Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Anal Bioanal Chem ; 416(16): 3797-3809, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38702447

RESUMEN

The increasing interest in hemp and cannabis poses new questions about the influence of drying and storage conditions on the overall aroma and cannabinoids profile of these products. Cannabis inflorescences are subjected to drying shortly after harvest and then to storage in different containers. These steps may cause a process of rapid deterioration with consequent changes in precious secondary metabolite content, negatively impacting on the product quality and potency. In this context, in this work, the investigation of the effects of freeze vs tray drying and three storage conditions on the preservation of cannabis compounds has been performed. A multi-trait approach, combining both solid-phase microextraction (SPME) two-dimensional gas chromatography coupled to mass spectrometry (SPME-GC × GC-MS) and high-performance liquid chromatography (HPLC), is presented for the first time. This approach has permitted to obtain the detailed characterisation of the whole cannabis matrix in terms of volatile compounds and cannabinoids. Moreover, multivariate statistical analyses were performed on the obtained data, helping to show that freeze drying conditions is useful to preserve cannabinoid content, preventing decarboxylation of acid cannabinoids, but leads to a loss of volatile compounds which are responsible for the cannabis aroma. Furthermore, among storage conditions, storage in glass bottle seems more beneficial for the retention of the initial VOC profile compared to open to air dry tray and closed high-density polyethylene box. However, the glass bottle storage condition causes formation of neutral cannabinoids at the expenses of the highly priced acid forms. This work will contribute to help define optimal storage conditions useful to produce highly valuable and high-quality products.


Asunto(s)
Cannabinoides , Cannabis , Cromatografía de Gases y Espectrometría de Masas , Microextracción en Fase Sólida , Compuestos Orgánicos Volátiles , Cannabis/química , Cannabinoides/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Microextracción en Fase Sólida/métodos , Compuestos Orgánicos Volátiles/análisis , Cromatografía Líquida de Alta Presión/métodos , Inflorescencia/química , Liofilización/métodos , Desecación/métodos
2.
Anal Bioanal Chem ; 415(13): 2511-2521, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36482082

RESUMEN

The present paper discusses the use of a high-concentration-capacity tool, HiSorb, to investigate the impact of capsule material on the aroma profile of espresso-brewed coffee. The specific high-concentration-capacity probe used is characterized by a sorbent volume (63 µL) intermediate between the solid-phase microextraction (SPME) fiber (0.6 µL) and the stir-bar sorptive extraction rod (126 µL). The extraction performance of the HiSorb was compared, in terms of both absolute signal and compound coverage, with both an equivalent sorbent (polydimethylsiloxane) and a divinylbenzene/carboxen/polydimethylsiloxane SPME fiber using both targeted and untargeted approaches. The HiSorb showed superior extraction compared with the SPME fibers. The HiSorb was then optimized in terms of extraction time and temperature and used to investigate the volatile profile of 23 espresso-brewed coffees prepared with capsules made of different materials-aluminum, compostable, and aluminum multilayer pack-prepared using a refillable capsule. Comprehensive two-dimensional gas chromatography equipped with a reverse fill/flush flow modulator and coupled to mass spectrometry was used to obtain a chromatographic fingerprint of the volatile profile of the brewed coffee. The data were aligned and compared using a tile-based approach, and the results were obtained by performing raw data mining within the same software platform. The data mining enabled the extraction of informative features responsible for the differentiation between the different capsule materials, showing a significant depletion in aroma intensity in the compostable capsule.


Asunto(s)
Café , Odorantes , Cromatografía de Gases y Espectrometría de Masas/métodos , Café/química , Odorantes/análisis , Aluminio/análisis , Microextracción en Fase Sólida/métodos
3.
Anal Bioanal Chem ; 415(18): 4501-4510, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37041278

RESUMEN

In the present work, the potential benefit of using multi-cumulative trapping headspace extraction was explored by comparing the results using solid-phase microextraction (SPME) coated with divinylbenzene/carboxen/polydimethylsiloxane and a probe-like tool coated with polydimethylsiloxane. The efficiency of a single 30-min extraction, already explored in previous work, was compared with that of multiple shorter extractions. We evaluated three different conditions, i.e., three repeated extractions for 10 min each from different sample vials (for both the probe-like tool and SPME) or from the same vial (for SPME) containing brewed coffee. The entire study was performed using comprehensive two-dimensional gas chromatography coupled with mass spectrometry. The two-dimensional plots were aligned and integrated using a tile-sum approach before any statistical analysis. A detailed comparison of all the tested conditions was performed on a set of 25 targeted compounds. Although a single 30-min extraction using the probe-like tool provided a significantly higher compound intensity than SPME single extraction, the use of multiple shorter extractions with SPME showed similar results. However, multiple extractions with the probe-like tool showed a greater increase in the number of extracted compounds. Furthermore, an untargeted cross-sample comparison was performed to evaluate the ability of the two tested tools and the different extraction procedures in differentiating between espresso-brewed coffee samples obtained from capsules made of different packaging materials (i.e., compostable capsules, aluminum capsules, aluminum multilayer pack). The highest explained variance was obtained using the probe-like tool and multiple extractions (91.6% compared to 83.9% of the single extraction); nevertheless, SPME multiple extractions showed similar results with 88.3% of variance explained.


Asunto(s)
Café , Odorantes , Café/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Odorantes/análisis , Aluminio/análisis , Cápsulas , Microextracción en Fase Sólida/métodos , Dimetilpolisiloxanos
4.
J Sci Food Agric ; 102(11): 4500-4513, 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-35122271

RESUMEN

BACKGROUND: There is increasing consumer demand for olive oil to be traceable. However, genotype, environmental factors, and stage of maturity, all affect the flavor and composition of both the olives and olive oil. Few studies have included all three variables. Key metabolites include lipids, phenolics, and a wide range of volatile organic compounds (VOCs), which provide the olives and oil with their characteristic flavor. Here we aim to identify markers that are able to discriminate between cultivars, that can identify growth location, and can discriminate stages of fruit maturity. 'Nocellara messinese' and 'Carolea' olive fruits were grown at three locations differing in altitude in Calabria, Italy, and harvested at three stages of maturity. Oil was analyzed from the two most mature stages. RESULTS: Nine and 20 characters discriminated all fruit and oil samples respectively, and relative abundance of two fatty acids distinguished all oils. Whole VOC profiles discriminated among the least mature olives, and oil VOC profiles discriminated location and cultivar at both stages. Three VOCs putatively identified as hexanal, methyl acetate, and 3-hexen-1-ol differentiated all samples of oils from the most mature fruit stage. CONCLUSION: The results confirm that interactions of location, cultivar and fruit maturity stage are critical for the overall pattern of aroma compounds, and identify potential markers of commercial relevance. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Olea , Compuestos Orgánicos Volátiles , Frutas/química , Olea/química , Aceite de Oliva/química , Fenoles/análisis , Compuestos Orgánicos Volátiles/química
5.
Anal Chem ; 92(18): 12572-12578, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32786434

RESUMEN

A data interpretation and processing approach for improved compound identification and data presentation in comprehensive two-dimensional gas chromatography (GC×GC) is described. A footprint peak of a compound in 2D space can be represented by a centroid or peak apex, similar to the data-reduced histogram spectra used in mass spectrometry. The workflow was demonstrated on data from GC×GC-TOFMS. Peaks in a modulated chromatogram were initially detected by conventional chromatographic integration, followed by a curve-fitting approach, which interpolated high-precision, absolute retention times for all modulated peaks. First dimension retention time (1tR) was obtained by using an exponentially modified Gaussian (EMG) fitting model for near-Gaussian distributed subpeaks, polynomial fitting for highly asymmetrical peaks, and parabolic fitting for under-sampled peaks, which allows determination of a precise 1tR, considering the dwell-time arising from modulation and 2tR. Area summation of the modulated peaks belonging to the same compound was then performed to yield the total peak area. Each compound in the GC×GC-MS result was then represented by its position at the intersecting coordinates, (1tR, 2tR), in the 2D separation plane, having a height of the same magnitude as the total component summed area. This results in a novel and uncluttered GC×GC output convention based on the scripted total ion chromatogram (TIC) data with precise 1tR, 2tR, and area. Comparison between the contour plots from the scripted and conventional TIC revealed improved data presentation, accompanied by an apparent enhanced resolution. The described approach was applied to the identification of 177 aroma compounds from peaches as indicators of fruit quality.

6.
Int J Mol Sci ; 21(20)2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33096855

RESUMEN

Polyamines (PAs) are essential metabolites in plants performing multiple functions during growth and development. Copper-containing amine oxidases (CuAOs) catalyse the catabolism of PAs and in Arabidopsis thaliana are encoded by a gene family. Two mutants of one gene family member, AtCuAOδ, showed delayed seed germination, leaf emergence, and flowering time. The height of the primary inflorescence shoot was reduced, and developmental leaf senescence was delayed. Siliques were significantly longer in mutant lines and contained more seeds. The phenotype of AtCuAOδ over-expressors was less affected. Before flowering, there was a significant increase in putrescine in AtCuAOδ mutant leaves compared to wild type (WT), while after flowering both spermidine and spermine concentrations were significantly higher than in WT leaves. The expression of GA (gibberellic acid) biosynthetic genes was repressed and the content of GA1, GA7, GA8, GA9, and GA20 was reduced in the mutants. The inhibitor of copper-containing amine oxidases, aminoguanidine hydrochloride, mimicked the effect of AtCuAOδ mutation on WT seed germination. Delayed germination, reduced shoot height, and delayed flowering in the mutants were rescued by GA3 treatment. These data strongly suggest AtCuAOδ is an important gene regulating PA homeostasis, and that a perturbation of PAs affects plant development through a reduction in GA biosynthesis.


Asunto(s)
Amina Oxidasa (conteniendo Cobre)/genética , Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Giberelinas/metabolismo , Poliaminas/metabolismo , Amina Oxidasa (conteniendo Cobre)/antagonistas & inhibidores , Amina Oxidasa (conteniendo Cobre)/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Flores/fisiología , Regulación de la Expresión Génica de las Plantas , Germinación , Giberelinas/farmacología , Ácidos Indolacéticos/metabolismo , Mutación , Hojas de la Planta/fisiología , Plantas Modificadas Genéticamente , Semillas/genética , Semillas/crecimiento & desarrollo
7.
BMC Plant Biol ; 16: 77, 2016 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-27039085

RESUMEN

BACKGROUND: In many species floral senescence is coordinated by ethylene. Endogenous levels rise, and exogenous application accelerates senescence. Furthermore, floral senescence is often associated with increased reactive oxygen species, and is delayed by exogenously applied cytokinin. However, how these processes are linked remains largely unresolved. Erysimum linifolium (wallflower) provides an excellent model for understanding these interactions due to its easily staged flowers and close taxonomic relationship to Arabidopsis. This has facilitated microarray analysis of gene expression during petal senescence and provided gene markers for following the effects of treatments on different regulatory pathways. RESULTS: In detached Erysimum linifolium (wallflower) flowers ethylene production peaks in open flowers. Furthermore senescence is delayed by treatments with the ethylene signalling inhibitor silver thiosulphate, and accelerated with ethylene released by 2-chloroethylphosphonic acid. Both treatments with exogenous cytokinin, or 6-methyl purine (which is an inhibitor of cytokinin oxidase), delay petal senescence. However, treatment with cytokinin also increases ethylene biosynthesis. Despite the similar effects on senescence, transcript abundance of gene markers is affected differentially by the treatments. A significant rise in transcript abundance of WLS73 (a putative aminocyclopropanecarboxylate oxidase) was abolished by cytokinin or 6-methyl purine treatments. In contrast, WFSAG12 transcript (a senescence marker) continued to accumulate significantly, albeit at a reduced rate. Silver thiosulphate suppressed the increase in transcript abundance both of WFSAG12 and WLS73. Activity of reactive oxygen species scavenging enzymes changed during senescence. Treatments that increased cytokinin levels, or inhibited ethylene action, reduced accumulation of hydrogen peroxide. Furthermore, although auxin levels rose with senescence, treatments that delayed early senescence did not affect transcript abundance of WPS46, an auxin-induced gene. CONCLUSIONS: A model for the interaction between cytokinins, ethylene, reactive oxygen species and auxin in the regulation of floral senescence in wallflowers is proposed. The combined increase in ethylene and reduction in cytokinin triggers the initiation of senescence and these two plant growth regulators directly or indirectly result in increased reactive oxygen species levels. A fall in conjugated auxin and/or the total auxin pool eventually triggers abscission.


Asunto(s)
Erysimum/crecimiento & desarrollo , Erysimum/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Citocininas/metabolismo , Erysimum/genética , Etilenos/metabolismo , Flores/crecimiento & desarrollo , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Transducción de Señal , Factores de Tiempo
8.
J Exp Bot ; 66(5): 1511-26, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25614658

RESUMEN

Fleshy fruits develop from an unripe organ that needs to be protected from damage to a ripe organ that attracts frugivores for seed dispersal through production of volatile organic compounds (VOCs). Thus, different responses to wounding damage are predicted. The aim of this study was to discover whether wound-induced changes in the transcriptome and VOC production alter as tomato transitions from unripe to ripe. Transcript changes were analysed 3h post-wounding using microarray analysis in two commercial salad-tomato (Solanum lycopersicum L.) cultivars: Luna Rossa and AVG, chosen for their high aroma production. This was followed by quantitative PCR on Luna Rossa genes involved in VOC biosynthesis and defence responses. VOCs elicited by wounding at different ripening stages were analysed by solid phase micro extraction and gas chromatography-mass spectrometry. Approximately 4000 differentially expressed genes were identified in the cultivar AVG and 2500 in Luna Rossa. In both cultivars the majority of genes were up-regulated and the most affected pathways were metabolism of terpenes, carotenoids, and lipids. Defence-related genes were mostly up-regulated in immature stages of development, whereas expression of genes related to VOCs changed at riper stages. More than 40 VOCs were detected and profiles changed with ripening stage. Thus, both transcriptome and VOC profiles elicited by wounding depend on stage of ripening, indicating a shift from defence to attraction.


Asunto(s)
Frutas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Solanum lycopersicum/crecimiento & desarrollo , Compuestos Orgánicos Volátiles/metabolismo , Frutas/química , Frutas/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Solanum lycopersicum/química , Solanum lycopersicum/metabolismo , Proteínas de Plantas/metabolismo , Compuestos Orgánicos Volátiles/química
9.
Mol Biol Rep ; 41(10): 6803-16, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25008996

RESUMEN

Xyloglucan oligosaccharides (XGOs) are breakdown products of XGs, the most abundant hemicelluloses of the primary cell walls of non-Poalean species. Treatment of cell cultures or whole plants with XGOs results in accelerated cell elongation and cell division, changes in primary root growth, and a stimulation of defence responses. They may therefore act as signalling molecules regulating plant growth and development. Previous work suggests an interaction with auxins and effects on cell wall loosening, however their mode of action is not fully understood. The effect of an XGO extract from tamarind (Tamarindus indica) on global gene expression was therefore investigated in tobacco BY-2 cells using microarrays. Over 500 genes were differentially regulated with similar numbers and functional classes of genes up- and down-regulated, indicating a complex interaction with the cellular machinery. Up-regulation of a putative XG endotransglycosylase/hydrolase-related (XTH) gene supports the mechanism of XGO action through cell wall loosening. Differential expression of defence-related genes supports a role for XGOs as elicitors. Changes in the expression of genes related to mitotic control and differentiation also support previous work showing that XGOs are mitotic inducers. XGOs also affected expression of several receptor-like kinase genes and transcription factors. Hence, XGOs have significant effects on expression of genes related to cell wall metabolism, signalling, stress responses, cell division and transcriptional control.


Asunto(s)
División Celular , Pared Celular/fisiología , Regulación de la Expresión Génica de las Plantas , Glucanos/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Transducción de Señal , Estrés Fisiológico , Xilanos/metabolismo , División Celular/efectos de los fármacos , Línea Celular , Células Cultivadas , Ensamble y Desensamble de Cromatina , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glucanos/farmacología , Histonas/metabolismo , Transducción de Señal/efectos de los fármacos , Nicotiana/efectos de los fármacos , Transcripción Genética , Xilanos/farmacología
10.
Food Chem ; 442: 138409, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38237298

RESUMEN

In the present work vacuum (Vac) and multiple cumulative trapping (MCT) headspace solid phase microextraction (HS-SPME) were evaluated as alternative or combined techniques for the volatile profiling. A higher extraction performance for semi-volatiles was shown by all three techniques. Synergic combination of Vac and MCT showed up to 5-times extraction power for less volatile compounds. The hyphenation of said techniques with comprehensive two-dimensional gas chromatography (GC × GC) enabled a comprehensive analysis of the volatilome. Firstly, 18 targeted quality markers, previously defined by means of classical HS-SPME, were explored for their ability to classify commercial categories. The applicability of such markers proved to be limited with the alternative sampling techniques. An untargeted approach enables the selection of specific features for each technique showing a better classification capacity of the commercial categories. No misclassifications were observed, except for one extra virgin olive oil classified as virgin olive oil in 3 × 10 min Vac-MCT-HS-SPME.


Asunto(s)
Microextracción en Fase Sólida , Compuestos Orgánicos Volátiles , Aceite de Oliva/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Microextracción en Fase Sólida/métodos , Odorantes/análisis , Espectrometría de Masas , Compuestos Orgánicos Volátiles/análisis
11.
Artículo en Inglés | MEDLINE | ID: mdl-38460448

RESUMEN

This work reports the characterization of the lipidic fraction of seven species of marine organisms gathered along the shoreline of the Po Delta Park of Emilia-Romagna Region (Italy) and of the north Adriatic Sea. Two species of oysters (Crassostrea gigas and Ostrea edulis), two species of clams (Chamelea gallina and Ruditapes philippinarum), one species of mussel (Mytilus galloprovincialis), one species of macroalgae (Ulva rigida), and one species of spiny dogfish (Squalus acanthias) were analyzed to characterize their fatty acids profile and related nutritional value. The lipid fraction was simultaneously extracted and transesterified into fatty acid methyl esters (FAMEs) by using a recently developed one-step microwave-assisted extraction/derivatization (MAED) method. The obtained FAMEs extract was analyzed by a rapid comprehensive multidimensional gas chromatography (GC × GC) method (30 min). The system was equipped with a reverse set of columns (polar × non-polar) connected through a reversed fill/flush flow modulator. The GC × GC system was coupled with a flame-ionization detector (FID) for both qualitative and quantitative purposes. The MAED- GC × GC-FID methodology was suitable in the context of samples containing high percentages of omega-3 PUFA. A total of 82 FAMEs were tentatively identified using standards, literature data, and the two-dimensional plot location. FAME profiles obtained with the proposed approach were comparable with reference methods (AOCS Ce 2b-11), showing no significant differences. Moreover, to determine the food nutritional value of the samples investigated, the most common nutritional indices (index of atherogenicity, index thrombogenicity, hypocholesterolemic/hypercholesterolemic ratio, health-promoting index, unsaturation index, and the fish lipid quality index) were calculated from FAME profiles. Among the samples investigated, Squalus acanthias presented the best nutritional score, while Ruditapes philippinarum had the worst score in 3 out of 6 indices.


Asunto(s)
Organismos Acuáticos , Algas Comestibles , Ácidos Grasos , Ulva , Animales , Ácidos Grasos/análisis , Ionización de Llama/métodos , Microondas , Cromatografía de Gases/métodos
12.
J Exp Bot ; 64(7): 2093-106, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23536609

RESUMEN

In yeasts and animals, premature entry into mitosis is prevented by the inhibitory phosphorylation of cyclin-dependent kinase (CDK) by WEE1 kinase, and, at mitosis, WEE1 protein is removed through the action of the 26S proteasome. Although in higher plants WEE1 function has been confirmed in the DNA replication checkpoint, Arabidopsis wee1 insertion mutants grow normally, and a role for the protein in the G2/M transition during an unperturbed plant cell cycle is yet to be confirmed. Here data are presented showing that the inhibitory effect of WEE1 on CDK activity in tobacco BY-2 cell cultures is cell cycle regulated independently of the DNA replication checkpoint: it is high during S-phase but drops as cells traverse G2 and enter mitosis. To investigate this mechanism further, a yeast two-hybrid screen was undertaken to identify proteins interacting with Arabidopsis WEE1. Three F-box proteins and a subunit of the proteasome complex were identified, and bimolecular fluorescence complementation confirmed an interaction between AtWEE1 and the F-box protein SKP1 interacting partner 1 (SKIP1). Furthermore, the AtWEE1-green fluorescent protein (GFP) signal in Arabidopsis primary roots treated with the proteasome inhibitor MG132 was significantly increased compared with mock-treated controls. Expression of AtWEE1-YFP(C) (C-terminal portion of yellow fluorescent protein) or AtWEE1 per se in tobacco BY-2 cells resulted in a premature increase in the mitotic index compared with controls, whereas co-expression of AtSKIP1-YFP(N) negated this effect. These data support a role for WEE1 in a normal plant cell cycle and its removal at mitosis via the 26S proteasome.


Asunto(s)
Ciclo Celular/fisiología , Proteínas de Plantas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Arabidopsis/citología , Arabidopsis/enzimología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclo Celular/genética , Mitosis , Proteínas de Plantas/genética , Complejo de la Endopetidasa Proteasomal/genética , Proteínas Serina-Treonina Quinasas/genética , Nicotiana/citología , Nicotiana/enzimología
13.
Plants (Basel) ; 12(15)2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37570918

RESUMEN

Cannabis (Cannabis sativa L.) is one of the earliest cultivated crops, valued for producing a broad spectrum of compounds used in medicinal products and being a source of food and fibre. Despite the availability of its genome sequences, few studies explore the molecular mechanisms involved in pathogen defense, and the underlying biological pathways are poorly defined in places. Here, we provide an overview of Cannabis defence responses against common pathogens, such as Golovinomyces spp., Fusarium spp., Botrytis cinerea and Pythium spp. For each of these pathogens, after a summary of their characteristics and symptoms, we explore studies identifying genes involved in Cannabis resistance mechanisms. Many studies focus on the potential involvement of disease-resistance genes, while others refer to other plants however whose results may be of use for Cannabis research. Omics investigations allowing the identification of candidate defence genes are highlighted, and genome editing approaches to generate resistant Cannabis species based on CRISPR/Cas9 technology are discussed. According to the emerging results, a potential defence model including both immune and defence mechanisms in Cannabis plant-pathogen interactions is finally proposed. To our knowledge, this is the first review of the molecular mechanisms underlying pathogen resistance in Cannabis.

14.
J Chromatogr A ; 1696: 463977, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37054636

RESUMEN

The aim of this work was to show the potential of multidimensional gas chromatography combined with mass spectrometry and suitable chemometrics means based on untargeted and profiling data analysis to strengthen the information provided by floral scent and nectar fatty acids of four genetically differentiated lineages (E1, W1, W2, and W3) of the nocturnal moth-pollinated herb Silene nutans. Volatile organic compounds emitted by flowers were trapped for a total of 42 samples by in-vivo sampling dynamic head space for analysing floral scent by untargeted approach, while 37 samples of nectar were collected for analysing fatty acids through profiling analysis. The resulting data from floral scent analysis were aligned and compared using a tile-based methodology followed by data mining to access high-level information. Based on floral scent and nectar fatty acid results, it was possible to distinguish E1 from the W lineages, and W3 from W1 and W2. This work puts the bases for a larger study aiming to clarify the existence of prezygotic barriers involved in speciation among lineages of S. nutans, and thus the possible implication of different flower scents and nectar compositions in this phenomenon.


Asunto(s)
Silene , Compuestos Orgánicos Volátiles , Néctar de las Plantas/análisis , Odorantes/análisis , Cromatografía de Gases y Espectrometría de Masas , Flores/química , Compuestos Orgánicos Volátiles/análisis
15.
Mol Hortic ; 3(1): 24, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37953307

RESUMEN

Storage or transportation temperature is very important for preserving the quality of fruit. However, low temperature in sensitive fruit such as peach can induce loss of quality. Fruit exposed to a specific range of temperatures and for a longer period can show chilling injury (CI) symptoms. The susceptibility to CI at low temperature varies among cultivars and genetic backgrounds. Along with agronomic management, appropriate postharvest management can limit quality losses. The importance of correct temperature management during postharvest handling has been widely demonstrated. Nowadays, due to long-distance markets and complex logistics that require multiple actors, the management of storage/transportation conditions is crucial for the quality of products reaching the consumer.Peach fruit exposed to low temperatures activate a suite of physiological, metabolomic, and molecular changes that attempt to counteract the negative effects of chilling stress. In this review an overview of the factors involved, and plant responses is presented and critically discussed. Physiological disorders associated with CI generally only appear after the storage/transportation, hence early detection methods are needed to monitor quality and detect internal changes which will lead to CI development. CI detection tools are assessed: they need to be easy to use, and preferably non-destructive to avoid loss of products.

16.
Front Plant Sci ; 14: 1165056, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37324675

RESUMEN

Introduction: Strawberry fruit are highly valued for their aroma which develops during ripening. However, they have a short shelf-life. Low temperature storage is routinely used to extend shelf-life for transport and storage in the supply chain, however cold storage can also affect fruit aroma. Some fruit continue to ripen during chilled storage; however, strawberries are a non-climacteric fruit and hence ripening postharvest is limited. Although most strawberry fruit is sold whole, halved fruit is also used in ready to eat fresh fruit salads which are of increasing consumer demand and pose additional challenges to fresh fruit storage. Methods: To better understand the effects of cold storage, volatilomic and transcriptomic analyses were applied to halved Fragaria x ananassa cv. Elsanta fruit stored at 4 or 8°C for up to 12 days over two growing seasons. Results and discussion: The volatile organic compound (VOC) profile differed between 4 or 8°C on most days of storage. Major differences were detected between the two different years of harvest indicating that aroma change at harvest and during storage is highly dependent on environmental factors during growth. The major component of the aroma profile in both years was esters. Over 3000 genes changed in expression over 5 days of storage at 8°C in transcriptome analysis. Overall, phenylpropanoid metabolism, which may also affect VOCs, and starch metabolism were the most significantly affected pathways. Genes involved in autophagy were also differentially expressed. Expression of genes from 43 different transcription factor (TF) families changed in expression: mostly they were down-regulated but NAC and WRKY family genes were mainly up-regulated. Given the high ester representation amongst VOCs, the down-regulation of an alcohol acyl transferase (AAT) during storage is significant. A total of 113 differentially expressed genes were co-regulated with the AAT gene, including seven TFs. These may be potential AAT regulators.

17.
BMC Plant Biol ; 12: 45, 2012 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-22452972

RESUMEN

BACKGROUND: Entry into mitosis is regulated by cyclin dependent kinases that in turn are phosphoregulated. In most eukaryotes, phosphoregulation is through WEE1 kinase and CDC25 phosphatase. In higher plants a homologous CDC25 gene is unconfirmed and hence the mitotic inducer Schizosaccharomyces pombe (Sp) cdc25 has been used as a tool in transgenic plants to probe cell cycle function. Expression of Spcdc25 in tobacco BY-2 cells accelerates entry into mitosis and depletes cytokinins; in whole plants it stimulates lateral root production. Here we show, for the first time, that alterations to cytokinin and ethylene signaling explain the rooting phenotype elicited by Spcdc25 expression in Arabidopsis. RESULTS: Expressing Spcdc25 in Arabidopsis results in increased formation of lateral and adventitious roots, a reduction of primary root width and more isodiametric cells in the root apical meristem (RAM) compared with wild type. Furthermore it stimulates root morphogenesis from hypocotyls when cultured on two way grids of increasing auxin and cytokinin concentrations. Microarray analysis of seedling roots expressing Spcdc25 reveals that expression of 167 genes is changed by > 2-fold. As well as genes related to stress responses and defence, these include 19 genes related to transcriptional regulation and signaling. Amongst these was the up-regulation of genes associated with ethylene synthesis and signaling. Seedlings expressing Spcdc25 produced 2-fold more ethylene than WT and exhibited a significant reduction in hypocotyl length both in darkness or when exposed to 10 ppm ethylene. Furthermore in Spcdc25 expressing plants, the cytokinin receptor AHK3 was down-regulated, and endogenous levels of iPA were reduced whereas endogeous IAA concentrations in the roots increased. CONCLUSIONS: We suggest that the reduction in root width and change to a more isodiametric cell phenotype in the RAM in Spcdc25 expressing plants is a response to ethylene over-production. The increased rooting phenotype in Spcdc25 expressing plants is due to an increase in the ratio of endogenous auxin to cytokinin that is known to stimulate an increased rate of lateral root production. Overall, our data reveal important cross talk between cell division and plant growth regulators leading to developmental changes.


Asunto(s)
Citocininas/metabolismo , Etilenos/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Proteínas de Schizosaccharomyces pombe/metabolismo , Transducción de Señal , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis , Citocininas/farmacología , Oscuridad , Etilenos/farmacología , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Histidina Quinasa , Hipocótilo/genética , Hipocótilo/crecimiento & desarrollo , Hipocótilo/metabolismo , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacología , Mitosis , Fenotipo , Fosfoproteínas Fosfatasas/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Transcripción Genética
18.
Ann Bot ; 110(8): 1631-9, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23065633

RESUMEN

BACKGROUND AND AIMS: How plant cell-cycle genes interface with development is unclear. Preliminary evidence from our laboratory suggested that over-expression of the cell cycle checkpoint gene, WEE1, repressed growth and development. Here the hypothesis is tested that the level of WEE1 has a dosage effect on growth and development in Arabidospis thaliana. To do this, a comparison was made of the development of gain- and loss-of-function WEE1 arabidopsis lines both in vivo and in vitro. METHODS: Hypocotyl explants from an over-expressing Arath;WEE1 line (WEE1(oe)), two T-DNA insertion lines (wee1-1 and wee1-4) and wild type (WT) were cultured on two-way combinations of kinetin and naphthyl acetic acid. Root growth and meristematic cell size were also examined. KEY RESULTS: Quantitative data indicated a repressive effect in WEE1(oe) and a significant increase in morphogenetic capacity in the two T-DNA insertion lines compared with WT. Compared with WT, WEE1(oe) seedlings exhibited a slower cell-doubling time in the root apical meristem and a shortened primary root, with fewer laterals, whereas there were no consistent differences in the insertion lines compared with WT. However, significantly fewer adventitious roots were recorded for WEE1(oe) and significantly more for the insertion mutant wee1-1. Compared with WT there was a significant increase in meristem cell size in WEE1(oe) for all three ground tissues but for wee1-1 only cortical cell size was reduced. CONCLUSIONS: There is a gene dosage effect of WEE1 on morphogenesis from hypocotyls both in vitro and in vivo.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Ciclo Celular/genética , Dosificación de Gen , Proteínas Serina-Treonina Quinasas/genética , Arabidopsis/citología , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Recuento de Células , Tamaño de la Célula , Expresión Génica , Regulación de la Expresión Génica de las Plantas , Hipocótilo/citología , Hipocótilo/efectos de los fármacos , Hipocótilo/genética , Hipocótilo/crecimiento & desarrollo , Cinetina/farmacología , Meristema/citología , Meristema/efectos de los fármacos , Meristema/genética , Meristema/crecimiento & desarrollo , Mutagénesis Insercional , Naftoles/farmacología , Fenotipo , Epidermis de la Planta/citología , Epidermis de la Planta/genética , Epidermis de la Planta/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/farmacología , Raíces de Plantas/citología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Tiempo , Técnicas de Cultivo de Tejidos
19.
Food Chem ; 383: 132438, 2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35183954

RESUMEN

This study explores the potential of an innovative multi-cumulative trapping headspace solid-phase microextraction approach coupled with untargeted data analysis to enhance the information provided by aroma profiling of virgin olive oil. Sixty-nine samples of different olive oil commercial categories (extra-virgin, virgin and lampante oil) and different geographical origins were analysed using this novel workflow. The results from each sample were aligned and compared using for the first time a tile-based approach to enable the mining of all of the raw data within the chemometrics platform without any pre-processing methods. The data matrix obtained allowed the extraction of multiple-level information from the volatile profile of the samples. Not only was it possible to classify the samples within the commercial category that they belonged to, but the same data also provided interesting information regarding the geographical origin of the extra-virgin olive oil.


Asunto(s)
Microextracción en Fase Sólida , Compuestos Orgánicos Volátiles , Cromatografía de Gases y Espectrometría de Masas/métodos , Odorantes/análisis , Aceite de Oliva/química , Microextracción en Fase Sólida/métodos , Compuestos Orgánicos Volátiles/análisis
20.
Plants (Basel) ; 11(16)2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-36015485

RESUMEN

Cannabis (Cannabis sativa L.), also known as hemp, is one of the oldest cultivated crops, grown for both its use in textile and cordage production, and its unique chemical properties. However, due to the legislation regulating cannabis cultivation, it is not a well characterized crop, especially regarding molecular and genetic pathways. Only recently have regulations begun to ease enough to allow more widespread cannabis research, which, coupled with the availability of cannabis genome sequences, is fuelling the interest of the scientific community. In this review, we provide a summary of cannabis molecular resources focusing on the most recent and relevant genomics, transcriptomics and metabolomics approaches and investigations. Multi-omics methods are discussed, with this combined approach being a powerful tool to identify correlations between biological processes and metabolic pathways across diverse omics layers, and to better elucidate the relationships between cannabis sub-species. The correlations between genotypes and phenotypes, as well as novel metabolites with therapeutic potential are also explored in the context of cannabis breeding programs. However, further studies are needed to fully elucidate the complex metabolomic matrix of this crop. For this reason, some key points for future research activities are discussed, relying on multi-omics approaches.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA