Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Food Funct ; 15(2): 647-662, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38099933

RESUMEN

This study evaluated the effects of formulations with Lacticaseibacillus paracasei BEPC22 and Lactiplantibacillus plantarum BELP53 on adiposity, the alteration of microbiota, and the metabolome in high-fat diet-fed mice. The strains were selected based on their fat and glucose absorption inhibitory activities and potential metabolic interactions. The optimal ratio of the two strains in the probiotic formulation was determined based on their adipocyte differentiation inhibitory activities. Treatment of formulations with BEPC22 and BELP53 for 10 weeks decreased body weight gain at 6 weeks; it also decreased the food efficiency ratio, white adipose tissue volume, and adipocyte size. Moreover, it decreased the expression of the lipogenic gene Ppar-γ in the liver, while significantly increasing the expression of the fat oxidation gene Ppar-α in the white adipose tissue. Notably, treatment with a combination of the two strains significantly reduced the plasma levels of the obesity hormone leptin and altered the microbiota and metabolome. The omics data also indicated the alteration of anti-obesity microbes and metabolites such as Akkermansia and indolelactic acid, respectively. These findings suggest that treatment with a combination of BEPC22 and BELP53 exerts synergistic beneficial effects against obesity.


Asunto(s)
Microbioma Gastrointestinal , Lacticaseibacillus paracasei , Animales , Ratones , Dieta Alta en Grasa/efectos adversos , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Obesidad/genética , Metaboloma , Ratones Endogámicos C57BL
2.
Foods ; 10(6)2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34203585

RESUMEN

Numerous varieties of doenjang are manufactured by many food companies using different ingredients and fermentation processes, and thus, the qualities such as taste and flavor are very different. Therefore, in this study, we compared many products, specifically, 19 traditional doenjang (TD) and 17 industrial doenjang (ID). Subsequently, we performed non-targeted metabolite profiling, and multivariate statistical analysis to discover distinct metabolites in two types of doenjang. Amino acids, organic acids, isoflavone aglycones, non-DDMP (2,3-dihydro-2,5-dihydroxy-6-methyl-4H-pyran-4- one) soyasaponins, hydroxyisoflavones, and biogenic amines were relatively abundant in TD. On the contrary, contents of dipeptides, lysophospholipids, isoflavone glucosides and DDMP-conjugated soyasaponin, precursors of the above-mentioned metabolites, were comparatively higher in ID. We also observed relatively higher antioxidant, protease, and ß-glucosidase activities in TD. Our results may provide valuable information on doenjang to consumers and manufacturers, which can be used while selecting and developing new products.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA