RESUMEN
We describe a human lung disease caused by autosomal recessive, complete deficiency of the monocyte chemokine receptor C-C motif chemokine receptor 2 (CCR2). Nine children from five independent kindreds have pulmonary alveolar proteinosis (PAP), progressive polycystic lung disease, and recurrent infections, including bacillus Calmette Guérin (BCG) disease. The CCR2 variants are homozygous in six patients and compound heterozygous in three, and all are loss-of-expression and loss-of-function. They abolish CCR2-agonist chemokine C-C motif ligand 2 (CCL-2)-stimulated Ca2+ signaling in and migration of monocytic cells. All patients have high blood CCL-2 levels, providing a diagnostic test for screening children with unexplained lung or mycobacterial disease. Blood myeloid and lymphoid subsets and interferon (IFN)-γ- and granulocyte-macrophage colony-stimulating factor (GM-CSF)-mediated immunity are unaffected. CCR2-deficient monocytes and alveolar macrophage-like cells have normal gene expression profiles and functions. By contrast, alveolar macrophage counts are about half. Human complete CCR2 deficiency is a genetic etiology of PAP, polycystic lung disease, and recurrent infections caused by impaired CCL2-dependent monocyte migration to the lungs and infected tissues.
Asunto(s)
Proteinosis Alveolar Pulmonar , Receptores CCR2 , Niño , Humanos , Pulmón/metabolismo , Macrófagos Alveolares/metabolismo , Proteinosis Alveolar Pulmonar/genética , Proteinosis Alveolar Pulmonar/diagnóstico , Receptores CCR2/deficiencia , Receptores CCR2/genética , Receptores CCR2/metabolismo , Reinfección/metabolismoRESUMEN
Human inherited disorders of interferon-gamma (IFN-γ) immunity underlie severe mycobacterial diseases. We report X-linked recessive MCTS1 deficiency in men with mycobacterial disease from kindreds of different ancestries (from China, Finland, Iran, and Saudi Arabia). Complete deficiency of this translation re-initiation factor impairs the translation of a subset of proteins, including the kinase JAK2 in all cell types tested, including T lymphocytes and phagocytes. JAK2 expression is sufficiently low to impair cellular responses to interleukin-23 (IL-23) and partially IL-12, but not other JAK2-dependent cytokines. Defective responses to IL-23 preferentially impair the production of IFN-γ by innate-like adaptive mucosal-associated invariant T cells (MAIT) and γδ T lymphocytes upon mycobacterial challenge. Surprisingly, the lack of MCTS1-dependent translation re-initiation and ribosome recycling seems to be otherwise physiologically redundant in these patients. These findings suggest that X-linked recessive human MCTS1 deficiency underlies isolated mycobacterial disease by impairing JAK2 translation in innate-like adaptive T lymphocytes, thereby impairing the IL-23-dependent induction of IFN-γ.
Asunto(s)
Interferón gamma , Janus Quinasa 2 , Infecciones por Mycobacterium , Humanos , Masculino , Proteínas de Ciclo Celular/metabolismo , Interferón gamma/inmunología , Interleucina-12 , Interleucina-23 , Janus Quinasa 2/metabolismo , Mycobacterium/fisiología , Infecciones por Mycobacterium/inmunología , Infecciones por Mycobacterium/metabolismo , Proteínas Oncogénicas/metabolismoRESUMEN
Inborn errors of human IFN-γ-dependent macrophagic immunity underlie mycobacterial diseases, whereas inborn errors of IFN-α/ß-dependent intrinsic immunity underlie viral diseases. Both types of IFNs induce the transcription factor IRF1. We describe unrelated children with inherited complete IRF1 deficiency and early-onset, multiple, life-threatening diseases caused by weakly virulent mycobacteria and related intramacrophagic pathogens. These children have no history of severe viral disease, despite exposure to many viruses, including SARS-CoV-2, which is life-threatening in individuals with impaired IFN-α/ß immunity. In leukocytes or fibroblasts stimulated in vitro, IRF1-dependent responses to IFN-γ are, both quantitatively and qualitatively, much stronger than those to IFN-α/ß. Moreover, IRF1-deficient mononuclear phagocytes do not control mycobacteria and related pathogens normally when stimulated with IFN-γ. By contrast, IFN-α/ß-dependent intrinsic immunity to nine viruses, including SARS-CoV-2, is almost normal in IRF1-deficient fibroblasts. Human IRF1 is essential for IFN-γ-dependent macrophagic immunity to mycobacteria, but largely redundant for IFN-α/ß-dependent antiviral immunity.
Asunto(s)
COVID-19 , Mycobacterium , Niño , Humanos , Interferón gamma , SARS-CoV-2 , Interferón-alfa , Factor 1 Regulador del InterferónRESUMEN
Severe defects in human IFNγ immunity predispose individuals to both Bacillus Calmette-Guérin disease and tuberculosis, whereas milder defects predispose only to tuberculosis1. Here we report two adults with recurrent pulmonary tuberculosis who are homozygous for a private loss-of-function TNF variant. Neither has any other clinical phenotype and both mount normal clinical and biological inflammatory responses. Their leukocytes, including monocytes and monocyte-derived macrophages (MDMs) do not produce TNF, even after stimulation with IFNγ. Blood leukocyte subset development is normal in these patients. However, an impairment in the respiratory burst was observed in granulocyte-macrophage colony-stimulating factor (GM-CSF)-matured MDMs and alveolar macrophage-like (AML) cells2 from both patients with TNF deficiency, TNF- or TNFR1-deficient induced pluripotent stem (iPS)-cell-derived GM-CSF-matured macrophages, and healthy control MDMs and AML cells differentiated with TNF blockers in vitro, and in lung macrophages treated with TNF blockers ex vivo. The stimulation of TNF-deficient iPS-cell-derived macrophages with TNF rescued the respiratory burst. These findings contrast with those for patients with inherited complete deficiency of the respiratory burst across all phagocytes, who are prone to multiple infections, including both Bacillus Calmette-Guérin disease and tuberculosis3. Human TNF is required for respiratory-burst-dependent immunity to Mycobacterium tuberculosis in macrophages but is surprisingly redundant otherwise, including for inflammation and immunity to weakly virulent mycobacteria and many other infectious agents.
Asunto(s)
Macrófagos , Tuberculosis Pulmonar , Factores de Necrosis Tumoral , Adulto , Femenino , Humanos , Masculino , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Homocigoto , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/inmunología , Células Madre Pluripotentes Inducidas/citología , Inflamación/inmunología , Interferón gamma/inmunología , Mutación con Pérdida de Función , Pulmón/citología , Pulmón/efectos de los fármacos , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/patología , Macrófagos Alveolares/citología , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/microbiología , Macrófagos Alveolares/patología , Mycobacterium tuberculosis/inmunología , Fenotipo , Especies Reactivas de Oxígeno/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/deficiencia , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Estallido Respiratorio , Tuberculosis Pulmonar/inmunología , Tuberculosis Pulmonar/microbiología , Tuberculosis Pulmonar/genética , Inhibidores del Factor de Necrosis Tumoral/farmacología , Factores de Necrosis Tumoral/deficiencia , Factores de Necrosis Tumoral/genética , Adolescente , Adulto JovenRESUMEN
Patients with autoimmune polyendocrinopathy syndrome type 1 (APS-1) caused by autosomal recessive AIRE deficiency produce autoantibodies that neutralize type I interferons (IFNs)1,2, conferring a predisposition to life-threatening COVID-19 pneumonia3. Here we report that patients with autosomal recessive NIK or RELB deficiency, or a specific type of autosomal-dominant NF-κB2 deficiency, also have neutralizing autoantibodies against type I IFNs and are at higher risk of getting life-threatening COVID-19 pneumonia. In patients with autosomal-dominant NF-κB2 deficiency, these autoantibodies are found only in individuals who are heterozygous for variants associated with both transcription (p52 activity) loss of function (LOF) due to impaired p100 processing to generate p52, and regulatory (IκBδ activity) gain of function (GOF) due to the accumulation of unprocessed p100, therefore increasing the inhibitory activity of IκBδ (hereafter, p52LOF/IκBδGOF). By contrast, neutralizing autoantibodies against type I IFNs are not found in individuals who are heterozygous for NFKB2 variants causing haploinsufficiency of p100 and p52 (hereafter, p52LOF/IκBδLOF) or gain-of-function of p52 (hereafter, p52GOF/IκBδLOF). In contrast to patients with APS-1, patients with disorders of NIK, RELB or NF-κB2 have very few tissue-specific autoantibodies. However, their thymuses have an abnormal structure, with few AIRE-expressing medullary thymic epithelial cells. Human inborn errors of the alternative NF-κB pathway impair the development of AIRE-expressing medullary thymic epithelial cells, thereby underlying the production of autoantibodies against type I IFNs and predisposition to viral diseases.
Asunto(s)
Autoanticuerpos , Predisposición Genética a la Enfermedad , Interferón Tipo I , FN-kappa B , Humanos , Autoanticuerpos/inmunología , COVID-19/genética , COVID-19/inmunología , Mutación con Ganancia de Función , Heterocigoto , Proteínas I-kappa B/deficiencia , Proteínas I-kappa B/genética , Interferón Tipo I/antagonistas & inhibidores , Interferón Tipo I/inmunología , Mutación con Pérdida de Función , FN-kappa B/deficiencia , FN-kappa B/genética , Subunidad p52 de NF-kappa B/deficiencia , Subunidad p52 de NF-kappa B/genética , Neumonía Viral/genética , Neumonía Viral/inmunología , Timo/anomalías , Timo/inmunología , Timo/patología , Células Epiteliales Tiroideas/metabolismo , Células Epiteliales Tiroideas/patología , Proteína AIRE , Quinasa de Factor Nuclear kappa BRESUMEN
PURPOSE: Inborn errors of IFN-γ immunity underlie Mendelian susceptibility to mycobacterial disease (MSMD). Twenty-two genes with products involved in the production of, or response to, IFN-γ and variants of which underlie MSMD have been identified. However, pathogenic variants of IFNG encoding a defective IFN-γ have been described in only two siblings, who both underwent hematopoietic stem cell transplantation (HCST). METHODS: We characterized a new patient with MSMD by genetic, immunological, and clinical means. Therapeutic decisions were taken on the basis of these findings. RESULTS: The patient was born to consanguineous Turkish parents and developed bacillus Calmette-Guérin (BCG) disease following vaccination at birth. Whole-exome sequencing revealed a homozygous private IFNG variant (c.224 T > C, p.F75S). Upon overexpression in recipient cells or constitutive expression in the patient's cells, the mutant IFN-γ was produced within the cells but was not correctly folded or secreted. The patient was treated for 6 months with two or three antimycobacterial drugs only and then for 30 months with subcutaneous recombinant IFN-γ1b plus two antimycobacterial drugs. Treatment with IFN-γ1b finally normalized all biological parameters. The patient presented no recurrence of mycobacterial disease or other related infectious diseases. The treatment was well tolerated, without the production of detectable autoantibodies against IFN-γ. CONCLUSION: We describe a patient with a new form of autosomal recessive IFN-γ deficiency, with intracellular, but not extracellular IFN-γ. IFN-γ1b treatment appears to have been beneficial in this patient, with no recurrence of mycobacterial infection over a period of more than 30 months. This targeted treatment provides an alternative to HCST in patients with complete IFN-γ deficiency or at least an option to better control mycobacterial infection prior to HCST.
Asunto(s)
Infecciones por Mycobacterium , Mycobacterium bovis , Recién Nacido , Humanos , Predisposición Genética a la Enfermedad , Interferón gamma , Infecciones por Mycobacterium/genética , HomocigotoRESUMEN
Mendelian susceptibility to mycobacterial disease (MSMD) is a rare genetic disorder characterized by impaired immunity against intracellular pathogens, such as mycobacteria, attenuated Mycobacterium bovis-Bacillus Calmette-Guérin (BCG) vaccine strains, and environmental mycobacteria in otherwise healthy individuals. Retrospective study reviewed the clinical, immunological, and genetic characteristics of patients with MSMD in Mexico. Overall, 22 patients diagnosed with MSMD from 2006 to 2021 were enrolled: 14 males (64%) and eight females. After BCG vaccination, 12 patients (70%) developed BCG infection. Furthermore, 6 (22%) patients developed bacterial infections mainly caused by Salmonella, as what is described next in the text is fungal infections, particularly Histoplasma. Seven patients died of disseminated BCG disease. Thirteen different pathogenic variants were identified in IL12RB1 (n = 13), IFNGR1 (n = 3), and IFNGR2 (n = 1) genes. Interleukin-12Rß1 deficiency is the leading cause of MSMD in our cohort. Morbidity and mortality were primarily due to BCG infection.
Asunto(s)
Infecciones por Mycobacterium , Mycobacterium bovis , Masculino , Femenino , Humanos , Estudios Retrospectivos , Vacuna BCG , Predisposición Genética a la Enfermedad , México/epidemiología , Receptores de Interleucina-12/genética , Infecciones por Mycobacterium/epidemiología , Infecciones por Mycobacterium/genéticaRESUMEN
BACKGROUNDWeakly virulent environmental mycobacteria (EM) can cause severe disease in HLA-DRB1*15:02 or 16:02 adults harboring neutralizing anti-IFN-γ autoantibodies (nAIGAs). The overall prevalence of nAIGAs in the general population is unknown, as are the penetrance of nAIGAs in HLA-DRB1*15:02 or 16:02 individuals and the proportion of patients with unexplained, adult-onset EM infections carrying nAIGAs.METHODSThis study analyzed the detection and neutralization of anti-IFN-γ autoantibodies (auto-Abs) from 8,430 healthy individuals of the general population, 257 HLA-DRB1*15:02 or 16:02 carriers, 1,063 patients with autoimmune disease, and 497 patients with unexplained severe disease due to EM.RESULTSWe found that anti-IFN-γ auto-Abs detected in 4,148 of 8,430 healthy individuals (49.2%) from the general population of an unknown HLA-DRB1 genotype were not neutralizing. Moreover, we did not find nAIGAs in 257 individuals carrying HLA-DRB1* 15:02 or 16:02. Additionally, nAIGAs were absent in 1,063 patients with an autoimmune disease. Finally, 7 of 497 patients (1.4%) with unexplained severe disease due to EM harbored nAIGAs.CONCLUSIONThese findings suggest that nAIGAs are isolated and that their penetrance in HLA-DRB1*15:02 or 16:02 individuals is low, implying that they may be triggered by rare germline or somatic variants. In contrast, the risk of mycobacterial disease in patients with nAIGAs is high, confirming that these nAIGAs are the cause of EM disease.FUNDINGThe Laboratory of Human Genetics of Infectious Diseases is supported by the Howard Hughes Medical Institute, the Rockefeller University, the St. Giles Foundation, the National Institutes of Health (NIH) (R01AI095983 and U19AIN1625568), the National Center for Advancing Translational Sciences (NCATS), the NIH Clinical and Translational Science Award (CTSA) program (UL1 TR001866), the French National Research Agency (ANR) under the "Investments for the Future" program (ANR-10-IAHU-01), the Integrative Biology of Emerging Infectious Diseases Laboratory of Excellence (ANR-10-LABX-62-IBEID), ANR-GENMSMD (ANR-16-CE17-0005-01), ANR-MAFMACRO (ANR-22-CE92-0008), ANRSECTZ170784, the French Foundation for Medical Research (FRM) (EQU201903007798), the ANRS-COV05, ANR GENVIR (ANR-20-CE93-003), and ANR AI2D (ANR-22-CE15-0046) projects, the ANR-RHU program (ANR-21-RHUS-08-COVIFERON), the European Union's Horizon 2020 research and innovation program under grant agreement no. 824110 (EASI-genomics), the Square Foundation, Grandir - Fonds de solidarité pour l'enfance, the Fondation du Souffle, the SCOR Corporate Foundation for Science, the Battersea & Bowery Advisory Group, William E. Ford, General Atlantic's Chairman and Chief Executive Officer, Gabriel Caillaux, General Atlantic's Co-President, Managing Director, and Head of business in EMEA, and the General Atlantic Foundation, Institut National de la Santé et de la Recherche Médicale (INSERM) and of Paris Cité University. JR was supported by the INSERM PhD program for doctors of pharmacy (poste d'accueil INSERM). JR and TLV were supported by the Bettencourt-Schueller Foundation and the MD-PhD program of the Imagine Institute. MO was supported by the David Rockefeller Graduate Program, the Funai Foundation for Information Technology (FFIT), the Honjo International Scholarship Foundation (HISF), and the New York Hideyo Noguchi Memorial Society (HNMS).
Asunto(s)
Autoanticuerpos , Enfermedades Autoinmunes , Adulto , Humanos , Predisposición Genética a la Enfermedad , Genotipo , Cadenas HLA-DRB1/genética , Infecciones por Mycobacterium no TuberculosasRESUMEN
Human inborn errors of thymic T cell tolerance underlie the production of autoantibodies (auto-Abs) neutralizing type I IFNs, which predispose to severe viral diseases. We analyze 131 female patients with X-linked dominant incontinentia pigmenti (IP), heterozygous for loss-of-function (LOF) NEMO variants, from 99 kindreds in 10 countries. Forty-seven of these patients (36%) have auto-Abs neutralizing IFN-α and/or IFN-ω, a proportion 23 times higher than that for age-matched female controls. This proportion remains stable from the age of 6 years onward. On imaging, female patients with IP have a small, abnormally structured thymus. Auto-Abs against type I IFNs confer a predisposition to life-threatening viral diseases. By contrast, patients with IP lacking auto-Abs against type I IFNs are at no particular risk of viral disease. These results suggest that IP accelerates thymic involution, thereby underlying the production of auto-Abs neutralizing type I IFNs in at least a third of female patients with IP, predisposing them to life-threatening viral diseases.
Asunto(s)
Autoanticuerpos , Quinasa I-kappa B , Incontinencia Pigmentaria , Interferón Tipo I , Timo , Humanos , Interferón Tipo I/inmunología , Interferón Tipo I/metabolismo , Femenino , Autoanticuerpos/inmunología , Timo/inmunología , Timo/patología , Niño , Incontinencia Pigmentaria/inmunología , Incontinencia Pigmentaria/genética , Incontinencia Pigmentaria/patología , Preescolar , Quinasa I-kappa B/genética , Quinasa I-kappa B/inmunología , Virosis/inmunología , Lactante , Adulto , Adolescente , Adulto JovenRESUMEN
CD4+ T cells are vital for host defense and immune regulation. However, the fundamental role of CD4 itself remains enigmatic. We report seven patients aged 5-61 years from five families of four ancestries with autosomal recessive CD4 deficiency and a range of infections, including recalcitrant warts and Whipple's disease. All patients are homozygous for rare deleterious CD4 variants impacting expression of the canonical CD4 isoform. A shorter expressed isoform that interacts with LCK, but not HLA class II, is affected by only one variant. All patients lack CD4+ T cells and have increased numbers of TCRαß+CD4-CD8- T cells, which phenotypically and transcriptionally resemble conventional Th cells. Finally, patient CD4-CD8- αß T cells exhibit intact responses to HLA class II-restricted antigens and promote B cell differentiation in vitro. Thus, compensatory development of Th cells enables patients with inherited CD4 deficiency to acquire effective cellular and humoral immunity against an unexpectedly large range of pathogens. Nevertheless, CD4 is indispensable for protective immunity against at least human papillomaviruses and Trophyrema whipplei.
Asunto(s)
Linfocitos T CD4-Positivos , Linfocitos T Colaboradores-Inductores , Humanos , Linfocitos T CD8-positivos , Activación de Linfocitos , Antígenos HLA , Isoformas de Proteínas/metabolismoRESUMEN
We found that 19 (10.4%) of 183 unvaccinated children hospitalized for COVID-19 pneumonia had autoantibodies (auto-Abs) neutralizing type I IFNs (IFN-α2 in 10 patients: IFN-α2 only in three, IFN-α2 plus IFN-ω in five, and IFN-α2, IFN-ω plus IFN-ß in two; IFN-ω only in nine patients). Seven children (3.8%) had Abs neutralizing at least 10 ng/ml of one IFN, whereas the other 12 (6.6%) had Abs neutralizing only 100 pg/ml. The auto-Abs neutralized both unglycosylated and glycosylated IFNs. We also detected auto-Abs neutralizing 100 pg/ml IFN-α2 in 4 of 2,267 uninfected children (0.2%) and auto-Abs neutralizing IFN-ω in 45 children (2%). The odds ratios (ORs) for life-threatening COVID-19 pneumonia were, therefore, higher for auto-Abs neutralizing IFN-α2 only (OR [95% CI] = 67.6 [5.7-9,196.6]) than for auto-Abs neutralizing IFN-ω only (OR [95% CI] = 2.6 [1.2-5.3]). ORs were also higher for auto-Abs neutralizing high concentrations (OR [95% CI] = 12.9 [4.6-35.9]) than for those neutralizing low concentrations (OR [95% CI] = 5.5 [3.1-9.6]) of IFN-ω and/or IFN-α2.
Asunto(s)
COVID-19 , Interferón Tipo I , Niño , Humanos , Interferón-alfa , AutoanticuerposRESUMEN
Patients heterozygous for germline CBL loss-of-function (LOF) variants can develop myeloid malignancy, autoinflammation, or both, if some or all of their leukocytes become homozygous for these variants through somatic loss of heterozygosity (LOH) via uniparental isodisomy. We observed an upregulation of the inflammatory gene expression signature in whole blood from these patients, mimicking monogenic inborn errors underlying autoinflammation. Remarkably, these patients had constitutively activated monocytes that secreted 10 to 100 times more inflammatory cytokines than those of healthy individuals and CBL LOF heterozygotes without LOH. CBL-LOH hematopoietic stem and progenitor cells (HSPCs) outgrew the other cells, accounting for the persistence of peripheral monocytes homozygous for the CBL LOF variant. ERK pathway activation was required for the excessive production of cytokines by both resting and stimulated CBL-LOF monocytes, as shown in monocytic cell lines. Finally, we found that about 1 in 10,000 individuals in the UK Biobank were heterozygous for CBL LOF variants and that these carriers were at high risk of hematological and inflammatory conditions.
Asunto(s)
Pérdida de Heterocigocidad , Sistema de Señalización de MAP Quinasas , Monocitos , Proteínas Proto-Oncogénicas c-cbl , Humanos , Proteínas Proto-Oncogénicas c-cbl/genética , Proteínas Proto-Oncogénicas c-cbl/metabolismo , Monocitos/metabolismo , Monocitos/patología , Sistema de Señalización de MAP Quinasas/genética , Masculino , Femenino , Inflamación/genética , Inflamación/patología , Heterocigoto , Citocinas/genética , Citocinas/metabolismo , AdultoRESUMEN
Patients with autosomal recessive (AR) IL-12p40 or IL-12Rß1 deficiency display Mendelian susceptibility to mycobacterial disease (MSMD) due to impaired IFN-γ production and, less commonly, chronic mucocutaneous candidiasis (CMC) due to impaired IL-17A/F production. We report six patients from four kindreds with AR IL-23R deficiency. These patients are homozygous for one of four different loss-of-function IL23R variants. All six patients have a history of MSMD, but only two suffered from CMC. We show that IL-23 induces IL-17A only in MAIT cells, possibly contributing to the incomplete penetrance of CMC in patients unresponsive to IL-23. By contrast, IL-23 is required for both baseline and Mycobacterium-inducible IFN-γ immunity in both Vδ2+ γδ T and MAIT cells, probably contributing to the higher penetrance of MSMD in these patients. Human IL-23 appears to contribute to IL-17A/F-dependent immunity to Candida in a single lymphocyte subset but is required for IFN-γ-dependent immunity to Mycobacterium in at least two lymphocyte subsets.