Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Virol ; 95(15): e0231120, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-33980591

RESUMEN

Type I interferons (IFNs) are a family of cytokines that represent a first line of defense against virus infections. The 12 different IFN-α subtypes share a receptor on target cells and trigger similar signaling cascades. Several studies have collectively shown that this apparent redundancy conceals qualitatively different responses induced by individual subtypes, which display different efficacies of inhibition of HIV replication. Some studies, however, provided evidence that the disparities are quantitative rather than qualitative. Since RNA expression analyses show a large but incomplete overlap of the genes induced, they may support both models. To explore if the IFN-α subtypes induce functionally relevant different anti-HIV activities, we have compared the efficacies of inhibition of all 12 subtypes on HIV spread and on specific steps of the viral replication cycle, including viral entry, reverse transcription, protein synthesis, and virus release. Finding different hierarchies of inhibition would validate the induction of qualitatively different responses. We found that while most subtypes similarly inhibit virus entry, they display distinctive potencies on other early steps of HIV replication. In addition, only some subtypes were able to target effectively the late steps. The extent of induction of known anti-HIV factors helps to explain some, but not all differences observed, confirming the participation of additional IFN-induced anti-HIV effectors. Our findings support the notion that different IFN-α subtypes can induce the expression of qualitatively different antiviral activities. IMPORTANCE The initial response against viruses relies in large part on type I interferons, which include 12 subtypes of IFN-α. These cytokines bind to a common receptor on the cell surface and trigger the expression of incompletely overlapping sets of genes. Whether the anti-HIV responses induced by IFN-α subtypes differ in the extent of expression or in the nature of the genes involved remains debated. Also, RNA expression profiles led to opposite conclusions, depending on the importance attributed to the induction of common or distinctive genes. To explore if relevant anti-HIV activities can be differently induced by the IFN-α subtypes, we compared their relative efficacies on specific steps of the replication cycle. We show that the hierarchy of IFN potencies depends on the step analyzed, supporting qualitatively different responses. This work will also prompt the search for novel IFN-induced anti-HIV factors acting on specific steps of the replication cycle.


Asunto(s)
VIH-1/crecimiento & desarrollo , Interferón-alfa/clasificación , Interferón-alfa/inmunología , Receptor de Interferón alfa y beta/metabolismo , Replicación Viral/fisiología , Línea Celular , Células HEK293 , VIH-1/inmunología , Humanos , Inmunidad Innata/inmunología , Transducción de Señal/inmunología , Internalización del Virus
2.
J Virol ; 92(18)2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-29976675

RESUMEN

We have previously reported that the CBD1 peptide (SLEQIWNNMTWMQWDK), corresponding to the consensus caveolin-1 binding domain in human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein gp41, elicits peptide-specific antibodies. Here, we have investigated the cellular immune response and the protective efficacy against a simian/human immunodeficiency virus (SHIV162P3) challenge. In addition to the CBD1 peptide, peptides overlapping the caveolin-binding-motif (CBM) (622IWNNMTWMQW631 or 622IWNNMTW628) were fused to a Gag-p24 T helper epitope for vaccination. All immunized cynomolgus macaques responded to a cocktail peptide immunization by inducing specific T cells and the production of high-titer CBD1/CBM peptide-specific antibodies. Six months after the fourth vaccine boost, six control and five vaccinated animals were challenged weekly by repeated exposure to SHIV162P3 via the mucosal rectal route. All control animals were infected after 1 to 3 challenges with SHIV, while among the five vaccinated monkeys, three became infected after a delay compared to control; one was infected after the eighth viral challenge, and one remained uninfected even after the ninth SHIV challenge. Immunized animals maintained a CD4 T cell count, and their central memory CD4 T cells were less depleted than in the control group. Furthermore, SHIV challenge stimulates antigen-specific memory T cell response in vaccinated macaques. Our results indicate that peptides derived from the CBM region can be immunogenic and provide protection against SHIV infection in cynomolgus monkeys.IMPORTANCE In HIV-1-producing cells, gp41 exists in a complexed form with caveolin-1, an interaction most probably mediated by the caveolin-1 binding motif. This sequence is highly conserved in every single HIV-1 isolate, thus suggesting that there is constant selective pressure to preserve this sequence for a specific function in the HIV infectious cycle. Consequently, the CBM sequence may represent the "Achilles' heel" of HIV-1 in the development of an efficient vaccine. Our results demonstrate that macaques immunized with the CBM-based peptides displayed a delay in the onset of viral infection and CD4 depletion, as well as a significant induction of antigen-specific memory T cell response, which is essential for the control of HIV/SIV infections. Finally, as HIV-infected individuals lack anti-CBM immune responses, CBM-based vaccines could have applications as a therapeutic vaccine in AIDS patients.


Asunto(s)
Vacunas contra el SIDA , Caveolina 1/química , Proteína gp41 de Envoltorio del VIH/inmunología , Infecciones por VIH/prevención & control , VIH-1/inmunología , Péptidos/inmunología , Vacunas contra el SIDA/administración & dosificación , Vacunas contra el SIDA/genética , Vacunas contra el SIDA/inmunología , Animales , Recuento de Linfocito CD4 , Caveolina 1/metabolismo , Proteína gp41 de Envoltorio del VIH/administración & dosificación , Proteína gp41 de Envoltorio del VIH/química , Proteína gp41 de Envoltorio del VIH/genética , Infecciones por VIH/inmunología , VIH-1/química , VIH-1/genética , Humanos , Inmunidad Celular , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Memoria Inmunológica , Macaca fascicularis , Péptidos/administración & dosificación , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/prevención & control , Virus de la Inmunodeficiencia de los Simios/inmunología , Virus de la Inmunodeficiencia de los Simios/fisiología , Linfocitos T/inmunología , Células TH1/inmunología , Vacunación
3.
PLoS Pathog ; 10(4): e1004096, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24763747

RESUMEN

Leishmania infantum causes a chronic infectious disease named visceral leishmaniasis (VL). We employed a non-human primate model to monitor immune parameters over time and gain new insights into the disease. Rhesus macaques were infected with L. infantum and the T helper and B cell immunological profiles characterized during acute and chronic phases of infection. Parasite detection in visceral compartments during the acute phase was associated with differentiation of effector memory CD4 T cells and increased levels of Th1 transcripts. At the chronic phase, parasites colonized novel lymphoid niches concomitant with increased expression of IL10. Despite the occurrence of hypergammaglobulinemia, the production of parasite-specific IgG was poor, being confined to the acute phase and positively correlated with the frequency of an activated memory splenic B cell population. We noticed the expansion of a splenic CD4 T cell population expressing CXCR5 and Bcl-6 during acute infection that was associated with the differentiation of the activated memory B cell population. Moreover, the number of splenic germinal centers peaked at one month after infection, hence paralleling the production of specific IgG. However, at chronic infection these populations contracted impacting the production of parasite-specific IgG. Our study provides new insights into the immune events taking place in a physiologically relevant host and a mechanistic basis for the inefficient humoral response during VL.


Asunto(s)
Centro Germinal/inmunología , Inmunidad Humoral , Leishmania infantum/inmunología , Leishmaniasis Visceral/inmunología , Bazo/inmunología , Células TH1/inmunología , Animales , Femenino , Regulación de la Expresión Génica/inmunología , Centro Germinal/parasitología , Centro Germinal/patología , Interleucina-10/inmunología , Leishmaniasis Visceral/patología , Macaca mulatta , Masculino , Proteínas Proto-Oncogénicas c-bcl-6/inmunología , Receptores CXCR5/inmunología , Bazo/parasitología , Bazo/patología , Células TH1/patología
4.
JCI Insight ; 8(14)2023 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-37485876

RESUMEN

Identifying immune cells and anatomical tissues that contribute to the establishment of viral reservoirs is of central importance in HIV-1 cure research. Herein, we used rhesus macaques (RMs) infected with SIVmac251 to analyze viral seeding in the liver and lungs of either untreated or early antiretroviral therapy-treated (ART-treated) RMs. Consistent with viral replication and sensing, transcriptomic analyses showed higher levels of inflammation, pyroptosis, and chemokine genes as well as of interferon-stimulating gene (ISG) transcripts, in the absence of ART. Our results highlighted the infiltration of monocyte-derived macrophages (HLA-DR+CD11b+CD14+CD16+) in inflamed liver and lung tissues associated with the expression of CD183 and CX3CR1 but also with markers of tissue-resident macrophages (CD206+ and LYVE+). Sorting of myeloid cell subsets demonstrated that CD14+CD206-, CD14+CD206+, and CD14-CD206+ cell populations were infected, in the liver and lungs, in SIVmac251-infected RMs. Of importance, early ART drastically reduced viral seeding consistent with the absence of ISG detection but also of genes related to inflammation and tissue damage. Viral DNA was only detected in CD206+HLA-DR+CD11b+ cells in ART-treated RMs. The observation of pulmonary and hepatic viral rebound after ART interruption reinforces the importance of early ART implementation to limit viral seeding and inflammatory reactions.


Asunto(s)
Infecciones por VIH , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Síndrome de Inmunodeficiencia Adquirida del Simio/tratamiento farmacológico , Macaca mulatta , Inmunidad Innata , Hígado , Inflamación , Pulmón
5.
Microorganisms ; 10(6)2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35744760

RESUMEN

Circulating phagocytic cells often serve as cellular targets for a large number of pathogens such as Leishmania parasites. Studying primary human cells in an infectious context requires lengthy procedures for cell isolation that may affect the analysis performed. Using whole blood and a no-lyse and no-wash flow cytometric assay (NoNo assay), we monitored the Leishmania infantum infection of primary human cells. We demonstrated, using fluorescent parasites, that among monocyte cell populations, L. infantum preferentially infects classical (CD14+CD16-) and intermediate (CD14+CD16+) primary human monocytes in whole blood. Because classical monocytes are the preponderant population, they represent the larger L. infantum reservoir. Moreover, we also found that, concomitantly to monocyte infection, a subset of PMNs is infected early in whole blood. Of interest, in whole blood, PMNs are less infected compared to classical monocytes. Overall, by using this NoNo assay, we provided a novel avenue in our understanding of host-leishmania interactions.

6.
Cell Death Differ ; 29(8): 1486-1499, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35066575

RESUMEN

Severe SARS-CoV-2 infections are characterized by lymphopenia, but the mechanisms involved are still elusive. Based on our knowledge of HIV pathophysiology, we hypothesized that SARS-CoV-2 infection-mediated lymphopenia could also be related to T cell apoptosis. By comparing intensive care unit (ICU) and non-ICU COVID-19 patients with age-matched healthy donors, we found a strong positive correlation between plasma levels of soluble FasL (sFasL) and T cell surface expression of Fas/CD95 with the propensity of T cells to die and CD4 T cell counts. Plasma levels of sFasL and T cell death are correlated with CXCL10 which is part of the signature of 4 biomarkers of disease severity (ROC, 0.98). We also found that members of the Bcl-2 family had modulated in the T cells of COVID-19 patients. More importantly, we demonstrated that the pan-caspase inhibitor, Q-VD, prevents T cell death by apoptosis and enhances Th1 transcripts. Altogether, our results are compatible with a model in which T-cell apoptosis accounts for T lymphopenia in individuals with severe COVID-19. Therefore, a strategy aimed at blocking caspase activation could be beneficial for preventing immunodeficiency in COVID-19 patients.


Asunto(s)
COVID-19 , Linfopenia , Apoptosis , Linfocitos T CD4-Positivos/metabolismo , Caspasas/metabolismo , Proteína Ligando Fas , Humanos , SARS-CoV-2 , Linfocitos T/metabolismo , Receptor fas/metabolismo
7.
BMC Cancer ; 11: 333, 2011 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-21812966

RESUMEN

BACKGROUND: Nucleolin expressed at the cell surface is a binding protein for a variety of ligands implicated in tumorigenesis and angiogenesis. By using a specific antagonist that binds the C-terminal RGG domain of nucleolin, the HB-19 pseudopeptide, we recently reported that targeting surface nucleolin with HB-19 suppresses progression of established human breast tumor cells in the athymic nude mice, and delays development of spontaneous melanoma in the RET transgenic mice. METHODS: By the capacity of HB-19 to bind stably surface nucleolin, we purified and identified nucleolin partners at the cell surface. HB-19 and related multivalent Nucant pseudopeptides, that present pentavalently or hexavalently the tripeptide Lysψ(CH2N)-Pro-Arg, were then used to show that targeting surface nucleolin results in distinct inhibitory mechanisms on breast, prostate, colon carcinoma and leukemia cells. RESULTS: Surface nucleolin exists in a 500-kDa protein complex including several other proteins, which we identified by microsequencing as two Wnt related proteins, Ku86 autoantigen, signal recognition particle subunits SRP68/72, the receptor for complement component gC1q-R, and ribosomal proteins S4/S6. Interestingly, some of the surface-nucleolin associated proteins are implicated in cell signaling, tumor cell adhesion, migration, invasion, cell death, autoimmunity, and bacterial infections. Surface nucleolin in the 500-kDa complex is highly stable. Surface nucleolin antagonists, HB-19 and related multivalent Nucant pseudopeptides, exert distinct inhibitory mechanisms depending on the malignant tumor cell type. For example, in epithelial tumor cells they inhibit cell adhesion or spreading and induce reversion of the malignant phenotype (BMC cancer 2010, 10:325) while in leukemia cells they trigger a rapid cell death associated with DNA fragmentation. The fact that these pseudopeptides do not cause cell death in epithelial tumor cells indicates that cell death in leukemia cells is triggered by a specific signaling mechanism, rather than nonspecific cellular injury. CONCLUSIONS: Our results suggest that targeting surface nucleolin could change the organization of the 500-kDa complex to interfere with the proper functioning of surface nucleolin and the associated proteins, and thus lead to distinct inhibitory mechanisms. Consequently, HB-19 and related Nucant pseudopeptides provide novel therapeutic opportunities in treatment of a wide variety of cancers and related malignancies.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Oligopéptidos/farmacología , Péptidos/farmacología , Fosfoproteínas/antagonistas & inhibidores , Proteínas de Unión al ARN/antagonistas & inhibidores , Secuencia de Aminoácidos , Animales , Apoptosis/efectos de los fármacos , Células CHO , Adhesión Celular/efectos de los fármacos , Línea Celular Tumoral , Membrana Celular/metabolismo , Movimiento Celular/efectos de los fármacos , Cricetinae , Cricetulus , Relación Dosis-Respuesta a Droga , Células HL-60 , Células HeLa , Humanos , Immunoblotting , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Datos de Secuencia Molecular , Oligopéptidos/química , Oligopéptidos/metabolismo , Péptidos/química , Péptidos/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Unión Proteica , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Nucleolina
8.
Exp Suppl ; 109: 221-233, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30535601

RESUMEN

Microbes have developed a series of strategies to overcome the defense mechanisms of the infected host. During pathogen-host coevolution, they develop strategy to manipulate cellular machinery particularly in subverting mitochondrion function. Mitochondria are highly dynamic organelles that constantly remodel their structure. In particular, shaping and cellular distribution of the mitochondrial network is maintained in large part by the conserved activities of mitochondrial division, fusion, motility, and tethering. Mitochondria have been long recognized for their role in providing energy production, calcium metabolism, and apoptosis. More recently, mitochondria have been also shown to serve as a platform for innate immune response. In this context, mitochondrial dynamics and shaping is not only essential to maintain cristae structure and bioenergetic to fuel cellular demands but contribute to regulate cellular function such as innate immune response and mitochondrial permeabilization. Due to their key role in cell survival, mitochondria represent attractive targets for pathogens. Therefore, microbes by manipulating mitochondrial dynamics may escape to host cellular control. Herein, we describe how mitochondrial bioenergetics, dynamics, and shaping are impacted during microbe infections and how this interplay benefits to pathogens contributing to the diseases.


Asunto(s)
Metabolismo Energético , Inmunidad Innata , Infecciones/metabolismo , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Humanos
9.
Biochimie ; 93(3): 426-33, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21040752

RESUMEN

Several studies have indicated that the cell-surface expressed nucleolin is implicated in tumorigenesis and angiogenesis, and represents an important target for cancer therapy. Here we show that treatment of rhabdoid tumor derived G401 cells with a nucleolin antagonist, the HB-19 pseudopeptide, could restore contact inhibition, impair anchorage-independent growth, and suppress tumor development in nude mice. G401 cells grow without contact inhibition, which is an in vitro characteristic property of malignant tumor cells. At concentrations of HB-19 that does not affect cell viability and multiplication index, there is restoration of contact inhibition thus suggesting that HB-19 treatment causes reversion of the malignant phenotype. Accordingly, HB-19 pretreated G401 cells lose the capacity to form colonies in soft agar. When assayed for tumorigenicity in nude mice, only 50% of mice injected with HB-19 pretreated G401 cells developed tumors with the mean tumor weight of 0.32 g, compared to 100% of mice injected with control G401 cells with the mean tumor weight of 2.36 g. Interestingly, the restoration of contact inhibition in HB-19 treated G401 cells is concomitant with marked reduction of transcripts coding the Wilms' tumor 1 gene, matrix metalloproteinase-2, epithelial isoform of CD44, and vascular endothelial growth factor, whereas no apparent modification is detected for transcripts coding the proto-oncogene c-Myc, anti-apoptotic Bcl-2, pro-apoptotic Bax, tissue inhibitor of metalloproteinase TIMP-1, angiogenesis inhibitor TSP-1, and growth factor Midkine. These findings indicate that the molecular mechanism of action of HB-19 on such highly malignant rhabdoid tumor cells is associated with a selective inhibitory effect on the expression of genes implicated in tumorigenesis and angiogenesis.


Asunto(s)
Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Peptidomiméticos/metabolismo , Peptidomiméticos/farmacología , Fosfoproteínas/metabolismo , Proteínas de Unión al ARN/metabolismo , Tumor Rabdoide/metabolismo , Tumor Rabdoide/patología , Animales , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Receptores de Hialuranos/genética , Metaloproteinasa 2 de la Matriz/genética , Ratones , Peptidomiméticos/uso terapéutico , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Tumor Rabdoide/tratamiento farmacológico , Tumor Rabdoide/genética , Factor A de Crecimiento Endotelial Vascular/genética , Proteínas WT1/genética , Nucleolina
10.
PLoS One ; 5(12): e15787, 2010 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-21203423

RESUMEN

BACKGROUND: Nucleolin is one of the major proteins of the nucleolus, but it is also expressed on the cell surface where is serves as a binding protein for variety of ligands implicated in tumorigenesis and angiogenesis. Emerging evidence suggests that the cell-surface expressed nucleolin is a strategic target for an effective and nontoxic cancer therapy. METHODOLOGY/PRINCIPAL FINDINGS: By monitoring the expression of nucleolin mRNA, and by measuring the level of nucleolin protein recovered from the surface and nucleus of cells, here we show that the presence of nucleolin at the cell surface is dependent on the constant induction of nucleolin mRNA. Indeed, inhibitors of RNA transcription or translation block expression of surface nucleolin while no apparent effect is observed on the level of nucleolin in the nucleus. The estimated half-life of surface nucleolin is less than one hour, whereas that of nuclear nucleolin is more than 8 hours. Nucleolin mRNA induction is reduced markedly in normal fibroblasts that reach confluence, while it occurs continuously even in post-confluent epithelial tumor cells consistent with their capacity to proliferate without contact inhibition. Interestingly, cold and heat shock induce nucleolin mRNA concomitantly to enhanced mRNA expression of the heat shock protein 70, thus suggesting that surface nucleolin induction also occurs in response to an environmental insult. At the cell surface, one of the main functions of nucleolin is to shuttle specific extracellular ligands by an active transport mechanism, which we show here to be calcium dependent. CONCLUSION/SIGNIFICANCE: Our results demonstrate that the expression of surface nucleolin is an early metabolic event coupled with tumor cell proliferation and stress response. The fact that surface nucleolin is constantly and abundantly expressed on the surface of tumor cells, makes them a preferential target for the inhibitory action of anticancer agents that target surface nucleolin.


Asunto(s)
Calcio/química , Membrana Celular/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias/embriología , Fosfoproteínas/biosíntesis , Proteínas de Unión al ARN/biosíntesis , Animales , Biotinilación , Línea Celular Tumoral , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Células HeLa , Humanos , Ligandos , Ratones , Células 3T3 NIH , Neoplasias/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Unión al ARN/metabolismo , Nucleolina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA