Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Nature ; 621(7979): 530-535, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37587344

RESUMEN

Methane (CH4) is a potent greenhouse gas and its concentrations have tripled in the atmosphere since the industrial revolution. There is evidence that global warming has increased CH4 emissions from freshwater ecosystems1,2, providing positive feedback to the global climate. Yet for rivers and streams, the controls and the magnitude of CH4 emissions remain highly uncertain3,4. Here we report a spatially explicit global estimate of CH4 emissions from running waters, accounting for 27.9 (16.7-39.7) Tg CH4 per year and roughly equal in magnitude to those of other freshwater systems5,6. Riverine CH4 emissions are not strongly temperature dependent, with low average activation energy (EM = 0.14 eV) compared with that of lakes and wetlands (EM = 0.96 eV)1. By contrast, global patterns of emissions are characterized by large fluxes in high- and low-latitude settings as well as in human-dominated environments. These patterns are explained by edaphic and climate features that are linked to anoxia in and near fluvial habitats, including a high supply of organic matter and water saturation in hydrologically connected soils. Our results highlight the importance of land-water connections in regulating CH4 supply to running waters, which is vulnerable not only to direct human modifications but also to several climate change responses on land.


Asunto(s)
Ecosistema , Metano , Ríos , Lagos/química , Metano/análisis , Metano/metabolismo , Ríos/química , Humedales , Calentamiento Global/estadística & datos numéricos , Actividades Humanas
2.
Glob Chang Biol ; 28(23): 7063-7077, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36054573

RESUMEN

Global change affects gross primary production (GPP) in benthic and pelagic habitats of northern lakes by influencing catchment characteristics and lake water biogeochemistry. However, how changes in key environmental drivers manifest and impact total (i.e., benthic + pelagic) GPP and the partitioning of total GPP between habitats represented by the benthic share (autotrophic structuring) is unclear. Using a dataset from 26 shallow lakes located across Arctic, subarctic, and boreal northern Sweden, we investigate how catchment properties (air temperature, land cover, hydrology) affect lake physico-chemistry and patterns of total GPP and autotrophic structuring. We find that total GPP was mostly light limited, due to high dissolved organic carbon (DOC) concentrations originating from catchment soils with coniferous vegetation and wetlands, which is further promoted by high catchment runoff. In contrast, autotrophic structuring related mostly to the relative size of the benthic habitat, and was potentially modified by CO2 fertilization in the subarctic, resulting in significantly higher total GPP relative to the other biomes. Across Arctic and subarctic sites, DIC and CO2 were unrelated to DOC, indicating that external inputs of inorganic carbon can influence lake productivity patterns independent of terrestrial DOC supply. By comparison, DOC and CO2 were correlated across boreal lakes, suggesting that DOC mineralization acts as an important CO2 source for these sites. Our results underline that GPP as a resource is regulated by landscape properties, and is sensitive to large-scale global changes (warming, hydrological intensification, recovery of acidification) that promote changes in catchment characteristics and aquatic physico-chemistry. Our findings aid in predicting global change impacts on autotrophic structuring, and thus community structure and resource use of aquatic consumers in general. Given the similarities of global changes across the Northern hemisphere, our findings are likely relevant for northern lakes globally.


Asunto(s)
Dióxido de Carbono , Lagos , Ecosistema , Carbono , Ciclo del Carbono
3.
Ecol Monogr ; 91(3): 1-19, 2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-35309738

RESUMEN

Increased nitrogen (N) deposition threatens global biodiversity, but its effects in arid urban ecosystems are not well studied. In addition to altered N availability, urban environments also experience increases in other pollutants, decreased population connectivity, and altered biotic interactions, which can further impact biodiversity. In deserts, annual plant communities make up most of the plant diversity, support wildlife, and contribute to nutrient cycling and ecosystem processes. Functional tradeoffs allowing coexistence of a diversity of annual plant species are well established, but maintenance of diversity in urban conditions and with increased availability of limiting nutrients has not been explored. We conducted a 13-year N and phosphorus (P) addition experiment in Sonoran Desert preserves in and around Phoenix, AZ, to test how nutrient availability interacts with growing season precipitation, urban location, and microhabitat to affect winter annual plant diversity. Using structural equation modeling and generalized linear mixed modeling, we found that annual plant taxonomic diversity was significantly reduced in N-enriched and urban plots. Water availability in both current and previous growing seasons impacted annual plant diversity, with significant interaction effects showing increased diversity in wetter years and greater responsiveness of the community to water following a wet year. However, there were no significant interactions between N enrichment and water availability, urban location, or microhabitat. Lowered diversity in urban preserves may be partly attributable to increased urban N deposition. Changes in biodiversity of showy species like annual wildflowers in urban preserves can have important implications for connections between urban residents and nature, and reduced diversity and community restructuring with N enrichment represents a challenge for future preservation of aridland biodiversity.

4.
Glob Chang Biol ; 27(4): 719-727, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33200491

RESUMEN

Inland waters receive a significant quantity of carbon (C) from land. The fate of this C during transit, whether it is emitted to the atmosphere, accumulated in sediments or transported to the ocean, can considerably reshape the landscape C balance. However, these different fates of terrestrial C are not independent but are instead linked via several catchment and aquatic processes. Thus, according to mass conservation, any environmental change inducing a shift in a particular C fate should come at the expense of at least one other fate. Nonetheless, studies that have investigated C emission, accumulation and transport concertedly are scarce, resulting in fragmented knowledge of the role of inland waters in the global C cycle. Here, we propose a framework to understand how different C fates in aquatic systems are interlinked and covary under environmental changes. First, to explore how C fates are currently distributed in streams, rivers, reservoirs and lakes, we compiled data from the literature and show that 'C fate allocation' varies widely both within and among inland water systems types. Secondly, we developed a framework that integrates C fates in any inland water system by identifying the key processes underlying their linkages. Our framework places the partitioning between the different C forms, and how this is controlled by export from land, internal transformations and hydrology, as central to understanding C fate allocation. We argue that, by focusing on a single fate, studies could risk drawing misleading conclusions regarding how environmental changes will alter the role of inland waters in the global C cycle. Our framework thus allows us to holistically assess the consequences of such changes on coupled C fluxes, setting a foundation for understanding the contemporary and future fate of land-derived C in inland water systems.


Asunto(s)
Ciclo del Carbono , Carbono , Atmósfera , Lagos , Ríos
5.
J Anim Ecol ; 90(4): 886-898, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33368270

RESUMEN

Community responses to and recovery from disturbances depend on local (e.g. presence of refuges) and regional (connectivity to recolonization sources) factors. Droughts are becoming more frequent in boreal regions, and are likely to constitute a severe disturbance for boreal stream communities where organisms largely lack adaptations to such hydrological extremes. We conducted an experiment in 24 semi-natural stream flumes to assess the effects of local and regional factors on the responses of benthic invertebrate communities to a short-term drought. We manipulated flow (drought vs. constant-flow), spatial arrangement of leaf litter patches (aggregated vs. evenly distributed) and colonization from regional species pool (enhanced vs. ambient connectivity) to test the combined effects of disturbance, resource arrangement and connectivity on the structural and functional responses of benthic invertebrate communities. We found that a drought as short as 1 week reduced invertebrate taxonomic richness and abundance, mainly through stochastic extinctions. Such changes in richness were not reflected in functional diversity. This suggests that communities were characterized by a high degree of functional redundancy, which allowed maintenance of functional diversity despite species losses. Feeding groups responded differently to drought, with organic matter decomposers responding more than scrapers and predators. Three weeks were insufficient for complete invertebrate community recovery from drought. However, recovery was greater in channels subjected to enhanced connectivity, which increased taxonomic diversity and abundance of certain taxa. Spatial configuration of resources explained the least variation in our response variables, having a significant effect only on invertebrate abundance and evenness (both sampling occasions) and taxonomic richness (end of recovery period). Even a short drought, if occurring late in the season, may not allow communities to recover before the onset of winter, thus having a potentially long-lasting effect on stream communities. For boreal headwaters, extreme dewatering poses a novel disturbance regime that may trigger substantial and potentially irreversible changes. An improved understanding of such changes is needed to underpin adaptive management strategies in these increasingly fragmented and disturbed ecosystems.


Asunto(s)
Sequías , Ríos , Animales , Ecosistema , Invertebrados , Procesos Estocásticos
6.
Glob Chang Biol ; 26(3): 1400-1413, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31667979

RESUMEN

Streams play an important role in the global carbon (C) cycle, accounting for a large portion of CO2 evaded from inland waters despite their small areal coverage. However, the relative importance of different terrestrial and aquatic processes driving CO2 production and evasion from streams remains poorly understood. In this study, we measured O2 and CO2 continuously in streams draining tundra-dominated catchments in northern Sweden, during the summers of 2015 and 2016. From this, we estimated daily metabolic rates and CO2 evasion simultaneously and thus provide insight into the role of stream metabolism as a driver of C dynamics in Arctic streams. Our results show that aquatic biological processes regulate CO2 concentrations and evasion at multiple timescales. Photosynthesis caused CO2 concentrations to decrease by as much as 900 ppm during the day, with the magnitude of this diel variation being strongest at the low-turbulence streams. Diel patterns in CO2 concentrations in turn influenced evasion, with up to 45% higher rates at night. Throughout the summer, CO2 evasion was sustained by aquatic ecosystem respiration, which was one order of magnitude higher than gross primary production. Furthermore, in most cases, the contribution of stream respiration exceeded CO2 evasion, suggesting that some stream reaches serve as net sources of CO2 , thus creating longitudinal heterogeneity in C production and loss within this stream network. Overall, our results provide the first link between stream metabolism and CO2 evasion in the Arctic and demonstrate that stream metabolic processes are key drivers of the transformation and fate of terrestrial organic matter exported from these landscapes.


Asunto(s)
Ecosistema , Ríos , Regiones Árticas , Dióxido de Carbono , Suecia
7.
Glob Chang Biol ; 26(6): 3455-3472, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32124522

RESUMEN

Ongoing climate change is increasing the occurrence and intensity of drought episodes worldwide, including in boreal regions not previously regarded as drought prone, and where the impacts of drought remain poorly understood. Ecological connectivity is one factor that might influence community structure and ecosystem functioning post-drought, by facilitating the recovery of sensitive species via dispersal at both local (e.g. a nearby habitat patch) and regional (from other systems within the same region) scales. In an outdoor mesocosm experiment, we investigated how impacts of drought on boreal stream ecosystems are altered by the spatial arrangement of local habitat patches within stream channels, and variation in ecological connectivity with a regional species pool. We measured basal ecosystem processes underlying carbon and nutrient cycling: (a) algal biomass accrual; (b) microbial respiration; and (c) decomposition of organic matter, and sampled communities of aquatic fungi and benthic invertebrates. An 8-day drought event had strong impacts on both community structure and ecosystem functioning, including algal accrual, leaf decomposition and microbial respiration, with many of these impacts persisting even after water levels had been restored for 3.5 weeks. Enhanced connectivity with the regional species pool and increased aggregation of habitat patches also affected multiple response variables, especially those associated with microbes, and in some cases reduced the effects of drought to a small extent. This indicates that spatial processes might play a role in the resilience of communities and ecosystem functioning, given enough time. These effects were however insufficient to facilitate significant recovery in algal growth before seasonal dieback began in autumn. The limited resilience of ecosystem functioning in our experiment suggests that even short-term droughts can have extended consequences for stream ecosystems in the world's vast boreal region, and especially on the ecosystem processes and services mediated by algal biofilms.


Asunto(s)
Ecosistema , Ríos , Animales , Sequías , Hongos , Invertebrados
8.
Glob Chang Biol ; 24(8): 3680-3691, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29516598

RESUMEN

Climate change is rapidly reshaping Arctic landscapes through shifts in vegetation cover and productivity, soil resource mobilization, and hydrological regimes. The implications of these changes for stream ecosystems and food webs is unclear and will depend largely on microbial biofilm responses to concurrent shifts in temperature, light, and resource supply from land. To study those responses, we used nutrient diffusing substrates to manipulate resource supply to biofilm communities along regional gradients in stream temperature, riparian shading, and dissolved organic carbon (DOC) loading in Arctic Sweden. We found strong nitrogen (N) limitation across this gradient for gross primary production, community respiration and chlorophyll-a accumulation. For unamended biofilms, activity and biomass accrual were not closely related to any single physical or chemical driver across this region. However, the magnitude of biofilm response to N addition was: in tundra streams, biofilm response was constrained by thermal regimes, whereas variation in light availability regulated this response in birch and coniferous forest streams. Furthermore, heterotrophic responses to experimental N addition increased across the region with greater stream water concentrations of DOC relative to inorganic N. Thus, future shifts in resource supply to these ecosystems are likely to interact with other concurrent environmental changes to regulate stream productivity. Indeed, our results suggest that in the absence of increased nutrient inputs, Arctic streams will be less sensitive to future changes in other habitat variables such as temperature and DOC loading.


Asunto(s)
Cambio Climático , Nitrógeno/toxicidad , Ríos/química , Regiones Árticas , Biopelículas , Carbono , Ecosistema , Nitrógeno/química , Suelo , Suecia , Temperatura
9.
Ecol Appl ; 26(2): 545-56, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27209794

RESUMEN

Human activities have exerted a powerful influence on the biogeochemical cycles of nitrogen (N) and carbon (C) and drive changes that can be a challenge to predict given the influence of multiple environmental stressors. This study focused on understanding how land management and climate change have together influenced terrestrial N storage and watershed inorganic N export across boreal and sub-arctic landscapes in northern Sweden. Using long-term discharge and nutrient concentration data that have been collected continuously for over three decades, we calculated the hydrologic inorganic N export from nine watersheds in this region. We found a consistent decline in inorganic N export from 1985 to 2011 over the entire region from both small and large watersheds, despite the absence of any long-term trend in river discharge during this period. The steepest declines in inorganic N export were observed during the growing season, consistent with the hypothesis that observed changes are biologically mediated and are not the result of changes in long-term hydrology. Concurrent with the decrease in inorganic N export, we report sustained increases in terrestrial N accumulation in forest biomass and soils across northern Sweden. Given the close communication of nutrient and energy stores between plants, soils, and waters, our results indicate a regional tightening of the N cycle in an already N-limited environment as a result of changes in forest management and climate-mediated growth increases. Our results are consistent with declining inorganic N efflux previously reported from small headwater streams in other ecosystems and shed new light on the mechanisms controlling these patterns by identifying corresponding shifts in the terrestrial N balance, which have been altered by a combination of management activities and climate change.


Asunto(s)
Bosques , Nitrógeno/química , Ríos/química , Suecia , Factores de Tiempo , Movimientos del Agua , Contaminantes Químicos del Agua/química
10.
Ecology ; 96(2): 381-91, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26240860

RESUMEN

River systems form dendritic ecological networks that influence the spatial structure of riverine communities. Few empirical studies have evaluated how regional, dispersal-related processes and local habitat factors interact to govern network patterns of species composition. We explore such interactions in a boreal watershed and show that riparian plant species richness increases strongly with drainage size, i.e., with downstream position in the network. Assemblage composition was nested, with new species successively added downstream. These spatial patterns in species composition were related to a combination of local and regional processes. Breadth in local habitat conditions increased downstream in the network, resulting in higher habitat heterogeneity and reduced niche overlap among species, which together with similar trends in disturbance, allows more species to coexist. Riparian edaphic conditions were also increasingly favorable to more species within the regional pool along larger streams, with greater nitrogen availability (manifested as lower C:N) and more rapid mineralization of C and N (as indicated by ratios of stable isotopes) observed with downstream position in the network. The number of species with the capacity for water dispersal increased with stream size, providing a mechanistic link between plant traits and the downstream accumulation of species as more propagules arrive from upstream sites. Similarity in species composition between sites was related to both geographical and environmental distance. Our results provide the first empirical evidence that position in the river network drives spatial patterns in riparian plant diversity and composition by the joint influence of local (disturbance, habitat conditions, and habitat breadth) and regional (dispersal) forces.


Asunto(s)
Biodiversidad , Plantas/clasificación , Ríos , Demografía , Modelos Teóricos , Especificidad de la Especie
11.
Ecology ; 94(10): 2249-62, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24358711

RESUMEN

Ecological theory argues that the controls over ecosystem processes are structured hierarchically, with broader-scale drivers acting as constraints over the interactions and dynamics at nested levels of organization. In river ecosystems, these interactions may arise from broadscale variation in channel form that directly shapes benthic habitat structure and indirectly constrains resource supply and biological activity within individual reaches. To evaluate these interactions, we identified sediment characteristics, water chemistry, and denitrifier community structure as factors influencing benthic denitrification rates in a sixth-order river that flows through two physiographic provinces and the transitional zone between them, each with distinct geomorphological properties. We found that denitrification rates tracked spatial changes in sediment characteristics and varied seasonally with expected trends in stream primary production. Highest rates were observed during the spring and summer seasons in the physiographic province dominated by fine-grained sediments, illustrating how large-scale changes in river structure can constrain the location of denitrification hotspots. In addition, nirS and nirK community structure each responded differently to variation in channel form, possibly due to changes in dissolved oxygen and organic matter supply. This shift in denitrifier community structure coincident with higher rates of N removal via denitrification suggests that microbial community structure may influence biogeochemical processes.


Asunto(s)
Bacterias/clasificación , Desnitrificación/fisiología , Ríos/química , Ríos/microbiología , Microbiología del Agua , Alabama , Bacterias/metabolismo , Sedimentos Geológicos/química , Estaciones del Año
12.
Nat Commun ; 13(1): 5125, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-36045120

RESUMEN

One likely consequence of global climate change is an increased frequency and intensity of droughts at high latitudes. Here we use a 17-year record from 13 nested boreal streams to examine direct and lagged effects of summer drought on the quantity and quality of dissolved organic carbon (DOC) inputs from catchment soils. Protracted periods of drought reduced DOC concentrations in all catchments but also led to large stream DOC pulses upon rewetting. Concurrent changes in DOC optical properties and chemical character suggest that seasonal drying and rewetting trigger soil processes that alter the forms of carbon supplied to streams. Contrary to expectations, clearest drought effects were observed in larger watersheds, whereas responses were most muted in smaller, peatland-dominated catchments. Collectively, our results indicate that summer drought causes a fundamental shift in the seasonal distribution of DOC concentrations and character, which together operate as primary controls over the ecological and biogeochemical functioning of northern aquatic ecosystems.


Asunto(s)
Sequías , Ecosistema , Carbono/química , Materia Orgánica Disuelta , Ríos/química , Suelo/química
13.
Ecol Appl ; 21(3): 640-60, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21639034

RESUMEN

Rates of nitrogen (N) deposition have increased in arid and semiarid ecosystems, but few studies have examined the impacts of long-term N enrichment on ecological processes in deserts. We conducted a multiyear, nutrient-addition study within 15 Sonoran Desert sites across the rapidly growing metropolitan area of Phoenix, Arizona (USA). We hypothesized that desert plants and soils would be sensitive to N enrichment, but that these effects would vary among functional groups that differ in terms of physiological responsiveness, proximity to surface N sources, and magnitude of carbon (C) or water limitation. Inorganic N additions augmented net potential nitrification in soils, moreso than net potential N mineralization, highlighting the important role of nitrifying microorganisms in the nitrate economy of drylands. Winter annual plants were also responsive to nutrient additions, exhibiting a climate-driven cascade of resource limitation, from little to no production in seasons of low rainfall (winter 2006 and 2007), to moderate N limitation with average precipitation (winter 2009), to limitation by both N and P in a season of above-normal rainfall (winter 2008). Herbaceous production is a potentially important mechanism of N retention in arid ecosystems, capable of immobilizing an amount equal to or greater than that deposited annually to soils in this urban airshed. However, interannual variability in precipitation and abiotic processes that limit the incorporation of detrital organic matter into soil pools may limit this role over the long term. In contrast, despite large experimental additions of N and P over four years, growth of Larrea tridentata, the dominant perennial plant of the Sonoran Desert, was unresponsive to nutrient enrichment, even during wet years. Finally, there did not appear to be strong ecological interactions between nutrient addition and location relative to the city, despite the nearby activity of nearly four million people, perhaps due to loss or transfer pathways that limit long-term N enrichment of ecosystems by the urban atmosphere.


Asunto(s)
Ciudades , Clima Desértico , Ecosistema , Suelo , Población Urbana , Movimientos del Aire , Arizona , Monitoreo del Ambiente , Fertilizantes , Humanos , Desarrollo de la Planta , Plantas/química , Factores de Tiempo
14.
Nat Commun ; 11(1): 1795, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32286262

RESUMEN

Drought is a global phenomenon, with widespread implications for freshwater ecosystems. While droughts receive much attention at lower latitudes, their effects on northern river networks remain unstudied. We combine a reach-scale manipulation experiment, observations during the extreme 2018 drought, and historical monitoring data to examine the impact of drought in northern boreal streams. Increased water residence time during drought promoted reductions in aerobic metabolism and increased concentrations of reduced solutes in both stream and hyporheic water. Likewise, data during the 2018 drought revealed widespread hypoxic conditions and shifts towards anaerobic metabolism, especially in headwaters. Finally, long-term data confirmed that past summer droughts have led to similar metabolic alterations. Our results highlight the potential for drought to promote biogeochemical shifts that trigger poor water quality conditions in boreal streams. Given projected increases in hydrological extremes at northern latitudes, the consequences of drought for the health of running waters warrant attention.

15.
Ecology ; 89(4): 1089-100, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18481533

RESUMEN

Hydrologic flow and connectivity act as important determinants of ecological pattern and process in heterogeneous landscapes. Here we examine how the routing of water through the drainage network of an upper Sonoran Desert basin influences landscape patterns of soil respiration (SR) at both seasonal and event-based timescales. At seasonal timescales, SR varied up to 13-fold with downstream position in the drainage network, and annual estimates of CO2 efflux ranged from 185 g C x m(-2) x yr(-1) to 1190 g C x m(-2) x yr(-1) for sites arrayed along the same flow path. Spatial patterns of SR were unrelated to the carbon and water content of surface soils, but rather tracked changes in plant size and productivity, which in turn reflect downstream increases in groundwater availability. The relative importance of precipitation and temperature as drivers of SR also changed with landscape position, with the latter becoming more important in downstream locations. At the scale of individual precipitation events, SR increased up to 30-fold upon rewetting but typically returned to background levels within 24 h, even when soil moisture remained elevated. Unlike patterns observed at seasonal scales, event-based losses of CO2 varied across the landscape as a function of the organic-matter content in surface soils. Results from labile carbon amendments confirm that CO2 losses following precipitation pulses are initially constrained by substrate availability, not soil drying. By mediating spatial patterns of vegetation structure and soil resource availability, drainage networks represent an important physical template upon which belowground processes are organized in desert basins.


Asunto(s)
Clima Desértico , Microbiología del Suelo , Suelo , Agua , Bacterias/metabolismo , Dióxido de Carbono/metabolismo , Ecosistema , Lluvia , Estaciones del Año
16.
Ambio ; 47(5): 546-556, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29098602

RESUMEN

Drainage of forested wetlands for increased timber production has profoundly altered the hydrology and water quality of their downstream waterways. Some ditches need network maintenance (DNM), but potential positive effects on tree productivity must be balanced against environmental impacts. Currently, no clear guidelines exist for DNM that strike this balance. Our study helps begin to prioritise DNM by: (1) quantifying ditches by soil type in the 68 km2 Krycklan Catchment Study in northern Sweden and (2) using upslope catchment area algorithms on new high-resolution digital elevation models to determine their likelihood to drain water. Ditches nearly doubled the size of the stream network (178-327 km) and 17% of ditches occurred on well-draining sedimentary soils, presumably making DNM unwarranted. Modelling results suggest that 25-50% of ditches may never support flow. With new laser scanning technology, simple mapping and modelling methods can locate ditches and model their function, facilitating efforts to balance DNM with environmental impacts.


Asunto(s)
Bosques , Humedales , Hidrología , Suelo , Suecia
17.
Environ Toxicol Chem ; 37(12): 3011-3017, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30183099

RESUMEN

We report concentrations of polychlorinated biphenyls, polybrominated diphenyl ethers, novel flame retardants, and naturally occurring bromoanisoles in water and filter-feeding black fly (Simuliidae) larvae in 3 tundra streams in northern Sweden. The results demonstrate that black fly larvae accumulate a wide range of organic contaminants and can be used as bioindicators of water pollution in Arctic streams. Environ Toxicol Chem 2018;37:3011-3017. © 2018 SETAC.


Asunto(s)
Monitoreo del Ambiente , Residuos Industriales/análisis , Ríos/química , Simuliidae/metabolismo , Contaminantes Químicos del Agua/análisis , Animales , Regiones Árticas , Retardadores de Llama/análisis , Éteres Difenilos Halogenados/análisis , Larva/metabolismo , Bifenilos Policlorados/análisis , Análisis de Componente Principal , Suecia , Tundra
18.
Nat Ecol Evol ; 2(9): 1443-1448, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30013133

RESUMEN

Effective societal responses to rapid climate change in the Arctic rely on an accurate representation of region-specific ecosystem properties and processes. However, this is limited by the scarcity and patchy distribution of field measurements. Here, we use a comprehensive, geo-referenced database of primary field measurements in 1,840 published studies across the Arctic to identify statistically significant spatial biases in field sampling and study citation across this globally important region. We find that 31% of all study citations are derived from sites located within 50 km of just two research sites: Toolik Lake in the USA and Abisko in Sweden. Furthermore, relatively colder, more rapidly warming and sparsely vegetated sites are under-sampled and under-recognized in terms of citations, particularly among microbiology-related studies. The poorly sampled and cited areas, mainly in the Canadian high-Arctic archipelago and the Arctic coastline of Russia, constitute a large fraction of the Arctic ice-free land area. Our results suggest that the current pattern of sampling and citation may bias the scientific consensuses that underpin attempts to accurately predict and effectively mitigate climate change in the region. Further work is required to increase both the quality and quantity of sampling, and incorporate existing literature from poorly cited areas to generate a more representative picture of Arctic climate change and its environmental impacts.


Asunto(s)
Cambio Climático , Regiones Árticas , Ecosistema , Sesgo de Selección , Análisis Espacial
19.
Ecol Evol ; 7(4): 1068-1077, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28303178

RESUMEN

Although the importance of stream condition for leaf litter decomposition has been extensively studied, little is known about how processing rates change in response to altered riparian vegetation community composition. We investigated patterns of plant litter input and decomposition across 20 boreal headwater streams that varied in proportions of riparian deciduous and coniferous trees. We measured a suite of in-stream physical and chemical characteristics, as well as the amount and type of litter inputs from riparian vegetation, and related these to decomposition rates of native (alder, birch, and spruce) and introduced (lodgepole pine) litter species incubated in coarse- and fine-mesh bags. Total litter inputs ranged more than fivefold among sites and increased with the proportion of deciduous vegetation in the riparian zone. In line with differences in initial litter quality, mean decomposition rate was highest for alder, followed by birch, spruce, and lodgepole pine (12, 55, and 68% lower rates, respectively). Further, these rates were greater in coarse-mesh bags that allow colonization by macroinvertebrates. Variance in decomposition rate among sites for different species was best explained by different sets of environmental conditions, but litter-input composition (i.e., quality) was overall highly important. On average, native litter decomposed faster in sites with higher-quality litter input and (with the exception of spruce) higher concentrations of dissolved nutrients and open canopies. By contrast, lodgepole pine decomposed more rapidly in sites receiving lower-quality litter inputs. Birch litter decomposition rate in coarse-mesh bags was best predicted by the same environmental variables as in fine-mesh bags, with additional positive influences of macroinvertebrate species richness. Hence, to facilitate energy turnover in boreal headwaters, forest management with focus on conifer production should aim at increasing the presence of native deciduous trees along streams, as they promote conditions that favor higher decomposition rates of terrestrial plant litter.

20.
Ambio ; 46(3): 311-323, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27804095

RESUMEN

Land use is known to alter the nature of land-water interactions, but the potential effects of widespread forest management on headwaters in boreal regions remain poorly understood. We evaluated the importance of catchment land use, land cover, and local stream variables for macroinvertebrate community and functional trait diversity in 18 boreal headwater streams. Variation in macroinvertebrate metrics was often best explained by in-stream variables, primarily water chemistry (e.g. pH). However, variation in stream variables was, in turn, significantly associated with catchment-scale forestry land use. More specifically, streams running through catchments that were dominated by young (11-50 years) forests had higher pH, greater organic matter standing stock, higher abundance of aquatic moss, and the highest macroinvertebrate diversity, compared to streams running through recently clear-cut and old forests. This indicates that catchment-scale forest management can modify in-stream habitat conditions with effects on stream macroinvertebrate communities and that characteristics of younger forests may promote conditions that benefit headwater biodiversity.


Asunto(s)
Biodiversidad , Bosques , Invertebrados , Ríos , Animales , Suecia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA