might originate from a domain of the endoplasmic reticulum (ER) called the omegasome. However, the morphological relationships between ER, omegasome, and IM remain unclear. In the present study, we found that hybrid structures composed of a double FYVE domain-containing protein 1 (DFCP1)-positive omegasome and the IM accumulated in Atg3-deficient mouse embryonic fibroblasts (MEFs). Moreover, correlative light and electron microscopy and immunoelectron microscopy revealed that green fluorescent protein (GFP)-tagged DFCP1 was localized on tubular or vesicular elements adjacent to the IM rims. Through detailed morphological analyses, including optimization of a fixation method and electron tomography, we observed a cluster of thin tubular structures between the IM edges and ER, part of which were continuous with IM and/or ER. The formation of these thin tubular clusters was observed in several cell lines and MEFs deficient for Atg5, Atg7, or Atg16L1 but not in FIP200-deficient cells, suggesting that they were relevant to the earlier events in autophagosome formation. Taken together, our findings indicate that these tubular profiles represent a part of the omegasome that links the ER with the IM.


Asunto(s)
Autofagia , Retículo Endoplásmico/ultraestructura , Fibroblastos/citología , Animales , Proteínas Relacionadas con la Autofagia , Línea Celular , Tomografía con Microscopio Electrónico , Retículo Endoplásmico/metabolismo , Fibroblastos/metabolismo , Fibroblastos/ultraestructura , Eliminación de Gen , Proteínas de la Membrana/análisis , Ratones , Microscopía Inmunoelectrónica , Enzimas Ubiquitina-Conjugadoras/genética
20.
Nat Commun ; 2: 181, 2011 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-21304510

RESUMEN

Post-translational protein modifications are systems designed to expand restricted genomic information through functional conversion of target molecules. Ubiquitin-like post-translational modifiers regulate numerous cellular events through their covalent linkages to target protein(s) by an enzymatic cascade analogous to ubiquitylation consisting of E1 (activating), E2 (conjugating) and E3 (ligating) enzymes. In this study, we report the essential role of Uba5, a specific activating enzyme for the ubiquitin-like modifier, Ufm1, in erythroid development. Mice lacking Uba5 exhibited severe anaemia, followed by death in utero. Although Uba5 was dispensable for the production of erythropoietin, its genetic loss led to impaired development of megakaryocyte and erythroid progenitors from common myeloid progenitors. Intriguingly, transgenic expression of Uba5 in the erythroid lineage rescued the Uba5-deficient embryos from anaemia and prolonged their survival, demonstrating the importance of Uba5 in cell-autonomous erythroid differentiation. Our results suggest that one of the ubiquitin-like protein modification systems, the Ufm1 system, is involved in the regulation of haematopoiesis.


Asunto(s)
Diferenciación Celular/fisiología , Células Eritroides , Hematopoyesis/fisiología , Procesamiento Proteico-Postraduccional/fisiología , Proteínas/metabolismo , Enzimas Activadoras de Ubiquitina/metabolismo , Animales , Línea Celular , Ensayo de Unidades Formadoras de Colonias , Cartilla de ADN/genética , Citometría de Flujo , Humanos , Immunoblotting , Inmunoprecipitación , Ratones , Ratones Transgénicos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Enzimas Activadoras de Ubiquitina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA