Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(39): e2208168119, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36122227

RESUMEN

The major nutrients available to the human colonic microbiota are complex glycans derived from the diet. To degrade this highly variable mix of sugar structures, gut microbes have acquired a huge array of different carbohydrate-active enzymes (CAZymes), predominantly glycoside hydrolases, many of which have specificities that can be exploited for a range of different applications. Plant N-glycans are prevalent on proteins produced by plants and thus components of the diet, but the breakdown of these complex molecules by the gut microbiota has not been explored. Plant N-glycans are also well characterized allergens in pollen and some plant-based foods, and when plants are used in heterologous protein production for medical applications, the N-glycans present can pose a risk to therapeutic function and stability. Here we use a novel genome association approach for enzyme discovery to identify a breakdown pathway for plant complex N-glycans encoded by a gut Bacteroides species and biochemically characterize five CAZymes involved, including structures of the PNGase and GH92 α-mannosidase. These enzymes provide a toolbox for the modification of plant N-glycans for a range of potential applications. Furthermore, the keystone PNGase also has activity against insect-type N-glycans, which we discuss from the perspective of insects as a nutrient source.


Asunto(s)
Bacteroides , Glicósido Hidrolasas , Glicósido Hidrolasas/química , Humanos , Plantas/metabolismo , Polisacáridos/metabolismo , Azúcares/metabolismo , alfa-Manosidasa/metabolismo
2.
PLoS Biol ; 19(12): e3001498, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34936658

RESUMEN

The human gut symbiont Ruminococcus gnavus displays strain-specific repertoires of glycoside hydrolases (GHs) contributing to its spatial location in the gut. Sequence similarity network analysis identified strain-specific differences in blood-group endo-ß-1,4-galactosidase belonging to the GH98 family. We determined the substrate and linkage specificities of GH98 from R. gnavus ATCC 29149, RgGH98, against a range of defined oligosaccharides and glycoconjugates including mucin. We showed by HPAEC-PAD and LC-FD-MS/MS that RgGH98 is specific for blood group A tetrasaccharide type II (BgA II). Isothermal titration calorimetry (ITC) and saturation transfer difference (STD) NMR confirmed RgGH98 affinity for blood group A over blood group B and H antigens. The molecular basis of RgGH98 strict specificity was further investigated using a combination of glycan microarrays, site-directed mutagenesis, and X-ray crystallography. The crystal structures of RgGH98 in complex with BgA trisaccharide (BgAtri) and of RgGH98 E411A with BgA II revealed a dedicated hydrogen network of residues, which were shown by site-directed mutagenesis to be critical to the recognition of the BgA epitope. We demonstrated experimentally that RgGH98 is part of an operon of 10 genes that is overexpresssed in vitro when R. gnavus ATCC 29149 is grown on mucin as sole carbon source as shown by RNAseq analysis and RT-qPCR confirmed RgGH98 expression on BgA II growth. Using MALDI-ToF MS, we showed that RgGH98 releases BgAtri from mucin and that pretreatment of mucin with RgGH98 confered R. gnavus E1 the ability to grow, by enabling the E1 strain to metabolise BgAtri and access the underlying mucin glycan chain. These data further support that the GH repertoire of R. gnavus strains enable them to colonise different nutritional niches in the human gut and has potential applications in diagnostic and therapeutics against infection.


Asunto(s)
Clostridiales/metabolismo , Mucina-1/metabolismo , Sistema del Grupo Sanguíneo ABO/inmunología , Antígenos de Grupos Sanguíneos/inmunología , Clostridiales/genética , Clostridiales/fisiología , Microbioma Gastrointestinal , Tracto Gastrointestinal , Glicósido Hidrolasas/metabolismo , Humanos , Mucinas/metabolismo , Oligosacáridos/metabolismo , Polisacáridos/metabolismo , Ruminococcus/genética , Ruminococcus/metabolismo , Especificidad por Sustrato , Espectrometría de Masas en Tándem/métodos
3.
Glycoconj J ; 40(6): 645-654, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37991561

RESUMEN

Cardiovascular disease (CVD) is a group of health conditions affecting the heart and vascular system with very high prevalence and mortality rates. The presence of CVD is characterised by high levels of inflammation which have previously been associated with increased plasma concentrations of N-acetyl neuraminic acid (Neu5Ac). While Neu5Ac has been studied in the context of CVD, Neu5,9Ac2 has not, despite being the second most abundant sialic acid in human plasma. A small-scale pilot study of thirty plasma samples from patients with diagnosed CVD, and thirty age and sex-matched healthy controls, was designed to gain insight into sialic acids as biomarkers for CVD and potential future areas of study. Each sample was assayed for Neu5Ac and Neu5,9Ac2 concentrations. Mean Neu5Ac and Neu5,9Ac2 concentrations were significantly elevated in patients with CVD compared to healthy controls (Neu5Ac: P < 0.001; Neu5,9Ac2: P < 0.04). Receiver operator curve (ROC) analysis indicated that both Neu5Ac and Neu5,9Ac2 have reasonable predictive power for the presence of CVD (Neu5Ac AUC: 0.86; Neu5,9Ac2 AUC: 0.71). However, while Neu5Ac had both good sensitivity (0.82) and specificity (0.81), Neu5,9Ac2 had equivalent specificity (0.81) but very poor sensitivity (0.44). A combination marker of Neu5Ac + Neu5,9Ac2 showed improvement over Neu5Ac alone in terms of predictive power (AUC: 0.93), sensitivity (0.87), and specificity (0.90). Comparison to a known inflammatory marker, high sensitivity c-reactive protein (hs-CRP: P-value: NS, ROC:0.50) was carried out, showing that both Neu5Ac and Neu5,9Ac2 outperformed this marker. Further to this, hs-CRP values were combined with the three different sialic acid markers to determine any effect on the AUC values. A slight improvement in AUC was noted for each of the combinations, with Neu5Ac + Neu5,9Ac2 + hs-CRP giving the best AUC of 0.97 overall. Thus, Neu5Ac would appear to offer good potential as a predictive marker for the presence of CVD, which the addition of Neu5,9Ac2 predictive power improves, with further improvement seen by the addition of hs-CRP.


Asunto(s)
Enfermedades Cardiovasculares , Ácido N-Acetilneuramínico , Humanos , Proteína C-Reactiva/análisis , Enfermedades Cardiovasculares/diagnóstico , Proyectos Piloto , Ácidos Siálicos/metabolismo , Biomarcadores
4.
Biochem J ; 479(17): 1785-1806, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-35916484

RESUMEN

Sialidases are glycosyl hydrolase enzymes targeting the glycosidic bond between terminal sialic acids and underlying sugars. The NanH sialidase of Tannerella forsythia, one of the bacteria associated with severe periodontal disease plays a role in virulence. Here, we show that this broad-specificity enzyme (but higher affinity for α2,3 over α2,6 linked sialic acids) digests complex glycans but not those containing Neu5,9Ac. Furthermore, we show it to be a highly stable dimeric enzyme and present a thorough structural analysis of the native enzyme in its apo-form and in complex with a sialic acid analogue/ inhibitor (Oseltamivir). We also use non-catalytic (D237A) variant to characterise molecular interactions while in complex with the natural substrates 3- and 6-siallylactose. This dataset also reveals the NanH carbohydrate-binding module (CBM, CAZy CBM 93) has a novel fold made of antiparallel beta-strands. The catalytic domain structure contains novel features that include a non-prolyl cis-peptide and an uncommon arginine sidechain rotamer (R306) proximal to the active site. Via a mutagenesis programme, we identified key active site residues (D237, R212 and Y518) and probed the effects of mutation of residues in proximity to the glycosidic linkage within 2,3 and 2,6-linked substrates. These data revealed that mutagenesis of R306 and residues S235 and V236 adjacent to the acid-base catalyst D237 influence the linkage specificity preference of this bacterial sialidase, opening up possibilities for enzyme engineering for glycotechology applications and providing key structural information that for in silico design of specific inhibitors of this enzyme for the treatment of periodontitis.


Asunto(s)
Neuraminidasa , Tannerella forsythia , Dominio Catalítico , Ácido N-Acetilneuramínico , Neuraminidasa/metabolismo , Ácidos Siálicos , Especificidad por Sustrato
5.
Glycobiology ; 32(3): 230-238, 2022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-34939081

RESUMEN

Maturity-onset diabetes of the young due to hepatocyte nuclear factor-1 alpha variants (HNF1A-MODY) causes monogenic diabetes. Individuals carrying damaging variants in HNF1A show decreased levels of α1-3,4 fucosylation, as demonstrated on antennary fucosylation of blood plasma N-glycans. The excellent diagnostic performance of this glycan biomarker in blood plasma N-glycans of individuals with HNF1A-MODY has been demonstrated using liquid chromatography methods. Here, we have developed a high-throughput exoglycosidase plate-based assay to measure α1-3,4 fucosylation levels in blood plasma samples. The assay has been optimized and its validity tested using 1000 clinical samples from a cohort of individuals with young-adult onset diabetes including cases with HNF1A-MODY. The α1-3,4 fucosylation levels in blood plasma showed a good differentiating power in identifying cases with damaging HNF1A variants, as demonstrated by receiver operating characteristic curve analysis with the AUC values of 0.87 and 0.95. This study supports future development of a simple diagnostic test to measure this glycan biomarker for application in a clinical setting.


Asunto(s)
Diabetes Mellitus Tipo 2 , Glicósido Hidrolasas , Adulto , Biomarcadores , Proteína C-Reactiva , Diabetes Mellitus Tipo 2/diagnóstico , Factor Nuclear 1-alfa del Hepatocito/genética , Humanos , Mutación
6.
Anal Chem ; 94(18): 6639-6648, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35482581

RESUMEN

Sialic acids have diverse biological roles, ranging from promoting up to preventing protein and cellular recognition in health and disease. The various functions of these monosaccharides are owed, in part, to linkage variants, and as a result, linkage-specific analysis of sialic acids is an important aspect of glycomic studies. This has been addressed by derivatization strategies using matrix-assisted laser desorption/ionization mass spectrometry (MS) or sialidase digestion arrays followed by liquid chromatography (LC)-MS. Despite this, these approaches are unable to simultaneously provide unambiguous assignment of sialic acid linkages and assess further isomeric glycan features within a single measurement. Thus, for the first time, we present the combination of procainamide fluorescent labeling with sialic acid linkage-specific derivatization via ethyl esterification and amidation for the analysis of released plasma N-glycans using reversed-phase (RP)LC-fluorescence detection (FD)-MS. As a result, α2,3- and α2,6-sialylated N-glycans, with the same mass prior to derivatization, are differentiated based on retention time, precursor mass, and fragmentation spectra, and additional sialylated isomers were also separated. Furthermore, improved glycan coverage and protocol precision were found via the novel application using a combined FD-MS quantification approach. Overall, this platform achieved unambiguous assignment of N-glycan sialic acid linkages within a single RPLC-FD-MS measurement, and by improving their retention on RPLC, this technique can be used for future investigations of released N-glycans as an additional or orthogonal method to current analytical approaches.


Asunto(s)
Cromatografía de Fase Inversa , Ácido N-Acetilneuramínico , Ácido N-Acetilneuramínico/química , Polisacáridos/química , Ácidos Siálicos/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
7.
Chembiochem ; 23(5): e202100662, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-34874597

RESUMEN

N-Acetylneuraminic acid (sialic acid, Neu5Ac) is one of a large, diverse family of nine-carbon monosaccharides that play roles in many biological functions such as immune response. Neu5Ac has previously been identified as a potential biomarker for the presence and pathogenesis of cardiovascular disease (CVD), diabetes and cancer. More recent research has highlighted acetylated sialic acid derivatives, specifically Neu5,9Ac2 , as biomarkers for oral and breast cancers, but advances in analysis have been hampered due to a lack of commercially available quantitative standards. We report here the synthesis of 9-O- and 4-O-acetylated sialic acids (Neu5,9Ac2 and Neu4,5Ac2 ) with optimisation of previously reported synthetic routes. Neu5,9Ac2 was synthesised in 1 step in 68 % yield. Neu4,5Ac2 was synthesised in 4 steps in 39 % overall yield. Synthesis was followed by analysis of these standards via quantitative NMR (qNMR) spectroscopy. Their utilisation for the identification and quantification of specific acetylated sialic acid derivatives in biological samples is also demonstrated.


Asunto(s)
Ácido N-Acetilneuramínico , Ácidos Siálicos , Espectroscopía de Resonancia Magnética , Ácidos Siálicos/química
8.
Haematologica ; 107(3): 668-679, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33763999

RESUMEN

Terminal sialylation determines the plasma half-life of von Willebrand factor (VWF). A role for macrophage galactose lectin (MGL) in regulating hyposialylated VWF clearance has recently been proposed. In this study, we showed that MGL influences physiological plasma VWF clearance. MGL inhibition was associated with a significantly extended mean residence time and 3-fold increase in endogenous plasma VWF antigen levels (P<0.05). Using a series of VWF truncations, we further demonstrated that the A1 domain of VWF is predominantly responsible for enabling the MGL interaction. Binding of both full-length and VWF-A1-A2-A3 to MGL was significantly enhanced in the presence of ristocetin (P<0.05), suggesting that the MGL-binding site in A1 is not fully accessible in globular VWF. Additional studies using different VWF glycoforms demonstrated that VWF O-linked glycans, clustered at either end of the A1 domain, play a key role in protecting VWF against MGLmediated clearance. Reduced sialylation has been associated with pathological, increased clearance of VWF in patients with von Willebrand disease. Herein, we demonstrate that specific loss of α2-3 linked sialylation from O-glycans results in markedly increased MGL-binding in vitro, and markedly enhanced MGL-mediated clearance of VWF in vivo. Our data further show that the asialoglycoprotein receptor (ASGPR) does not have a significant role in mediating the increased clearance of VWF following loss of O-sialylation. Conversely however, we observed that loss of N-linked sialylation from VWF drives enhanced circulatory clearance predominantly via the ASGPR. Collectively, our data support the hypothesis that in addition to regulating physiological VWF clearance, the MGL receptor works in tandem with ASGPR to modulate enhanced clearance of aberrantly sialylated VWF in the pathogenesis of von Willebrand disease.


Asunto(s)
Galactosa , Ácido N-Acetilneuramínico , Factor de von Willebrand , Galactosa/metabolismo , Humanos , Lectinas/metabolismo , Macrófagos/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Polisacáridos/metabolismo , Factor de von Willebrand/metabolismo
9.
Org Biomol Chem ; 20(24): 4905-4914, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35593095

RESUMEN

Sialylglycopeptide (SGP) is a readily available naturally occurring glycopeptide obtained from hen egg yolk which is now commercially available. During SGP extraction, other minor glycopeptide species are identified, bearing N-glycan structures that might be of interest, such as asymmetrically branched and triantennary glycans. As the scale of SGP production increases, recovery of minor glycopeptides and their N-glycans can become more feasible. In this paper, we aim to provide structural characterization of the N-glycans derived from these minor glycopeptides.


Asunto(s)
Pollos , Yema de Huevo , Animales , Yema de Huevo/química , Femenino , Glicopéptidos/química , Polisacáridos/química
10.
Cell Mol Life Sci ; 78(2): 675-693, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32333083

RESUMEN

The availability and repartition of fucosylated glycans within the gastrointestinal tract contributes to the adaptation of gut bacteria species to ecological niches. To access this source of nutrients, gut bacteria encode α-L-fucosidases (fucosidases) which catalyze the hydrolysis of terminal α-L-fucosidic linkages. We determined the substrate and linkage specificities of fucosidases from the human gut symbiont Ruminococcus gnavus. Sequence similarity network identified strain-specific fucosidases in R. gnavus ATCC 29149 and E1 strains that were further validated enzymatically against a range of defined oligosaccharides and glycoconjugates. Using a combination of glycan microarrays, mass spectrometry, isothermal titration calorimetry, crystallographic and saturation transfer difference NMR approaches, we identified a fucosidase with the capacity to recognize sialic acid-terminated fucosylated glycans (sialyl Lewis X/A epitopes) and hydrolyze α1-3/4 fucosyl linkages in these substrates without the need to remove sialic acid. Molecular dynamics simulation and docking showed that 3'-Sialyl Lewis X (sLeX) could be accommodated within the binding site of the enzyme. This specificity may contribute to the adaptation of R. gnavus strains to the infant and adult gut and has potential applications in diagnostic glycomic assays for diabetes and certain cancers.


Asunto(s)
Proteínas Bacterianas/metabolismo , Clostridiales/metabolismo , Microbioma Gastrointestinal , alfa-L-Fucosidasa/metabolismo , Proteínas Bacterianas/química , Clostridiales/química , Clostridiales/enzimología , Tracto Gastrointestinal/microbiología , Glicoconjugados/metabolismo , Humanos , Oligosacáridos/metabolismo , Polisacáridos/metabolismo , Especificidad por Sustrato , alfa-L-Fucosidasa/química
11.
Int J Mol Sci ; 23(21)2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36362241

RESUMEN

Efficient characterization of IgE antibodies and their glycan structures is required for understanding their function in allergy and in the emerging AllergoOncology field for antibody immunotherapy. We report the generation, glyco-profiling and functional analysis of native and sialic acid-deficient glyco-engineered human IgE. The antibodies produced from human embryonic kidney cells were purified via a human IgE class-specific affinity matrix and structural integrity was confirmed by SDS-PAGE and size-exclusion chromatography (SEC). Purified IgEs specific for the tumor-associated antigens Chondroitin Sulfate Proteoglycan 4 (CSPG4-IgE) and Human Epidermal Growth Factor Receptor 2 (HER2-IgE) were devoid of by-products such as free light chains. Using neuraminidase-A, we generated sialic acid-deficient CSPG4-IgE as example glyco-engineered antibody. Comparative glycan analyses of native and glyco-engineered IgEs by Hydrophilic interaction liquid chromatography (HILIC)-high performance liquid chromatography (HPLC) indicated loss of sialic acid terminal residues and differential glycan profiles. Native and glyco-engineered CSPG4-IgEs recognized Fc receptors on the surface of human FcεRI-expressing rat basophilic leukemia RBL-SX38 cells, and of CD23/FcεRII-expressing human RPMI-8866 B-lymphocytes and bound to CSPG4-expressing A2058 human melanoma cells, confirming Fab-mediated recognition. When cross-linked on the cell surface, both IgEs triggered RBL-SX38 degranulation. We demonstrate efficient generation and functional competence of recombinant native and sialic acid-deficient IgEs.


Asunto(s)
Inmunoglobulina E , Ácido N-Acetilneuramínico , Ratas , Animales , Humanos , Receptores de IgE/metabolismo , Receptores Fc , Cromatografía en Gel , Antígenos de Neoplasias
12.
Glycoconj J ; 38(6): 747-756, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34283362

RESUMEN

The study of protein O-glycosylation is important in biological research as O-glycans have been reported to regulate a multitude of molecular and cell biology processes occurring in cancer. It is known that alterations in O-glycosylation are involved in the development and progression of cancer. Their easy accessibility makes in vitro established cell lines suitable and useful models for studying biological mechanisms in disease. However, the O-glycosylation analysis of large numbers of samples, as required in systems biology and biomarker discovery studies, is often challenging. In the present study, O-glycans from three human colorectal cancer cell lines and two human pancreatic cancer cell lines were released by semi-automated, high throughput reductive ß-elimination and analysed using ultrahigh resolution MALDI-FT-ICR MS. Automated data integration and processing was performed using MassyTools, where the analyte was automatically included for relative quantitation based on a range of selection criteria including signal-to-noise ratio, mass error and isotopic pattern quality scores. A total of 126 O-glycan compositions, ranging from a single monosaccharide to large oligosaccharides exhibiting complex glycan motifs, were detected. The use of ultrahigh resolution MALDI-FTICR MS enabled glycan identification and quantitation in the matrix region of the spectrum. This approach has the potential to be used for O-glycosylation analysis of large numbers of samples, such as patient sample cohorts.


Asunto(s)
Neoplasias , Polisacáridos , Línea Celular , Glicosilación , Humanos , Polisacáridos/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
13.
Glycoconj J ; 38(3): 375-386, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33765222

RESUMEN

Antennary fucosylation alterations in plasma glycoproteins have been previously proposed and tested as a biomarker for differentiation of maturity onset diabetes of the young (MODY) patients carrying a functional mutation in the HNF1A gene. Here, we developed a novel LC-based workflow to analyze blood plasma N-glycan fucosylation in 320 diabetes cases with clinical features matching those at risk of HNF1A-MODY. Fucosylation levels measured in two independent research centers by using similar LC-based methods were correlated to evaluate the interlaboratory performance of the biomarker. The interlaboratory study showed good correlation between fucosylation levels measured for the 320 cases in the two centers with the correlation coefficient (r) of up to 0.88 for a single trait A3FG3S2. The improved chromatographic separation allowed the identification of six single glycan traits and a derived antennary fucosylation trait that were able to differentiate individuals carrying pathogenic mutations from benign or no HNF1A mutation cases, as determined by the area under the curve (AUC) of up to 0.94. The excellent (r = 0.88) interlaboratory performance of the glycan biomarker for HNF1A-MODY further supports the development of a clinically relevant diagnostic test measuring antennary fucosylation levels.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Polisacáridos/sangre , Polisacáridos/metabolismo , Adulto , Biomarcadores , Diabetes Mellitus Tipo 2/genética , Femenino , Regulación de la Expresión Génica , Factor Nuclear 1-alfa del Hepatocito/genética , Humanos , Laboratorios , Masculino , Mutación , Variaciones Dependientes del Observador , Polisacáridos/química , Adulto Joven
14.
Bioorg Med Chem ; 30: 115882, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33376017

RESUMEN

N-Acetyl neuraminic acid (sialic acid) is a monosaccharide generally found as the terminating unit on glycans, which in turn are found on the surface of cells and glycoproteins. These glycans aid in a variety of biological functions such as cell interactions and immune response. Sialic acid has been identified as a biomarker for cardiovascular disease, diabetes and a range of other inflammatory and degenerative conditions. It has also been identified as a marker for different types of cancer. Sialic acid levels vary depending on the level of inflammation present during the course of an inflammatory disease and it is overexpressed by tumours as a shield against the immune system. Since the discovery of sialic acid, numerous assays have been developed for the identification and quantification of different sialic acid derivative monosaccharides and these assays fall into four main groups: colorimetric, fluorometric, enzymatic and chromatographic/mass spectrometric, with much overlap between these. Given the importance of sialic acids in biological pathways, this review article critically appraises assays that are used to detect and quantify sialic acid and its derivatives. Thus it details the method, sensitivity, specificity and wider scope of a range of assays, and concludes by suggesting some future directions for assay development and application. In this way, insight is provided into assays that allow for the accurate quantitation of sialic acid in biological samples, which may facilitate identification of the roles of sialic acid in healthy and disease pathways.


Asunto(s)
Ácidos Siálicos/análisis , Fluorometría , Humanos , Estructura Molecular
15.
Mol Cell Proteomics ; 18(1): 3-15, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30242110

RESUMEN

N-Glycosylation is a fundamentally important protein modification with a major impact on glycoprotein characteristics such as serum half-life and receptor interaction. More than half of the proteins in human serum are glycosylated, and the relative abundances of protein glycoforms often reflect alterations in health and disease. Several analytical methods are currently capable of analyzing the total serum N-glycosylation in a high-throughput manner.Here we evaluate and compare the performance of three high-throughput released N-glycome analysis methods. Included were hydrophilic-interaction ultra-high-performance liquid chromatography with fluorescence detection (HILIC-UHPLC-FLD) with 2-aminobenzamide labeling of the glycans, multiplexed capillary gel electrophoresis with laser-induced fluorescence detection (xCGE-LIF) with 8-aminopyrene-1,3,6-trisulfonic acid labeling, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) with linkage-specific sialic acid esterification. All methods assessed the same panel of serum samples, which were obtained at multiple time points during the pregnancies and postpartum periods of healthy women and patients with rheumatoid arthritis (RA). We compared the analytical methods on their technical performance as well as on their ability to describe serum protein N-glycosylation changes throughout pregnancy, with RA, and with RA disease activity.Overall, the methods proved to be similar in their detection and relative quantification of serum protein N-glycosylation. However, the non-MS methods showed superior repeatability over MALDI-TOF-MS and allowed the best structural separation of low-complexity N-glycans. MALDI-TOF-MS achieved the highest throughput and provided compositional information on higher-complexity N-glycans. Consequentially, MALDI-TOF-MS could establish the linkage-specific sialylation differences within pregnancy and RA, whereas HILIC-UHPLC-FLD and xCGE-LIF demonstrated differences in α1,3- and α1,6-branch galactosylation. While the combination of methods proved to be the most beneficial for the analysis of total serum protein N-glycosylation, informed method choices can be made for the glycosylation analysis of single proteins or samples of varying complexity.


Asunto(s)
Artritis Reumatoide/metabolismo , Proteínas Sanguíneas/análisis , Glicómica/métodos , Complicaciones del Embarazo/metabolismo , Adulto , Proteínas Sanguíneas/química , Cromatografía Líquida de Alta Presión , Electroforesis Capilar , Femenino , Glicosilación , Humanos , Embarazo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
16.
Glycoconj J ; 37(6): 691-702, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33064245

RESUMEN

Changes in human IgG galactosylation and sialylation have been associated with several inflammatory diseases which are a major burden on the health care system. A large body of work on well-established glycomic and glycopeptidomic assays has repeatedly demonstrated inflammation-induced changes in IgG glycosylation. However, these assays are usually based on specialized analytical instrumentation which could be considered a technical barrier for uptake by some laboratories. Hence there is a growing demand for simple biochemical assays for analyzing these glycosylation changes. We have addressed this need by introducing a novel glycosidase plate-based assay for the absolute quantification of galactosylation and sialylation on IgG. IgG glycoproteins are treated with specific exoglycosidases to release the galactose and/or sialic acid residues. The released galactose monosaccharides are subsequently used in an enzymatic redox reaction that produces a fluorescence signal that is quantitative for the amount of galactosylation and, in-turn, sialylation on IgG. The glycosidase plate-based assay has the potential to be a simple, initial screening assay or an alternative assay to the usage of high-end analytical platforms such as HILIC-FLD-MSn when considering the analysis of galactosylation and sialylation on IgG. We have demonstrated this by comparing our assay to an industrial established HILIC-FLD-MSn glycomic analysis of 15 patient samples and obtained a Pearson's r correlation coefficient of 0.8208 between the two methods.


Asunto(s)
Galactosa/genética , Inmunoglobulina G/química , Ácido N-Acetilneuramínico/genética , Galactosa/química , Glicoproteínas/química , Glicoproteínas/genética , Glicósido Hidrolasas/química , Glicosilación , Humanos , Inmunoglobulina G/genética
17.
Int J Mol Sci ; 21(21)2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-33167483

RESUMEN

Metastasis is the main cause of death among colorectal cancer (CRC) patients. E-selectin and its carbohydrate ligands, including sialyl Lewis X (sLeX) antigen, are key players in the binding of circulating tumor cells to the endothelium, which is one of the major events leading to organ invasion. Nevertheless, the identity of the glycoprotein scaffolds presenting these glycans in CRC remains unclear. In this study, we firstly have characterized the glycoengineered cell line SW620 transfected with the fucosyltransferase 6 (FUT6) coding for the α1,3-fucosyltransferase 6 (FUT6), which is the main enzyme responsible for the synthesis of sLeX in CRC. The SW620FUT6 cell line expressed high levels of sLeX antigen and E-selectin ligands. Moreover, it displayed increased migration ability. E-selectin ligand glycoproteins were isolated from the SW620FUT6 cell line, identified by mass spectrometry, and validated by flow cytometry and Western blot (WB). The most prominent E-selectin ligand we identified was the neural cell adhesion molecule L1 (L1CAM). Previous studies have shown association of L1CAM with metastasis in cancer, thus the novel role as E-selectin counter-receptor contributes to understand the molecular mechanism involving L1CAM in metastasis formation.


Asunto(s)
Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Selectina E/metabolismo , Molécula L1 de Adhesión de Célula Nerviosa/fisiología , Adhesión Celular/genética , Neoplasias del Colon/genética , Humanos , Inmunoprecipitación , Ligandos , Molécula L1 de Adhesión de Célula Nerviosa/genética , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Unión Proteica/genética , Transfección , Células Tumorales Cultivadas
18.
Glycobiology ; 29(2): 137-150, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30476078

RESUMEN

Aberrant fucosylation in cancer cells is considered as a signature of malignant cell transformation and it is associated with tumor progression, metastasis and resistance to chemotherapy. Specifically, in colorectal cancer cells, increased levels of the fucosylated Lewisx antigen are attributed to the deregulated expression of pertinent fucosyltransferases, like fucosyltransferase 4 (FUT4) and fucosyltransferase 9 (FUT9). However, the lack of experimental models closely mimicking cancer-specific regulation of fucosyltransferase gene expression has, so far, limited our knowledge regarding the substrate specificity of these enzymes and the impact of Lewisx synthesis on the glycome of colorectal cancer cells. Therefore, we sought to transcriptionally activate the Fut4 and Fut9 genes in the well-known murine colorectal cancer cell line, MC38, which lacks expression of the FUT4 and FUT9 enzymes. For this purpose, we utilized a physiologically relevant, guide RNA-based model of de novo gene expression, namely the CRISPR-dCas9-VPR system. Induction of the Fut4 and Fut9 genes in MC38 cells using CRISPR-dCas9-VPR resulted in specific neo-expression of functional Lewisx antigen on the cell surface. Interestingly, Lewisx was mainly carried by N-linked glycans in both MC38-FUT4 and MC38-FUT9 cells, despite pronounced differences in the biosynthetic properties and the expression stability of the induced enzymes. Moreover, Lewisx expression was found to influence core-fucosylation, sialylation, antennarity and the subtypes of N-glycans in the MC38-glycovariants. In conclusion, exploiting the CRISPR-dCas9-VPR system to augment glycosyltransferase expression is a promising method of transcriptional gene activation with broad application possibilities in glycobiology and oncology research.


Asunto(s)
Sistemas CRISPR-Cas/genética , Neoplasias Colorrectales/genética , Fucosiltransferasas/genética , Polisacáridos/genética , Activación Transcripcional , Animales , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Fucosiltransferasas/metabolismo , Ratones , Polisacáridos/metabolismo , Células Tumorales Cultivadas
19.
Microbiology (Reading) ; 165(11): 1181-1197, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31517596

RESUMEN

Key to onset and progression of periodontitis is a complex relationship between oral bacteria and the host. The organisms most associated with severe periodontitis are the periodontal pathogens of the red complex: Tannerella forsythia, Treponema denticola and Porphyromonas gingivalis. These organisms express sialidases, which cleave sialic acid from host glycoproteins, and contribute to disease through various mechanisms. Here, we expressed and purified recombinant P. gingivalis sialidase SiaPG (PG_0352) and characterized its activity on a number of substrates, including host sialoglycoproteins and highlighting the inability to cleave diacetylated sialic acids - a phenomenon overcome by the NanS sialate-esterase from T. forsythia. Indeed SiaPG required NanS to maximize sialic acid harvesting from heavily O-acetylated substrates such as bovine salivary mucin, hinting at the possibility of interspecies cooperation in sialic acid release from host sources by these members of the oral microbiota. Activity of SiaPG and P. gingivalis was inhibited using the commercially available chemotherapeutic zanamivir, indicating its potential as a virulence inhibitor, which also inhibited sialic acid release from mucin, and was capable of inhibiting biofilm formation of P. gingivalis on oral glycoprotein sources. Zanamivir also inhibited attachment and invasion of oral epithelial cells by P. gingivalis and other periodontal pathogens, both in monospecies but also in multispecies infection experiments, indicating potential to suppress host-pathogen interactions of a mixed microbial community. This study broadens our understanding of the multifarious roles of bacterial sialidases in virulence, and indicates that their inhibition with chemotherapeutics could be a promising strategy for periodontitis therapy.


Asunto(s)
Proteínas Bacterianas/metabolismo , Interacciones Huésped-Patógeno , Neuraminidasa/metabolismo , Porphyromonas gingivalis/enzimología , Factores de Virulencia/metabolismo , Proteínas Bacterianas/genética , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Línea Celular , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Interacciones Microbianas , Mucinas/metabolismo , Mutación , Neuraminidasa/genética , Polisacáridos/metabolismo , Porphyromonas gingivalis/efectos de los fármacos , Porphyromonas gingivalis/crecimiento & desarrollo , Porphyromonas gingivalis/patogenicidad , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sialoglicoproteínas/metabolismo , Tannerella forsythia/enzimología , Factores de Virulencia/genética , Zanamivir/farmacología
20.
Glycoconj J ; 35(3): 311-321, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29909447

RESUMEN

Glycosylation is considered one of the most complex and structurally diverse post-translational modifications of proteins. Glycans play important roles in many biological processes such as protein folding, regulation of protein stability, solubility and serum half-life. One of the ways to study glycosylation is systematic structural characterizations of protein glycosylation utilizing glycomics methodology based around mass spectrometry (MS). The most prevalent bottleneck stages for glycomic analyses is laborious sample preparation steps. Therefore, in this study, we aim to improve sample preparations by automation. We recently demonstrated the successful application of an automated high-throughput (HT), glycan permethylation protocol based on 96-well microplates, in the analysis of purified glycoproteins. Therefore, we wanted to test if these developed HT methodologies could be applied to more complex biological starting materials. Our automated 96-well-plate based permethylation method showed very comparable results with established glycomic methodology. Very similar glycomic profiles were obtained for complex glycoprotein/protein mixtures derived from heterogeneous mouse tissues. Automated N-glycan release, enrichment and automated permethylation of samples proved to be convenient, robust and reliable. Therefore we conclude that these automated procedures are a step forward towards the development of a fully automated, fast and reliable glycomic profiling system for analysis of complex biological materials.


Asunto(s)
Automatización de Laboratorios/métodos , Glicómica/métodos , Polisacáridos/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Animales , Fraccionamiento Celular/métodos , Riñón/química , Hígado/química , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA