Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Nat Immunol ; 24(3): 414-422, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36732425

RESUMEN

Interferon-γ (IFNγ) is an important mediator of cellular immune responses, but high systemic levels of this cytokine are associated with immunopathology. IFNγ binds to its receptor (IFNγR) and to extracellular matrix (ECM) via four positively charged C-terminal amino acids (KRKR), the ECM-binding domain (EBD). Across evolution, IFNγ is not well conserved, but the EBD is highly conserved, suggesting a critical function. Here, we show that IFNγ lacking the EBD (IFNγΔKRKR) does not bind to ECM but still binds to the IFNγR and retains bioactivity. Overexpression of IFNγΔKRKR in tumors reduced local ECM binding, increased systemic levels and induced sickness behavior, weight loss and toxicity. To analyze the function of the EBD during infection, we generated IFNγΔKRKR mice lacking the EBD by using CRISPR-Cas9. Infection with lymphocytic choriomeningitis virus resulted in higher systemic IFNγΔKRKR levels, enhanced sickness behavior, weight loss and fatal toxicity. We conclude that local retention of IFNγ is a pivotal mechanism to protect the organism from systemic toxicity during prolonged immune stimulation.


Asunto(s)
Citocinas , Neoplasias , Ratones , Animales , Citocinas/metabolismo , Interferón gamma/metabolismo , Transducción de Señal , Matriz Extracelular/metabolismo
4.
Mol Cell ; 82(11): 2069-2083.e8, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35427468

RESUMEN

Cellular mRNA-binding proteins (mRBPs) are major posttranscriptional regulators of gene expression. Although many posttranslational modification sites in mRBPs have been identified, little is known about how these modifications regulate mRBP function. Here, we developed quantitative RNA-interactome capture (qRIC) to quantify the fraction of mRBPs pulled down with polyadenylated mRNAs. Combining qRIC with phosphoproteomics allowed us to systematically compare pull-down efficiencies of phosphorylated and nonphosphorylated forms of mRBPs. Almost 200 phosphorylation events affected pull-down efficiency compared with the unmodified mRBPs and thus have regulatory potential. Our data capture known regulatory phosphorylation sites in ELAVL1, SF3B1, and UPF1 and identify potential regulatory sites. Follow-up experiments on the splicing regulator RBM20 revealed multiple phosphorylation sites in the C-terminal disordered region affecting nucleocytoplasmic localization, association with cytoplasmic ribonucleoprotein granules, and alternative splicing. Together, we show that qRIC in conjunction with phosphoproteomics is a scalable method to identify functional posttranslational modification sites in mRBPs.


Asunto(s)
Proteoma , Proteínas de Unión al ARN , Fosforilación , Proteoma/genética , Proteoma/metabolismo , ARN/metabolismo , Empalme del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
5.
EMBO J ; 41(21): e110372, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36124865

RESUMEN

In a genome-wide screening for components of the dsDNA-break-induced IKK-NF-κB pathway, we identified scores of regulators, including tumor susceptibility gene TSG101. TSG101 is essential for DNA damage-induced formation of cellular poly(ADP-ribose) (PAR). TSG101 binds to PARP1 and is required for PARP1 activation. This function of TSG101 is independent of its role in the ESCRT-I endosomal sorting complex. In the absence of TSG101, the PAR-dependent formation of a nuclear PARP1-IKKγ signalosome, which triggers IKK activation, is impaired. According to its requirement for PARP1 and NF-κB activation, TSG101-deficient cells are defective in DNA repair and apoptosis protection. Loss of TSG101 results in PARP1 trapping at damage sites and mimics the effect of pharmacological PARP inhibition. We also show that the loss of TSG101 in connection with inactivated tumor suppressors BRCA1/2 in breast cancer cells is lethal. Our results imply TSG101 as a therapeutic target to achieve synthetic lethality in cancer treatment.


Asunto(s)
FN-kappa B , Poli ADP Ribosilación , FN-kappa B/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Daño del ADN , Reparación del ADN , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo
6.
Development ; 148(17)2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34463328

RESUMEN

Pathogenic gene variants in humans that affect the sonic hedgehog (SHH) pathway lead to severe brain malformations with variable penetrance due to unknown modifier genes. To identify such modifiers, we established novel congenic mouse models. LRP2-deficient C57BL/6N mice suffer from heart outflow tract defects and holoprosencephaly caused by impaired SHH activity. These defects are fully rescued on a FVB/N background, indicating a strong influence of modifier genes. Applying comparative transcriptomics, we identified Pttg1 and Ulk4 as candidate modifiers upregulated in the rescue strain. Functional analyses showed that ULK4 and PTTG1, both microtubule-associated proteins, are positive regulators of SHH signaling, rendering the pathway more resilient to disturbances. In addition, we characterized ULK4 and PTTG1 as previously unidentified components of primary cilia in the neuroepithelium. The identification of genes that powerfully modulate the penetrance of genetic disturbances affecting the brain and heart is likely relevant to understanding the variability in human congenital disorders.


Asunto(s)
Encéfalo/embriología , Genes Modificadores/fisiología , Proteínas Hedgehog/metabolismo , Transducción de Señal , Animales , Encéfalo/metabolismo , Cilios/metabolismo , Modelos Animales de Enfermedad , Cardiopatías Congénitas/genética , Proteínas Hedgehog/genética , Holoprosencefalia/genética , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Ratones , Mutación , Células Neuroepiteliales/metabolismo , Penetrancia , Fenotipo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Securina/genética , Securina/metabolismo
7.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34039707

RESUMEN

Specified intestinal epithelial cells reprogram and contribute to the regeneration and renewal of the epithelium upon injury. Mutations that deregulate such renewal processes may contribute to tumorigenesis. Using intestinal organoids, we show that concomitant activation of Notch signaling and ablation of p53 induce a highly proliferative and regenerative cell state, which is associated with increased levels of Yap and the histone methyltransferase Mll1. The induced signaling system orchestrates high proliferation, self-renewal, and niche-factor-independent growth, and elevates the trimethylation of histone 3 at lysine 4 (H3K4me3). We demonstrate that Yap and Mll1 are also elevated in patient-derived colorectal cancer (CRC) organoids and control growth and viability. Our data suggest that Notch activation and p53 ablation induce a signaling circuitry involving Yap and the epigenetic regulator Mll1, which locks cells in a proliferative and regenerative state that renders them susceptible for tumorigenesis.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , N-Metiltransferasa de Histona-Lisina/fisiología , Proteína de la Leucemia Mieloide-Linfoide/fisiología , Receptores Notch/metabolismo , Transducción de Señal , Factores de Transcripción/fisiología , Proteína p53 Supresora de Tumor/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Humanos , Mutación , Organoides/metabolismo , Factores de Transcripción/metabolismo
8.
Cell Mol Life Sci ; 78(7): 3525-3542, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33469705

RESUMEN

Metastasis Associated in Colon Cancer 1 (MACC1) is a novel prognostic, predictive and causal biomarker for tumor progression and metastasis in many cancer types, including colorectal cancer. Besides its clinical value, little is known about its molecular function. Its similarity to SH3BP4, involved in regulating uptake and recycling of transmembrane receptors, suggests a role of MACC1 in endocytosis. By exploring the MACC1 interactome, we identified the clathrin-mediated endocytosis (CME)-associated proteins CLTC, DNM2 and AP-2 as MACC1 binding partners. We unveiled a MACC1-dependent routing of internalized transferrin receptor towards recycling. Elevated MACC1 expression caused also the activation and internalization of EGFR, a higher rate of receptor recycling, as well as earlier and stronger receptor activation and downstream signaling. These effects are limited by deletion of CME-related protein interaction sites in MACC1. Thus, MACC1 regulates CME and receptor recycling, causing increased growth factor-mediated downstream signaling and cell proliferation. This novel mechanism unveils potential therapeutic intervention points restricting MACC1-driven metastasis.


Asunto(s)
Clatrina/metabolismo , Neoplasias Colorrectales/patología , Endocitosis , Regulación Neoplásica de la Expresión Génica , Receptores de Transferrina/metabolismo , Transactivadores/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/metabolismo , Proliferación Celular , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Ratones , Proteoma/análisis , Proteoma/metabolismo , Receptores de Transferrina/genética , Transactivadores/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Chembiochem ; 22(3): 548-556, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-32974998

RESUMEN

Selective targeting of DNA by means of fluorescent labeling has become a mainstay in the life sciences. While genetic engineering serves as a powerful technique and allows the visualization of nucleic acid by using DNA-targeting fluorescent fusion proteins in a cell-type- and subcellular-specific manner, it relies on the introduction of foreign genes. On the other hand, DNA-binding small fluorescent molecules can be used without genetic engineering, but they are not spatially restricted. Herein, we report a photocaged version of the DNA dye Hoechst33342 (pcHoechst), which can be uncaged by using UV to blue light for the selective staining of chromosomal DNA in subnuclear regions of live cells. Expanding its application to a vertebrate model organism, we demonstrate uncaging in epithelial cells and short-term cell tracking in vivo in zebrafish. We envision pcHoechst as a valuable tool for targeting and interrogating DNA with precise spatiotemporal resolution in living cells and wild-type organisms.


Asunto(s)
ADN/química , Colorantes Fluorescentes/química , Animales , Células Epiteliales/química , Células HeLa , Humanos , Luz , Proteínas Luminiscentes/química , Estructura Molecular , Procesos Fotoquímicos , Proteínas Recombinantes de Fusión/química , Pez Cebra
10.
Cytometry A ; 97(5): 504-514, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31603601

RESUMEN

The polymodal channel TRPV4 has been shown to regulate development and maintenance of cartilage. Here we investigate whether TRPV4 activity regulates the early deposition and structure of collagen matrix in the femoral head cartilage by comparing the 3D morphology and the sub-micrometer organization of the collagen matrix between wild type and Trpv4 -/- mice pups four to five days old. Two-photon microscopy can be used to conduct label-free imaging of cartilage, as collagen generates a second harmonic signal (second harmonic generation [SHG]) under pulsed infrared excitation. In one set of measurements, we use circularly polarized laser light to reconstruct the 3D morphology of the femoral head cartilage and to measure the tissue thickness. Second, by rotating the direction of the linearly polarized light and using polarized SHG detection, we investigate the sub-micrometer orientation of collagen fibers in the cartilage. At this developmental stage, we cannot detect statistically significant differences between the two mice strains, although a tendency toward a more random orientation of collagen fibers and a higher thickness of the whole cartilage seems to characterize the Trpv4 -/- mice. We discuss possible reasons for these observations. © 2019 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.


Asunto(s)
Microscopía , Microscopía de Generación del Segundo Armónico , Animales , Cartílago/metabolismo , Colágeno/metabolismo , Ratones , Canales Catiónicos TRPV/genética
11.
Cell Mol Life Sci ; 76(10): 1987-2002, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30734065

RESUMEN

At the blood-brain barrier (BBB), claudin (Cldn)-5 is thought to be the dominant tight junction (TJ) protein, with minor contributions from Cldn3 and -12, and occludin. However, the BBB appears ultrastructurally normal in Cldn5 knock-out mice, suggesting that further Cldns and/or TJ-associated marvel proteins (TAMPs) are involved. Microdissected human and murine brain capillaries, quickly frozen to recapitulate the in vivo situation, showed high transcript expression of Cldn5, -11, -12, and -25, and occludin, but also abundant levels of Cldn1 and -27 in man. Protein levels were quantified by a novel epitope dilution assay and confirmed the respective mRNA data. In contrast to the in vivo situation, Cldn5 dominates BBB expression in vitro, since all other TJ proteins are at comparably low levels or are not expressed. Cldn11 was highly abundant in vivo and contributed to paracellular tightness by homophilic oligomerization, but almost disappeared in vitro. Cldn25, also found at high levels, neither tightened the paracellular barrier nor interconnected opposing cells, but contributed to proper TJ strand morphology. Pathological conditions (in vivo ischemia and in vitro hypoxia) down-regulated Cldn1, -3, and -12, and occludin in cerebral capillaries, which was paralleled by up-regulation of Cldn5 after middle cerebral artery occlusion in rats. Cldn1 expression increased after Cldn5 knock-down. In conclusion, this complete Cldn/TAMP profile demonstrates the presence of up to a dozen TJ proteins in brain capillaries. Mouse and human share a similar and complex TJ profile in vivo, but this complexity is widely lost under in vitro conditions.


Asunto(s)
Barrera Hematoencefálica , Claudina-5/genética , Proteínas de Uniones Estrechas/genética , Uniones Estrechas/metabolismo , Adulto , Animales , Encéfalo/irrigación sanguínea , Encéfalo/metabolismo , Células Cultivadas , Claudina-5/metabolismo , Femenino , Expresión Génica , Células HEK293 , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Persona de Mediana Edad , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas de Uniones Estrechas/metabolismo , Uniones Estrechas/ultraestructura
12.
PLoS One ; 19(3): e0282938, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38512983

RESUMEN

Previously, we found that Wnt and Notch signaling govern stem cells of clear cell kidney cancer (ccRCC) in patients. To mimic stem cell responses in the normal kidney in vitro in a marker-unbiased fashion, we have established tubular organoids (tubuloids) from total single adult mouse kidney epithelial cells in Matrigel and serum-free conditions. Deep proteomic and phosphoproteomic analyses revealed that tubuloids resembled renewal of adult kidney tubular epithelia, since tubuloid cells displayed activity of Wnt and Notch signaling, long-term proliferation and expression of markers of proximal and distal nephron lineages. In our wish to model stem cell-derived human ccRCC, we have generated two types of genetic double kidney mutants in mice: Wnt-ß-catenin-GOF together with Notch-GOF and Wnt-ß-catenin-GOF together with a most common alteration in ccRCC, Vhl-LOF. An inducible Pax8-rtTA-LC1-Cre was used to drive recombination specifically in adult kidney epithelial cells. We confirmed mutagenesis of ß-catenin, Notch and Vhl alleles on DNA, protein and mRNA target gene levels. Surprisingly, we observed symptoms of chronic kidney disease (CKD) in mutant mice, but no increased proliferation and tumorigenesis. Thus, the responses of kidney stem cells in the tubuloid and genetic systems produced different phenotypes, i.e. enhanced renewal versus CKD.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Insuficiencia Renal Crónica , Adulto , Humanos , Ratones , Animales , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , beta Catenina/metabolismo , Proteómica , Células Madre/metabolismo , Insuficiencia Renal Crónica/genética , Neoplasias Renales/genética , Neoplasias Renales/patología
13.
Life Sci Alliance ; 7(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38373798

RESUMEN

Ciliary defects cause several ciliopathies, some of which have late onset, suggesting cilia are actively maintained. Still, we have a poor understanding of the mechanisms underlying their maintenance. Here, we show Drosophila melanogaster IFT88 (DmIFT88/nompB) continues to move along fully formed sensory cilia. We further identify Inactive, a TRPV channel subunit involved in Drosophila hearing and negative-gravitaxis behaviour, and a yet uncharacterised Drosophila Guanylyl Cyclase 2d (DmGucy2d/CG34357) as DmIFT88 cargoes. We also show DmIFT88 binding to the cyclase´s intracellular part, which is evolutionarily conserved and mutated in several degenerative retinal diseases, is important for the ciliary localisation of DmGucy2d. Finally, acute knockdown of both DmIFT88 and DmGucy2d in ciliated neurons of adult flies caused defects in the maintenance of cilium function, impairing hearing and negative-gravitaxis behaviour, but did not significantly affect ciliary ultrastructure. We conclude that the sensory ciliary function underlying hearing in the adult fly requires an active maintenance program which involves DmIFT88 and at least two of its signalling transmembrane cargoes, DmGucy2d and Inactive.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/metabolismo , Cilios/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Audición
14.
Front Cell Dev Biol ; 11: 1173688, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37091972

RESUMEN

The specification of the forebrain relies on the precise regulation of WNT/ß-catenin signalling to support neuronal progenitor cell expansion, patterning, and morphogenesis. Imbalances in WNT signalling activity in the early neuroepithelium lead to congenital disorders, such as neural tube defects (NTDs). LDL receptor-related protein (LRP) family members, including the well-studied receptors LRP5 and LRP6, play critical roles in modulating WNT signalling capacity through tightly regulated interactions with their co-receptor Frizzled, WNT ligands, inhibitors and intracellular WNT pathway components. However, little is known about the function of LRP4 as a potential modulator of WNT signalling in the central nervous system. In this study, we investigated the role of LRP4 in the regulation of WNT signalling during early mouse forebrain development. Our results demonstrate that LRP4 can modulate LRP5- and LRP6-mediated WNT signalling in the developing forebrain prior to the onset of neurogenesis at embryonic stage 9.5 and is therefore essential for accurate neural tube morphogenesis. Specifically, LRP4 functions as a genetic modifier for impaired mitotic activity and forebrain hypoplasia, but not for NTDs in LRP6-deficient mutants. In vivo and in vitro data provide evidence that LRP4 is a key player in fine-tuning WNT signalling capacity and mitotic activity of mouse neuronal progenitors and of human retinal pigment epithelial (hTERT RPE-1) cells. Our data demonstrate the crucial roles of LRP4 and LRP6 in regulating WNT signalling and forebrain development and highlight the need to consider the interaction between different signalling pathways to understand the underlying mechanisms of disease. The findings have significant implications for our mechanistic understanding of how LRPs participate in controlling WNT signalling.

15.
Sci Rep ; 13(1): 22355, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-38102304

RESUMEN

The African naked mole-rat (Heterocephalus glaber) is an attractive model for cancer and aging research due to its peculiar biological traits, such as unusual long life span and resistance to cancer. The establishment of induced pluripotent stem cells (iPSCs) would be a useful tool for in vitro studies but, in this species, the reprogramming of somatic cells is problematic because of their stable epigenome. Therefore, an alternative approach is the derivation of embryonic stem cells from in vitro-produced embryos. In this study, immature oocytes, opportunistically retrieved from sexually inactive females, underwent first in vitro maturation (IVM) and then in vitro fertilization via piezo-intracytoplasmic sperm injection (ICSI). Injected oocytes were then cultivated with two different approaches: (i) in an in vitro culture and (ii) in an isolated mouse oviduct organ culture system. The second approach led to the development of blastocysts, which were fixed and stained for further analysis.


Asunto(s)
Neoplasias , Inyecciones de Esperma Intracitoplasmáticas , Animales , Femenino , Masculino , Ratones , Blastocisto , Fertilización In Vitro , Oocitos , Semen , Ratas Topo
16.
Genome Med ; 15(1): 50, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37468900

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is characterized by the intra- and extracellular accumulation of amyloid-ß (Aß) peptides. How Aß aggregates perturb the proteome in brains of patients and AD transgenic mouse models, remains largely unclear. State-of-the-art mass spectrometry (MS) methods can comprehensively detect proteomic alterations, providing relevant insights unobtainable with transcriptomics investigations. Analyses of the relationship between progressive Aß aggregation and protein abundance changes in brains of 5xFAD transgenic mice have not been reported previously. METHODS: We quantified progressive Aß aggregation in hippocampus and cortex of 5xFAD mice and controls with immunohistochemistry and membrane filter assays. Protein changes in different mouse tissues were analyzed by MS-based proteomics using label-free quantification; resulting MS data were processed using an established pipeline. Results were contrasted with existing proteomic data sets from postmortem AD patient brains. Finally, abundance changes in the candidate marker Arl8b were validated in cerebrospinal fluid (CSF) from AD patients and controls using ELISAs. RESULTS: Experiments revealed faster accumulation of Aß42 peptides in hippocampus than in cortex of 5xFAD mice, with more protein abundance changes in hippocampus, indicating that Aß42 aggregate deposition is associated with brain region-specific proteome perturbations. Generating time-resolved data sets, we defined Aß aggregate-correlated and anticorrelated proteome changes, a fraction of which was conserved in postmortem AD patient brain tissue, suggesting that proteome changes in 5xFAD mice mimic disease-relevant changes in human AD. We detected a positive correlation between Aß42 aggregate deposition in the hippocampus of 5xFAD mice and the abundance of the lysosome-associated small GTPase Arl8b, which accumulated together with axonal lysosomal membranes in close proximity of extracellular Aß plaques in 5xFAD brains. Abnormal aggregation of Arl8b was observed in human AD brain tissue. Arl8b protein levels were significantly increased in CSF of AD patients. CONCLUSIONS: We report a comprehensive biochemical and proteomic investigation of hippocampal and cortical brain tissue derived from 5xFAD transgenic mice, providing a valuable resource to the neuroscientific community. We identified Arl8b, with significant abundance changes in 5xFAD and AD patient brains. Arl8b might enable the measurement of progressive lysosome accumulation in AD patients and have clinical utility as a candidate biomarker.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Humanos , Animales , Enfermedad de Alzheimer/metabolismo , Proteoma/metabolismo , Proteómica , Péptidos beta-Amiloides/metabolismo , Ratones Transgénicos , Encéfalo/metabolismo , Biomarcadores/metabolismo , Modelos Animales de Enfermedad
17.
J Biol Chem ; 286(9): 7070-81, 2011 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-21193407

RESUMEN

The glycosylphosphatidylinositol (GPI)-anchored neutrophil-specific receptor NB1 (CD177) presents the autoantigen proteinase 3 (PR3) on the membrane of a neutrophil subset. PR3-ANCA-activated neutrophils participate in small-vessel vasculitis. Since NB1 lacks an intracellular domain, we characterized components of the NB1 signaling complex that are pivotal for neutrophil activation. PR3-ANCA resulted in degranulation and superoxide production in the mNB1(pos)/PR3(high) neutrophils, but not in the mNB1(neg)/PR3(low) subset, whereas MPO-ANCA and fMLP caused similar responses. The NB1 signaling complex that was precipitated from plasma membranes contained the transmembrane receptor Mac-1 (CD11b/CD18) as shown by MS/MS analysis and immunoblotting. NB1 co-precipitation was less for CD11a and not detectable for CD11c. NB1 showed direct protein-protein interactions with both CD11b and CD11a by surface plasmon resonance analysis (SPR). However, when these integrins were presented as heterodimeric transmembrane proteins on transfected cells, only CD11b/CD18 (Mac-1)-transfected cells adhered to immobilized NB1 protein. This adhesion was inhibited by mAb against NB1, CD11b, and CD18. NB1, PR3, and Mac-1 were located within lipid rafts. In addition, confocal microscopy showed the strongest NB1 co-localization with CD11b and CD18 on the neutrophil. Stimulation with NB1-activating mAb triggered degranulation and superoxide production in mNB1(pos)/mPR3(high) neutrophils, and this effect was reduced using blocking antibodies to CD11b. CD11b blockade also inhibited PR3-ANCA-induced neutrophil activation, even when ß2-integrin ligand-dependent signals were omitted. We establish the pivotal role of the NB1-Mac-1 receptor interaction for PR3-ANCA-mediated neutrophil activation.


Asunto(s)
Anticuerpos Anticitoplasma de Neutrófilos/metabolismo , Isoantígenos/metabolismo , Antígeno de Macrófago-1/metabolismo , Mieloblastina/metabolismo , Neutrófilos/metabolismo , Receptores de Superficie Celular/metabolismo , Transducción de Señal/inmunología , Anticuerpos Anticitoplasma de Neutrófilos/inmunología , Membrana Celular/inmunología , Membrana Celular/metabolismo , Proteínas Ligadas a GPI/inmunología , Proteínas Ligadas a GPI/metabolismo , Glicosilfosfatidilinositoles/inmunología , Glicosilfosfatidilinositoles/metabolismo , Humanos , Inmunoglobulina G/inmunología , Inmunoglobulina G/metabolismo , Isoantígenos/inmunología , Antígeno de Macrófago-1/inmunología , Mieloblastina/inmunología , Activación Neutrófila/fisiología , Neutrófilos/inmunología , Receptores de Superficie Celular/inmunología , Estallido Respiratorio/fisiología , Superóxidos/inmunología , Superóxidos/metabolismo , Vasculitis/inmunología , Vasculitis/metabolismo
18.
Life Sci ; 310: 121114, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36273629

RESUMEN

AIMS: Prostaglandins are important signaling lipids with prostaglandin E2 (PGE2) known to be the most abundant prostaglandin across tissues. In kidney, PGE2 plays an important role in the regulation of kidney homeostasis through its EP receptor signaling. Catabolism of PGE2 yields the metabolic products that are widely considered biologically inactive. Although recent in vitro evidence suggested the ability of 15-keto-PGE2 (a downstream metabolite of PGE2) to activate EP receptors, the question whether 15-keto-PGE2 exhibits physiological roles remains unresolved. MATERIALS AND METHODS: Pharmacological treatment was performed in transgenic zebrafish embryos using 500 µM 15-keto-PGE2 and 20 µM EP receptors antagonists' solutions during zebrafish embryonic development. After the exposure period, the embryos were fixed for confocal microscopy imaging and glomerular morphology analysis. KEY FINDINGS: Here, we show that 15-keto-PGE2 can bind and stabilize EP2 and EP4 receptors on the plasma membrane in the yeast model. Using lipidomic analysis, we demonstrate both PGE2 and 15-keto-PGE2 are present at considerable levels in zebrafish embryos. Our high-resolution image analysis reveals the exogenous treatment with 15-keto-PGE2 perturbs glomerular vascularization during zebrafish development. Specifically, we show that the increased levels of 15-keto-PGE2 cause intercalation defects between podocytes and endothelial cells of glomerular capillaries effectively reducing the surface area of glomerular filtration barrier. Importantly, 15-keto-PGE2-dependent defects can be fully reversed by combined blockade of the EP2 and EP4 receptors. SIGNIFICANCE: Altogether, our results reveal 15-keto-PGE2 to be a biologically active metabolite that modulates the EP receptor signaling in vivo, thus playing a potential role in kidney biology.


Asunto(s)
Subtipo EP2 de Receptores de Prostaglandina E , Pez Cebra , Animales , Subtipo EP2 de Receptores de Prostaglandina E/metabolismo , Células Endoteliales/metabolismo , Subtipo EP4 de Receptores de Prostaglandina E , Prostaglandinas
19.
Sci Adv ; 8(33): eabk2814, 2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-35977016

RESUMEN

Telomeres are repetitive nucleotide sequences at the ends of each chromosome. It has been hypothesized that telomere attrition evolved as a tumor suppressor mechanism in large long-lived species. Long telomeres can silence genes millions of bases away through a looping mechanism called telomere position effect over long distances (TPE-OLD). The function of this silencing mechanism is unknown. We determined a set of 2322 genes with high positional conservation across replicatively aging species that includes known and candidate TPE-OLD genes that may mitigate potentially harmful effects of replicative aging. Notably, we identified PPP2R2C as a tumor suppressor gene, whose up-regulation by TPE-OLD in aged human fibroblasts leads to dephosphorylation of p70S6 kinase and mammalian target of rapamycin suppression. A mechanistic link between telomeres and a tumor suppressor mechanism supports the hypothesis that replicative aging fulfills a tumor suppressor function and motivates previously unknown antitumor and antiaging strategies.


Asunto(s)
Silenciador del Gen , Telómero , Anciano , Envejecimiento , Fibroblastos , Humanos , Serina-Treonina Quinasas TOR/genética , Telómero/genética
20.
Cell Rep ; 37(13): 110128, 2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34965412

RESUMEN

Microglia, the resident macrophages in the central nervous system, express receptors for classical neurotransmitters, such as γ-aminobutyric acid (GABA) and glutamate, suggesting that they sense synaptic activity. To detect microglial Ca2+ responses to neuronal activity, we generate transgenic mouse lines expressing the fluorescent Ca2+ indicator GCaMP6m, specifically in microglia and demonstrate that electrical stimulation of the Schaffer collateral pathway results in microglial Ca2+ responses in early postnatal but not adult hippocampus. Preceding the microglial responses, we also observe similar Ca2+ responses in astrocytes, and both are sensitive to tetrodotoxin. Blocking astrocytic glutamate uptake or GABA transport abolishes stimulation-induced microglial responses as well as antagonizing the microglial GABAB receptor. Our data, therefore, suggest that the neuronal activity-induced glutamate uptake and the release of GABA by astrocytes trigger the activation of GABAB receptors in microglia. This neuron, astrocyte, and microglia communication pathway might modulate microglial activity in developing neuronal networks.


Asunto(s)
Calcio/metabolismo , Ácido Glutámico/metabolismo , Hipocampo/metabolismo , Microglía/metabolismo , Neuronas/metabolismo , Receptores de GABA/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Animales Recién Nacidos , Estimulación Eléctrica , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA