Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(20)2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37894775

RESUMEN

Data obtained with the use of massive parallel sequencing (MPS) can be valuable in population genetics studies. In particular, such data harbor the potential for distinguishing samples from different populations, especially from those coming from adjacent populations of common origin. Machine learning (ML) techniques seem to be especially well suited for analyzing large datasets obtained using MPS. The Slavic populations constitute about a third of the population of Europe and inhabit a large area of the continent, while being relatively closely related in population genetics terms. In this proof-of-concept study, various ML techniques were used to classify DNA samples from Slavic and non-Slavic individuals. The primary objective of this study was to empirically evaluate the feasibility of discerning the genetic provenance of individuals of Slavic descent who exhibit genetic similarity, with the overarching goal of categorizing DNA specimens derived from diverse Slavic population representatives. Raw sequencing data were pre-processed, to obtain a 1200 character-long binary vector. A total of three classifiers were used-Random Forest, Support Vector Machine (SVM), and XGBoost. The most-promising results were obtained using SVM with a linear kernel, with 99.9% accuracy and F1-scores of 0.9846-1.000 for all classes.


Asunto(s)
Genética de Población , Aprendizaje Automático , Humanos , ADN , Europa (Continente) , Máquina de Vectores de Soporte
2.
Int J Legal Med ; 135(6): 2175-2187, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34259936

RESUMEN

Increasing understanding of human genome variability allows for better use of the predictive potential of DNA. An obvious direct application is the prediction of the physical phenotypes. Significant success has been achieved, especially in predicting pigmentation characteristics, but the inference of some phenotypes is still challenging. In search of further improvements in predicting human eye colour, we conducted whole-exome (enriched in regulome) sequencing of 150 Polish samples to discover new markers. For this, we adopted quantitative characterization of eye colour phenotypes using high-resolution photographic images of the iris in combination with DIAT software analysis. An independent set of 849 samples was used for subsequent predictive modelling. Newly identified candidates and 114 additional literature-based selected SNPs, previously associated with pigmentation, and advanced machine learning algorithms were used. Whole-exome sequencing analysis found 27 previously unreported candidate SNP markers for eye colour. The highest overall prediction accuracies were achieved with LASSO-regularized and BIC-based selected regression models. A new candidate variant, rs2253104, located in the ARFIP2 gene and identified with the HyperLasso method, revealed predictive potential and was included in the best-performing regression models. Advanced machine learning approaches showed a significant increase in sensitivity of intermediate eye colour prediction (up to 39%) compared to 0% obtained for the original IrisPlex model. We identified a new potential predictor of eye colour and evaluated several widely used advanced machine learning algorithms in predictive analysis of this trait. Our results provide useful hints for developing future predictive models for eye colour in forensic and anthropological studies.


Asunto(s)
ADN , Color del Ojo , ADN/genética , Color del Ojo/genética , Humanos , Fenotipo , Polimorfismo de Nucleótido Simple , Programas Informáticos
3.
BMC Genomics ; 21(1): 538, 2020 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-32758128

RESUMEN

BACKGROUND: Greying of the hair is an obvious sign of human aging. In addition to age, sex- and ancestry-specific patterns of hair greying are also observed and the progression of greying may be affected by environmental factors. However, little is known about the genetic control of this process. This study aimed to assess the potential of genetic data to predict hair greying in a population of nearly 1000 individuals from Poland. RESULTS: The study involved whole-exome sequencing followed by targeted analysis of 378 exome-wide and literature-based selected SNPs. For the selection of predictors, the minimum redundancy maximum relevance (mRMRe) method was used, and then two prediction models were developed. The models included age, sex and 13 unique SNPs. Two SNPs of the highest mRMRe score included whole-exome identified KIF1A rs59733750 and previously linked with hair loss FGF5 rs7680591. The model for greying vs. no greying prediction achieved accuracy of cross-validated AUC = 0.873. In the 3-grade classification cross-validated AUC equalled 0.864 for no greying, 0.791 for mild greying and 0.875 for severe greying. Although these values present fairly accurate prediction, most of the prediction information was brought by age alone. Genetic variants explained < 10% of hair greying variation and the impact of particular SNPs on prediction accuracy was found to be small. CONCLUSIONS: The rate of changes in human progressive traits shows inter-individual variation, therefore they are perceived as biomarkers of the biological age of the organism. The knowledge on the mechanisms underlying phenotypic aging can be of special interest to the medicine, cosmetics industry and forensics. Our study improves the knowledge on the genetics underlying hair greying processes, presents prototype models for prediction and proves hair greying being genetically a very complex trait. Finally, we propose a four-step approach based on genetic and epigenetic data analysis allowing for i) sex determination; ii) genetic ancestry inference; iii) greying-associated SNPs assignment and iv) epigenetic age estimation, all needed for a final prediction of greying.


Asunto(s)
Exoma , Color del Cabello , Envejecimiento , ADN , Humanos , Cinesinas , Polimorfismo de Nucleótido Simple , Secuenciación del Exoma
4.
Clin Endocrinol (Oxf) ; 81(5): 769-74, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24815998

RESUMEN

BACKGROUND: T-cell receptor rearrangement excision circles (TREC) are circular DNA molecules generated during T-cell maturation in the thymus. Recent studies suggested that a decreased TREC concentration in peripheral blood may be a general feature of autoimmunity. Our purpose was to assess the TREC concentration in Graves' disease (GD). METHODS: TREC concentration was assessed by real time PCR in DNA samples isolated from peripheral blood leucocytes among younger (n = 94, age range 6-29 years) and older patients with GD (n = 93, age range 57-80 years) and age-matched controls (n = 206). RESULTS: TREC concentration decreased with age in all subjects, but it was significantly higher in GD compared with controls (P = 9·4 × 10(-10) ). TREC concentration was higher (P = 0·0038) in hyperthyroid (n = 78) than euthyroid (n = 82) patients with GD, but in both groups, it remained increased relative to controls (P = 2·2 × 10(-11) and P = 4·4 ×10(-7) , respectively). CONCLUSIONS: Patients with GD, particularly those with hyperthyroidism, have increased concentration of TREC which may suggest increased rather than decreased thymic activity. Thus, GD does not follow the paradigm suggested for other autoimmune disorders which links autoimmunity with thymic senescence.


Asunto(s)
ADN Circular/sangre , Reordenamiento Génico de Linfocito T/genética , Genes Codificadores de los Receptores de Linfocitos T/genética , Enfermedad de Graves/sangre , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Niño , Femenino , Enfermedad de Graves/genética , Enfermedad de Graves/inmunología , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
5.
Geroscience ; 46(2): 2583-2604, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38103096

RESUMEN

DNA methylation (DNAm) clocks hold promise for measuring biological age, useful for guiding clinical interventions and forensic identification. This study compared the commonly used DNAm clocks, using DNA methylation and SNP data generated from nearly 1000 human blood or buccal swab samples. We evaluated different preprocessing methods for age estimation, investigated the association of epigenetic age acceleration (EAA) with various lifestyle and sociodemographic factors, and undertook a series of novel genome-wide association analyses for different EAA measures to find associated genetic variants. Our results highlighted the Skin&Blood clock with ssNoob normalization as the most accurate predictor of chronological age. We provided novel evidence for an association between the practice of yoga and a reduction in the pace of aging (DunedinPACE). Increased sleep and physical activity were associated with lower mortality risk score (MRS) in our dataset. University degree, vegetable consumption, and coffee intake were associated with reduced levels of epigenetic aging, whereas smoking, higher BMI, meat consumption, and manual occupation correlated well with faster epigenetic aging, with FitAge, GrimAge, and DunedinPACE clocks showing the most robust associations. In addition, we found a novel association signal for SOCS2 rs73218878 (p = 2.87 × 10-8) and accelerated GrimAge. Our study emphasizes the importance of an optimized DNAm analysis workflow for accurate estimation of epigenetic age, which may influence downstream analyses. The results support the influence of genetic background on EAA. The associated SOCS2 is a member of the suppressor of cytokine signaling family known for its role in human longevity. The reported association between various risk factors and EAA has practical implications for the development of health programs to improve quality of life and reduce premature mortality associated with age-related diseases.


Asunto(s)
Yoga , Humanos , Café , Estudio de Asociación del Genoma Completo , Calidad de Vida , Envejecimiento/genética , Sueño/genética , Carne , Epigénesis Genética , Proteínas Supresoras de la Señalización de Citocinas
6.
Aging (Albany NY) ; 15(10): 3904-3938, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36812475

RESUMEN

Physical fitness is a well-known correlate of health and the aging process and DNA methylation (DNAm) data can capture aging via epigenetic clocks. However, current epigenetic clocks did not yet use measures of mobility, strength, lung, or endurance fitness in their construction. We develop blood-based DNAm biomarkers for fitness parameters gait speed (walking speed), maximum handgrip strength, forced expiratory volume in one second (FEV1), and maximal oxygen uptake (VO2max) which have modest correlation with fitness parameters in five large-scale validation datasets (average r between 0.16-0.48). We then use these DNAm fitness parameter biomarkers with DNAmGrimAge, a DNAm mortality risk estimate, to construct DNAmFitAge, a new biological age indicator that incorporates physical fitness. DNAmFitAge is associated with low-intermediate physical activity levels across validation datasets (p = 6.4E-13), and younger/fitter DNAmFitAge corresponds to stronger DNAm fitness parameters in both males and females. DNAmFitAge is lower (p = 0.046) and DNAmVO2max is higher (p = 0.023) in male body builders compared to controls. Physically fit people have a younger DNAmFitAge and experience better age-related outcomes: lower mortality risk (p = 7.2E-51), coronary heart disease risk (p = 2.6E-8), and increased disease-free status (p = 1.1E-7). These new DNAm biomarkers provide researchers a new method to incorporate physical fitness into epigenetic clocks.


Asunto(s)
Biomarcadores Ambientales , Fuerza de la Mano , Femenino , Humanos , Masculino , Envejecimiento/genética , Aptitud Física , Metilación de ADN , Biomarcadores , Epigénesis Genética
7.
Clin Epigenetics ; 15(1): 128, 2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-37563670

RESUMEN

BACKGROUND: DNA methylation analysis has proven to be a powerful tool for age assessment. However, the implementation of epigenetic age prediction in diagnostics or routine forensic casework requires appropriate laboratory methods. In this study, we aimed to compare the performance of large-scale DNA methylation analysis protocols that show promise in terms of accuracy, throughput, multiplexing capacity, and high sensitivity. RESULTS: The protocols were designed to target a predefined panel of 161 genomic CG/CA sites from four known estimators of epigenetic age-related parameters, optimized and validated using artificially methylated controls or blood samples. We successfully targeted 96% of these loci using two enrichment protocols: Ion AmpliSeq™, an amplicon-based method integrated with Ion Torrent S5, and SureSelectXT Methyl-Seq, a hybridization-based method followed by MiSeq FGx sequencing. Both protocols demonstrated high accuracy and robustness. Although hybridization assays have greater multiplexing capabilities, the best overall performance was observed for the amplicon-based protocol with the lowest variability in DNA methylation at 25 ng of starting DNA, mean observed marker coverage of ~ 6.7 k reads, and accuracy of methylation quantification with a mean absolute difference between observed and expected methylation beta value of 0.054. The Ion AmpliSeq method correlated strongly with genome-scale EPIC microarray data (R = 0.91) and showed superiority in terms of methylation measurement accuracy. Method-to-method bias was accounted for by the use of linear transformation, which provided a highly accurate prediction of calendar age with a mean absolute error of less than 5 years for the VISAGE and Hannum age clocks used. The pace of aging (PoAm) and the mortality risk score (MRS) estimators included in our panel represent next-generation clocks, were found to have low to moderate correlations with the VISAGE and Hannum models (R < 0.75), and thus may capture different aspects of epigenetic aging. CONCLUSIONS: We propose a laboratory tool that allows the quantification of DNA methylation in cytosines underlying four different clocks, thus providing broad information on epigenetic aging while maintaining a reasonable number of CpG markers, opening the way to a wide range of applications in forensics, medicine, and healthcare.


Asunto(s)
Citosina , Metilación de ADN , Humanos , Preescolar , Islas de CpG , Genómica/métodos , Envejecimiento/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Epigénesis Genética
8.
Forensic Sci Int Genet ; 59: 102693, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35398773

RESUMEN

Genetic prediction of different hair phenotypes can help reconstruct the physical appearance of an individual whose biological sample is analyzed in criminal and identification cases. Up to date, forensic prediction models for hair colour, hair shape, hair loss and hair greying have been developed, but studies investigating predictability of hair thickness and density traits are missing. First data suggesting overlapping associations in various hair features have emerged in recent years, suggesting partially common genetic basis and molecular mechanisms, and this knowledge can be used for predictive purposes. Here we aim to broaden our understanding of the genetics underlying head, facial and body hair thickness and density traits and examine the association for a set of literature SNPs. We characterize the overlap in SNP association for various hair phenotypes, the extent of genetic interactions and the potential for genetic prediction. The study involved 999 samples from Poland, genotyped for 240 SNPs with targeted next-generation sequencing. Logistic regression methods were applied for association and prediction analyses while entropy-based approach was used for interaction testing. As a result, we refined known associations for monobrow and hairiness (PAX3, 5q13.2, TBX) and identified two novel association signals in IGFBP5 and VDR. Both genes were among top significant loci, showed broad association with different hair-related traits and were implicated in multiple interaction effects. Overall, for 14.7% of SNPs previously associated with head hair loss and/or hair shape, a positive signal of association was revealed with at least one hair feature studied in the current research. Overlap in association with at least two hair-related traits was demonstrated for 24 distinct loci. We showed that the associated SNPs explain ∼5-30% of the variation observed in particular hair traits and allow moderate accuracy of prediction. The highest accuracy was achieved for hairiness level prediction in females (AUC = 0.69 for the "none", 0.69 for the "low" and 0.76 for the "excessive" hairiness category) and monobrow (AUC = 0.69 for the "none", 0.62 for the "slight" and 0.70 for the "significant" monobrow category) with 33% of the variation in hairiness level in females explained by 7 SNPs and age, and 20% of the variation in monobrow captured by 7 SNPs and sex. Our study presents clear evidence of pleiotropy and epistasis in the genetics of hair traits. The acquired knowledge may have practical application in forensics, as well as in the cosmetic industry and anthropological research.


Asunto(s)
ADN , Color del Cabello , Alopecia , ADN/genética , Femenino , Cabello , Color del Cabello/genética , Humanos , Fenotipo , Polimorfismo de Nucleótido Simple
10.
Ageing Res Rev ; 68: 101314, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33684551

RESUMEN

Aging as an irretrievable occurrence throughout the entire life is characterized by a progressive decline in physiological functionality and enhanced disease vulnerability. Numerous studies have demonstrated that epigenetic modifications, particularly DNA methylation (DNAm), correlate with aging and age-related diseases. Several investigations have attempted to predict chronological age using the age-related alterations in the DNAm of certain CpG sites. Here we categorize different studies that tracked the aging process in the DNAm landscape to show how epigenetic age clocks evolved from a chronological age estimator to an indicator of lifespan and healthspan. We also describe the health and disease predictive potential of estimated epigenetic age acceleration regarding different clinical conditions and lifestyle factors. Considering the revealed age-related epigenetic changes, the recent age-reprogramming strategies are discussed which are promising methods for resetting the aging clocks.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Envejecimiento/genética , Islas de CpG , Epigenómica , Humanos
11.
Aging (Albany NY) ; 13(5): 6459-6484, 2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33707346

RESUMEN

DNA methylation is known as a biomarker for age with applications in forensics. Here we describe the VISAGE (VISible Attributes through GEnomics) Consortium's enhanced tool for epigenetic age estimation in somatic tissues. The tool is based on eight DNA methylation markers (44 CpGs), bisulfite multiplex PCR followed by sequencing on the MiSeq FGx platform, and three statistical prediction models for blood, buccal cells and bones. The model for blood is based on six CpGs from ELOVL2, MIR29B2CHG, KLF14, FHL2, TRIM59 and PDE4C, and predicts age with a mean absolute error (MAE) of 3.2 years, while the model for buccal cells includes five CpGs from PDE4C, MIR29B2CHG, ELOVL2, KLF14 and EDARADD and predicts age with MAE of 3.7 years, and the model for bones has six CpGs from ELOVL2, KLF14, PDE4C and ASPA and predicts age with MAE of 3.4 years. The VISAGE enhanced tool for age estimation in somatic tissues enables reliable collection of DNA methylation data from small amounts of DNA using a sensitive multiplex MPS assay that provides accurate estimation of age in blood, buccal swabs, and bones using the statistical model tailored to each tissue.


Asunto(s)
Envejecimiento/genética , Islas de CpG , Modelos Estadísticos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Amidohidrolasas/genética , Análisis Químico de la Sangre , Huesos/química , Niño , Preescolar , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/genética , Metilación de ADN , Proteína de Dominio de Muerte Asociada a Edar/genética , Epigénesis Genética , Elongasas de Ácidos Grasos/genética , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Factores de Transcripción de Tipo Kruppel/genética , Masculino , Persona de Mediana Edad , Mucosa Bucal/química , Reacción en Cadena de la Polimerasa Multiplex , Análisis de Secuencia de ADN , Adulto Joven
12.
Arch Med Sadowej Kryminol ; 70(2-3): 103-123, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33853281

RESUMEN

The available literature on traces characterised by a suboptimal amount of DNA, as well as expert research practice, show the complex nature of LT-DNA traces: from their detection and collection, through genetic analysis, up to the interpretation of final results. The aims of this paper are to systematise the current state of knowledge on handling LT-DNA traces and develop examination guidelines, as recommended by the Polish Speaking Working Group of the International Society for Forensic Genetics (ISFG-PL). The proposed guidelines should be followed by all Polish laboratories conducting forensic genetic analyses for the purpose of judicial proceedings.


Asunto(s)
Dermatoglifia del ADN , Genética Forense , ADN/genética , Humanos , Laboratorios , Polonia
13.
Arch Med Sadowej Kryminol ; 70(1): 1-18, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32876419

RESUMEN

Y chromosome typing has been performed in forensic genetic practice for more than 20 years. The latest recommendations of the DNA Commission of the International Society of Forensic Genetics (ISFG) concerning the application of Y-chromosomal markers in forensic genetics were published in 2006. The aim of this report is to recapitulate, systematise and supplement existing recommendations on the forensic analysis of polymorphism of the Y chromosome with standards already implemented in practice, new capabilities linked to the development of research techniques as well as current solutions used in statistical analysis. The recommendations have been adapted specifically to aspects related to the preparation of expert opinions in the field of forensic genetics in Poland. The Polish Speaking Working Group of the ISFG believes that the presented guidelines should become a standard implemented by all Polish laboratories performing Y chromosome typing for forensic purposes.


Asunto(s)
Cromosomas Humanos Y , Dermatoglifia del ADN/normas , Genética Forense/normas , Polimorfismo Genético , Mapeo Cromosómico/normas , Testimonio de Experto/normas , Guías como Asunto , Humanos , Polonia , Sociedades Científicas/normas
14.
Forensic Sci Int Genet ; 47: 102301, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32387914

RESUMEN

Identification of human remains is an important part of human DNA analysis studies. STR and mitochondrial DNA markers are well suited for the analysis of degraded biological samples including bone material. However, these DNA markers may be useless when reference material is not available. In these cases, predictive DNA analysis can support the process of human identification by providing investigative leads. Forensic DNA phenotyping has progressed significantly by offering new methods based on massively parallel sequencing technology, but the frequent degradation processes observed in skeletal remains can make analysis of such samples challenging. In this study, we demonstrate the usefulness of a recently established Ion AmpliSeqTM HIrisPlex-S panel using Ion Torrent technology for analyzing bone samples that show different levels of DNA degradation. In total, 63 bone samples at post-mortem intervals up to almost 80 years were genotyped and eye, hair and skin colour predictions were performed using the HIrisPlex-S models. Following the recommended coverage thresholds, it was possible to establish full DNA profiles comprising of 41 DNA variants for 35 samples (55.6%). For 5 samples (7.9%) no DNA profiles were generated. The remaining 23 samples (36.5%) produced partial profiles and showed a clear underperformance of 3 HIrisPlex-S SNPs - rs1545397 (OCA2), rs1470608 (OCA2) and rs10756819 (BNC2), all used for skin colour prediction only. None of the 23 samples gave complete genotypes needed for skin colour prediction was obtained, and in 7 of them (25.9%) the 3 underperformed SNPs were the cause. At the same time, the prediction of eye and hair colour using complete IrisPlex and HIrisPlex profiles could be made for these 23 samples in 20 (87.0%) and 12 cases (52.2%), respectively. Complete HIrisPlex-S profiles were generated from as little as 49 pg of template DNA. Five samples for which the HIrisPlex-S analysis failed, consistently failed in standard STR analysis. Importantly, the 3 underperforming SNPs produced significantly lower number of reads in good quality samples. Nonetheless, the AUC loss resulting from missing data for these 3 SNPs is not considered large (≤0.004) and the prediction of pigmentation from partial profiles is also available in the current HPS tool. The study shows that DNA degradation and the resulting loss of data are the most serious challenge to DNA phenotyping of skeletal remains. Although the newly developed HIrisPlex-S panel has been successfully validated in the current research, primer redesign for the 3 underperforming SNPs in the MPS design should be considered in the future.


Asunto(s)
Huesos/química , Color del Ojo/genética , Color del Cabello/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Polimorfismo de Nucleótido Simple , Pigmentación de la Piel/genética , Restos Mortales , ADN/genética , Degradación Necrótica del ADN , Dermatoglifia del ADN , Genética Forense/métodos , Genotipo , Humanos , Fenotipo
15.
Forensic Sci Int Genet ; 48: 102336, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32619960

RESUMEN

Forensic DNA phenotyping is gaining interest as the number of applications increases within the forensic genetics community. The possibility of providing investigative leads in addition to conventional DNA profiling for human identification provides new insights into otherwise "cold" police investigations. The ability of reporting on the bio-geographical ancestry (BGA), appearance characteristics and age based on DNA obtained from a crime scene sample of an unknown donor makes the exploration of such markers and the development of new methods meaningful for criminal investigations. The VISible Attributes through GEnomics (VISAGE) Consortium aims to disseminate and broaden the use of predictive markers and develop fully optimized and validated prototypes for forensic casework implementation. Here, the first VISAGE appearance and ancestry tool development, performance and validation is reported. A total of 153 SNPs (96.84 % assay conversion rate) were successfully incorporated into a single multiplex reaction using the AmpliSeq™ design pipeline, and applied for massively parallel sequencing with the Ion S5 platform. A collaborative effort involving six VISAGE laboratory partners was devised to perform all validation tests. An extensive validation plan was carefully organized to explore the assay's overall performance with optimum and low-input samples, as well as with challenging and casework mock samples. In addition, forensic validation studies such as concordance and mixture tests recurring to the Coriell sample set with known genotypes were performed. Finally, inhibitor tolerance and specificity were also evaluated. Results showed a robust, highly sensitive assay with good overall concordance between laboratories.


Asunto(s)
Dermatoglifia del ADN , ADN/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Polimorfismo de Nucleótido Simple , Grupos Raciales/genética , Programas Informáticos , Marcadores Genéticos , Humanos , Fenotipo , Reacción en Cadena de la Polimerasa , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN
16.
Forensic Sci Int Genet ; 42: 252-259, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31400656

RESUMEN

Freckles or ephelides are hyperpigmented spots observed on skin surface mainly in European and Asian populations. Easy recognition and external visibility make prediction of ephelides, the potentially useful target in the field of forensic DNA phenotyping. Prediction of freckles would be a step forward in sketching the physical appearance of unknown perpetrators or decomposed cadavers for the forensic DNA intelligence purposes. Freckles are especially common in people with pale skin and red hair and therefore it is expected that predisposition to freckles may partially share the genetic background with other pigmentation traits. The first proposed freckle prediction model was developed based on investigation that involved variation of MC1R and 8 SNPs from 7 genes in a Spanish cohort [19]. In this study we examined 113 DNA variants from 46 genes previously associated with human pigmentation traits and assessed their impact on freckles presence in a group of 960 individuals from Poland. Nineteen DNA variants revealed associations with the freckle phenotype and the study also revealed that females have ∼1.8 higher odds of freckles presence comparing to males (p-value = 9.5 × 10-5). Two alternative prediction models were developed using regression methods. A simplified binomial 12-variable model predicts the presence of ephelides with cross-validated AUC = 0.752. A multinomial 14-variable model predicts one of three categories - non-freckled, medium freckled and heavily freckled. The two extreme categories, non-freckled and heavily freckled were predicted with moderately high accuracy of cross-validated AUC = 0.754 and 0.792, respectively. Prediction accuracy of the intermediate category was lower, AUC = 0.657. The study presents novel DNA models for prediction of freckles that can be used in forensic investigations and emphasizes significance of pigmentation genes and sex in predictive DNA analysis of freckles.


Asunto(s)
Melanosis/genética , Modelos Genéticos , Miosinas Cardíacas/genética , Estudios de Cohortes , Proteínas de Unión al ADN/genética , Proteínas de la Matriz Extracelular/genética , Femenino , Glicoproteínas/genética , Factores de Intercambio de Guanina Nucleótido/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo C/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Factores Reguladores del Interferón/genética , Modelos Logísticos , Masculino , Proteínas de Transporte de Membrana/genética , Monofenol Monooxigenasa/genética , Cadenas Pesadas de Miosina/genética , Proteínas Nucleares/genética , Coactivadores de Receptor Nuclear/genética , Fenotipo , Polimorfismo de Nucleótido Simple , Receptor de Melanocortina Tipo 1/genética , Sensibilidad y Especificidad , Análisis de Secuencia de ADN , Factores Sexuales , Pigmentación de la Piel , Ubiquitina-Proteína Ligasas
17.
J Forensic Sci ; 53(3): 683-6, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18471214

RESUMEN

D17S2266E is a new, variable genetic marker exhibiting polymorphism of the number of repeats of four- and two-nucleotide motifs. This study, carried out on a group of 250 unrelated persons from various regions of Poland, revealed the presence of 24 different alleles ranging in size from 232 to 290 base pairs. Analysis of the sequenced fragments demonstrated that the alleles consisted of two flanking regions and two variable blocks that were separated by a consensus sequence. There were (AAAG)(5)(AG)(1)(AAAG)(3-4) repeats in the first block, and [(AAAG)(2)(AG)(1)](0-1)[(AAAG)(6)(AG)(1)](0-1)(AAAG)(n) repeats in the second block. On the basis of the allele frequencies in the population, we were able to do biostatistical calculations, which gave the following results: expected heterozygosity 0.8947 +/- 0.0137, power of discrimination 0.9793, polymorphism information content 0.8837, probability of exclusion (PE) 0.7859, PE for motherless cases 0.6473, and an average paternity index of 4.7470. These biostatistical parameters show that the marker D17S2266E can find a wide range of applications in forensic testing.


Asunto(s)
Dermatoglifia del ADN , Hormona de Crecimiento Humana/genética , Secuencias Repetidas en Tándem , Cromosomas Humanos Par 17 , Femenino , Marcadores Genéticos , Variación Genética , Genética de Población , Humanos , Masculino , Reacción en Cadena de la Polimerasa , Análisis de Secuencia
18.
Aging (Albany NY) ; 10(2): 241-252, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29466246

RESUMEN

Recent progress in epigenomics has led to the development of prediction systems that enable accurate age estimation from DNA methylation data. Our objective was to track responses to intense physical exercise of individual age-correlated DNA methylation markers and to infer their potential impact on the aging processes. The study showed accelerated DNA hypermethylation for two CpG sites in TRIM59 and KLF14. Both markers predicted the investigated elite athletes to be several years older than controls and this effect was more substantial in subjects involved in power sports. Accordingly, the complete 5-CpG model revealed age acceleration of elite athletes (P=1.503x10-7) and the result was more significant amongst power athletes (P=1.051x10-9). The modified methylation of TRIM59 and KLF14 in top athletes may be accounted for by the biological roles played by these genes. Their known anti-tumour and anti-inflammatory activities suggests that intense physical training has a complex influence on aging and potentially launches signalling networks that contribute to the observed lower risk of elite athletes to develop cardiovascular disease and cancer.


Asunto(s)
Envejecimiento/genética , Metilación de ADN/genética , Ejercicio Físico/fisiología , Proteínas de la Membrana/metabolismo , Metaloproteínas/metabolismo , Factores de Transcripción Sp/metabolismo , Adulto , Envejecimiento/sangre , Atletas , Estudios de Casos y Controles , Epigenómica , Femenino , Marcadores Genéticos , Humanos , Péptidos y Proteínas de Señalización Intracelular , Factores de Transcripción de Tipo Kruppel , Masculino , Proteínas de Motivos Tripartitos , Adulto Joven
19.
Forensic Sci Int Genet ; 36: 26-33, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29913343

RESUMEN

Predictive DNA analysis of externally visible characteristics exerts an increasing influence on contemporary forensic and anthropological investigations, with pigmentation traits currently being the most advanced for predictive modelling. Since pigmentation prediction error in some cases may be due to the result of age-related hair colour darkening, and sex influence in eye colour, this study aims to investigate these less explored phenomena on a group of juvenile individuals. Pigmentation phenotypes of children between the age of 6-13 years old were evaluated, in addition to data about their hair colour during early childhood from a select number of these individuals. The HIrisPlex models for DNA-based eye and hair colour prediction were used with input from SNP genotyping using massive parallel sequencing. Analysis of the total group of 476 children showed high accuracy in blue (AUC = 0.89) and brown (AUC = 0.91) eye colour prediction, while hair colour was predicted with AUC = 0.64 for blond, AUC = 0.64 for brown and AUC = 0.97 for red. 70.8% (n = 143) of the total number of children phenotypically blond for hair colour during early childhood progressed to brown during advanced childhood. In 70.6% (n = 101) of those cases, an incorrect blond hair prediction was made during the time of analysis. A noticeable decline in AUC values for blond (from 0.76 to 0.65) and brown (from 0.72 to 0.64) were observed when comparing hair colour prediction outcomes for the phenotypes recorded for the two different time points (at the age of 2-3 and 6-13). The number of incorrect blond hair colour predictions was significantly higher in children with brown hair at age 6-13 who were blond at early childhood (n = 47, 32.9%), relative to children who had brown hair at both time points (n = 6, 9.4%). However, in 28.0% (n = 40) of children who did experience hair colour darkening, HIrisPlex provided the correct prediction for the darkened hair colour phenotype, despite them being blond in early childhood. Our study implies that HIrisPlex can correctly predict adult hair colour in some individuals who experience age-related hair colour darkening during adolescence. However, in most instances prediction seems to default to the pre-adolescent hair colour for individuals with this phenomenon. In the future, the full adolescent age range in which hair colour darkening can occur should be considered in the study samples used for training hair colour prediction models to obtain a more complete picture of the phenomenon and its impact on DNA-based hair colour prediction in adults.


Asunto(s)
Envejecimiento , ADN/genética , Técnicas de Genotipaje , Color del Cabello/genética , Modelos Estadísticos , Adolescente , Niño , Color del Ojo/genética , Femenino , Marcadores Genéticos , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Fenotipo , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN
20.
Oxid Med Cell Longev ; 2018: 6918797, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29849909

RESUMEN

Epigenetic mechanisms play an important role in the development and progression of various neurodegenerative diseases. Abnormal methylation of numerous genes responsible for regulation of transcription, DNA replication, and apoptosis has been linked to Alzheimer's disease (AD) pathology. We have recently performed whole transcriptome profiling of familial early-onset Alzheimer's disease (fEOAD) patient-derived fibroblasts. On this basis, we demonstrated a strong dysregulation of cell cycle checkpoints and DNA damage response (DDR) in both fibroblasts and reprogrammed neurons. Here, we show that the aging-correlated hypermethylation of KLF14 and TRIM59 genes associates with abnormalities in DNA repair and cell cycle control in fEOAD. Based on the resulting transcriptome networks, we found that the hypermethylation of KLF14 might be associated with epigenetic regulation of the chromatin organization and mRNA processing followed by hypermethylation of TRIM59 likely associated with the G2/M cell cycle phase and p53 role in DNA repair with BRCA1 protein as the key player. We propose that the hypermethylation of KLF14 could constitute a superior epigenetic mechanism for TRIM59 hypermethylation. The methylation status of both genes affects genome stability and might contribute to proapoptotic signaling in AD. Since this study combines data obtained from various tissues from AD patients, it reinforces the view that the genetic methylation status in the blood may be a valuable predictor of molecular processes occurring in affected tissues. Further research is necessary to define a detailed role of TRIM59 and KLF4 in neurodegeneration of neurons.


Asunto(s)
Enfermedad de Alzheimer/patología , Metilación de ADN , Proteínas de la Membrana/metabolismo , Metaloproteínas/metabolismo , Transducción de Señal , Factores de Transcripción Sp/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/metabolismo , Apoptosis , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Puntos de Control del Ciclo Celular , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Reparación del ADN , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Redes Reguladoras de Genes , Humanos , Péptidos y Proteínas de Señalización Intracelular , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel , Masculino , Proteínas de la Membrana/genética , Metaloproteínas/genética , Persona de Mediana Edad , Factores de Transcripción Sp/genética , Proteínas de Motivos Tripartitos , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA