Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
EMBO J ; 43(5): 666-694, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38279026

RESUMEN

The efficacy of current antimitotic cancer drugs is limited by toxicity in highly proliferative healthy tissues. A cancer-specific dependency on the microtubule motor protein KIF18A therefore makes it an attractive therapeutic target. Not all cancers require KIF18A, however, and the determinants underlying this distinction remain unclear. Here, we show that KIF18A inhibition drives a modest and widespread increase in spindle assembly checkpoint (SAC) signaling from kinetochores which can result in lethal mitotic delays. Whether cells arrest in mitosis depends on the robustness of the metaphase-to-anaphase transition, and cells predisposed with weak basal anaphase-promoting complex/cyclosome (APC/C) activity and/or persistent SAC signaling through metaphase are uniquely sensitive to KIF18A inhibition. KIF18A-dependent cancer cells exhibit hallmarks of this SAC:APC/C imbalance, including a long metaphase-to-anaphase transition, and slow mitosis overall. Together, our data reveal vulnerabilities in the cell division apparatus of cancer cells that can be exploited for therapeutic benefit.


Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase , Neoplasias , Humanos , Ciclosoma-Complejo Promotor de la Anafase/genética , Dineínas , Cinesinas/genética , Cinetocoros , Mitosis , Neoplasias/genética
2.
EMBO Rep ; 25(6): 2743-2772, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38806674

RESUMEN

Interference with microtubule dynamics in mitosis activates the spindle assembly checkpoint (SAC) to prevent chromosome segregation errors. The SAC induces mitotic arrest by inhibiting the anaphase-promoting complex (APC) via the mitotic checkpoint complex (MCC). The MCC component MAD2 neutralizes the critical APC cofactor, CDC20, preventing exit from mitosis. Extended mitotic arrest can promote mitochondrial apoptosis and caspase activation. However, the impact of mitotic cell death on tissue homeostasis in vivo is ill-defined. By conditional MAD2 overexpression, we observe that chronic SAC activation triggers bone marrow aplasia and intestinal atrophy in mice. While myelosuppression can be compensated for, gastrointestinal atrophy is detrimental. Remarkably, deletion of pro-apoptotic Bim/Bcl2l11 prevents gastrointestinal syndrome, while neither loss of Noxa/Pmaip or co-deletion of Bid and Puma/Bbc3 has such a protective effect, identifying BIM as rate-limiting apoptosis effector in mitotic cell death of the gastrointestinal epithelium. In contrast, only overexpression of anti-apoptotic BCL2, but none of the BH3-only protein deficiencies mentioned above, can mitigate myelosuppression. Our findings highlight tissue and cell-type-specific survival dependencies in response to SAC perturbation in vivo.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Apoptosis , Proteína 11 Similar a Bcl2 , Puntos de Control de la Fase M del Ciclo Celular , Proteínas Mad2 , Proteínas Proto-Oncogénicas c-bcl-2 , Animales , Proteína 11 Similar a Bcl2/metabolismo , Proteína 11 Similar a Bcl2/genética , Ratones , Proteínas Mad2/metabolismo , Proteínas Mad2/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Atrofia , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Mitosis , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/metabolismo , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/genética , Proteínas Cdc20/metabolismo , Proteínas Cdc20/genética , Médula Ósea/patología , Médula Ósea/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas Supresoras de Tumor
3.
EMBO J ; 40(1): e106118, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33226141

RESUMEN

Mutations in centrosome genes deplete neural progenitor cells (NPCs) during brain development, causing microcephaly. While NPC attrition is linked to TP53-mediated cell death in several microcephaly models, how TP53 is activated remains unclear. In cultured cells, mitotic delays resulting from centrosome loss prevent the growth of unfit daughter cells by activating a pathway involving 53BP1, USP28, and TP53, termed the mitotic surveillance pathway. Whether this pathway is active in the developing brain is unknown. Here, we show that the depletion of centrosome proteins in NPCs prolongs mitosis and increases TP53-mediated apoptosis. Cell death after a delayed mitosis was rescued by inactivation of the mitotic surveillance pathway. Moreover, 53BP1 or USP28 deletion restored NPC proliferation and brain size without correcting the upstream centrosome defects or extended mitosis. By contrast, microcephaly caused by the loss of the non-centrosomal protein SMC5 is also TP53-dependent but is not rescued by loss of 53BP1 or USP28. Thus, we propose that mutations in centrosome genes cause microcephaly by delaying mitosis and pathologically activating the mitotic surveillance pathway in the developing brain.


Asunto(s)
Centrosoma/metabolismo , Microcefalia/genética , Microcefalia/metabolismo , Mitosis/genética , Proteína p53 Supresora de Tumor/genética , Proteína 1 de Unión al Supresor Tumoral P53/genética , Ubiquitina Tiolesterasa/genética , Animales , Apoptosis/genética , Encéfalo/patología , Muerte Celular/genética , Proliferación Celular/genética , Células Cultivadas , Ratones , Ratones Noqueados , Mutación/genética , Transducción de Señal/genética
4.
J Pathol ; 262(2): 147-160, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38010733

RESUMEN

TP53 is the most frequently mutated gene in human cancer. This gene shows not only loss-of-function mutations but also recurrent missense mutations with gain-of-function activity. We have studied the primary bone malignancy osteosarcoma, which harbours one of the most rearranged genomes of all cancers. This is odd since it primarily affects children and adolescents who have not lived the long life thought necessary to accumulate massive numbers of mutations. In osteosarcoma, TP53 is often disrupted by structural variants. Here, we show through combined whole-genome and transcriptome analyses of 148 osteosarcomas that TP53 structural variants commonly result in loss of coding parts of the gene while simultaneously preserving and relocating the promoter region. The transferred TP53 promoter region is fused to genes previously implicated in cancer development. Paradoxically, these erroneously upregulated genes are significantly associated with the TP53 signalling pathway itself. This suggests that while the classical tumour suppressor activities of TP53 are lost, certain parts of the TP53 signalling pathway that are necessary for cancer cell survival and proliferation are retained. In line with this, our data suggest that transposition of the TP53 promoter is an early event that allows for a new normal state of genome-wide rearrangements in osteosarcoma. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Niño , Adolescente , Humanos , Genes p53 , Osteosarcoma/genética , Osteosarcoma/patología , Mutación , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Regiones Promotoras Genéticas/genética , Fusión Génica , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
5.
EMBO Rep ; 21(12): e50893, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33225610

RESUMEN

Polyploidization frequently precedes tumorigenesis but also occurs during normal development in several tissues. Hepatocyte ploidy is controlled by the PIDDosome during development and regeneration. This multi-protein complex is activated by supernumerary centrosomes to induce p53 and restrict proliferation of polyploid cells, otherwise prone for chromosomal instability. PIDDosome deficiency in the liver results in drastically increased polyploidy. To investigate PIDDosome-induced p53-activation in the pathogenesis of liver cancer, we chemically induced hepatocellular carcinoma (HCC) in mice. Strikingly, PIDDosome deficiency reduced tumor number and burden, despite the inability to activate p53 in polyploid cells. Liver tumors arise primarily from cells with low ploidy, indicating an intrinsic pro-tumorigenic effect of PIDDosome-mediated ploidy restriction. These data suggest that hyperpolyploidization caused by PIDDosome deficiency protects from HCC. Moreover, high tumor cell density, as a surrogate marker of low ploidy, predicts poor survival of HCC patients receiving liver transplantation. Together, we show that the PIDDosome is a potential therapeutic target to manipulate hepatocyte polyploidization for HCC prevention and that tumor cell density may serve as a novel prognostic marker for recurrence-free survival in HCC patients.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Carcinogénesis/genética , Carcinoma Hepatocelular/genética , Humanos , Neoplasias Hepáticas/genética , Ratones , Ploidias , Proteína p53 Supresora de Tumor/genética
6.
Life Sci Alliance ; 3(2)2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31980556

RESUMEN

Chromosomal instability (CIN) and aneuploidy are hallmarks of cancer. As most cancers are aneuploid, targeting aneuploidy or CIN may be an effective way to target a broad spectrum of cancers. Here, we perform two small molecule compound screens to identify drugs that selectively target cells that are aneuploid or exhibit a CIN phenotype. We find that aneuploid cells are much more sensitive to the energy metabolism regulating drug ZLN005 than their euploid counterparts. Furthermore, cells with an ongoing CIN phenotype, induced by spindle assembly checkpoint (SAC) alleviation, are significantly more sensitive to the Src kinase inhibitor SKI606. We show that inhibiting Src kinase increases microtubule polymerization rates and, more generally, that deregulating microtubule polymerization rates is particularly toxic to cells with a defective SAC. Our findings, therefore, suggest that tumors with a dysfunctional SAC are particularly sensitive to microtubule poisons and, vice versa, that compounds alleviating the SAC provide a powerful means to treat tumors with deregulated microtubule dynamics.


Asunto(s)
Compuestos de Anilina/farmacología , Bencimidazoles/farmacología , Puntos de Control de la Fase M del Ciclo Celular/efectos de los fármacos , Microtúbulos/metabolismo , Nitrilos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Quinolinas/farmacología , Huso Acromático/metabolismo , Familia-src Quinasas/antagonistas & inhibidores , Aneuploidia , Inestabilidad Cromosómica/efectos de los fármacos , Sinergismo Farmacológico , Técnicas de Silenciamiento del Gen , Células HT29 , Humanos , Cinética , Células MCF-7 , Microtúbulos/efectos de los fármacos , Neoplasias/genética , Fenotipo , Polimerizacion/efectos de los fármacos , Huso Acromático/efectos de los fármacos , Familia-src Quinasas/genética
7.
J Pathol Clin Res ; 6(4): 231-237, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32542935

RESUMEN

Osteoblastoma is a locally aggressive tumour of bone. Until recently, its underlying genetic features were largely unknown. During the past two years, reports have demonstrated that acquired structural variations affect the transcription factor FOS in a high proportion of cases. These rearrangements modify the terminal exon of the gene and are believed to stabilise both the FOS transcript and the encoded protein, resulting in high expression levels. Here, we applied in-depth genetic analyses to a series of 29 osteoblastomas, including five classified as epithelioid osteoblastoma. We found recurrent homozygous deletions of the NF2 gene in three of the five epithelioid cases and in one conventional osteoblastoma. These events were mutually exclusive from FOS mutations. Structural variations were determined by deep whole genome sequencing and the number of FOS-rearranged cases was less than previously reported (10/23, 43%). One conventional osteoblastoma displayed a novel mechanism of FOS upregulation; bringing the entire FOS gene under the control of the WNT5A enhancer that is itself activated by FOS. Taken together, we show that NF2 loss characterises a subgroup of osteoblastomas, distinct from FOS-rearranged cases. Both NF2 and FOS are involved in regulating bone homeostasis, thereby providing a mechanistic link to the excessive bone growth of osteoblastoma.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Óseas/genética , Eliminación de Gen , Reordenamiento Génico , Neurofibromina 2/genética , Osteoblastoma/genética , Proteínas Proto-Oncogénicas c-fos/genética , Adolescente , Adulto , Neoplasias Óseas/patología , Niño , Preescolar , Elementos de Facilitación Genéticos , Células Epitelioides/patología , Europa (Continente) , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , Persona de Mediana Edad , Osteoblastoma/patología , Osteogénesis , Fenotipo , Proteína Wnt-5a/genética , Adulto Joven
8.
Elife ; 62017 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-29231811

RESUMEN

Homologous recombination involving sister chromatids is the most accurate, and thus most frequently used, form of recombination-mediated DNA repair. Despite its importance, sister chromatid recombination is not easily studied because it does not result in a change in DNA sequence, making recombination between sister chromatids difficult to detect. We have previously developed a novel DNA template strand sequencing technique, called Strand-seq, that can be used to map sister chromatid exchange (SCE) events genome-wide in single cells. An increase in the rate of SCE is an indicator of elevated recombination activity and of genome instability, which is a hallmark of cancer. In this study, we have adapted Strand-seq to detect SCE in the yeast Saccharomyces cerevisiae. We provide the first quantifiable evidence that most spontaneous SCE events in wild-type cells are not due to the repair of DNA double-strand breaks.


Asunto(s)
Genoma Fúngico , Biología Molecular/métodos , Saccharomyces cerevisiae/genética , Análisis de Secuencia de ADN/métodos , Análisis de la Célula Individual/métodos , Intercambio de Cromátides Hermanas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA