Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nanoscale Adv ; 3(15): 4589-4596, 2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-36133479

RESUMEN

This work describes the synthesis of highly photocatalytically active TiO2 tubes (TiTBs) by combining centrifugal spinning and atomic layer deposition (ALD). Poly(vinyl pyrrolidone) (PVP) fibers were first produced by centrifugal spinning and subsequently coated with TiO2 with various film thicknesses in a fluidized bed ALD reactor. After annealing of the TiO2 ALD coated PVP fibers, TiO2 tubes (TiTBs) with excellent textural properties and diameters in the range from approx. 170 to 430 nm were obtained. The morphology and structure of all TiTBs were investigated by scanning and transmission electron microscopy (SEM and TEM), X-ray diffraction (XRD), and Brunauer-Emmett-Teller analysis (BET). Liquid phase photocatalysis was conducted to determine the photocatalytic activity of the TiTBs. The photocatalytic activity of the TiTBs obtained after 50 TiO2 ALD cycles (degradation rate 0.123 min-1) was twice that of the reference TiO2 P25. The underlying reasons for the remarkable photocatalytic performance were textural properties of the resulting tubes along with suitable crystallinity, embedded within the 1D tubular morphology. The herein presented proof-of-concept approach paves a way for the processing of various polymeric fibers into various tubular nanostructures.

2.
ACS Appl Mater Interfaces ; 12(29): 33386-33396, 2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32589393

RESUMEN

The continuous emission of nitrous oxides contributes to the overall air pollution and deterioration of air quality. In particular, an effective NO2 sensor capable of low concentration detection for continuous monitoring is demanded for safety, health, and wellbeing. The sensing performance of a metal oxide-based sensor is predominantly influenced by the availability of surface area for O2 adsorption and desorption, efficient charge transport, and size or thickness of the sensing layer. In this study, we utilized anodic one-dimensional (1D) TiO2 nanotube layers of 5 µm thick which offer large surface area and unidirectional electron transport pathway as a platform to accommodate thin SnO2 coatings as a sensing layer. Conformal and homogeneous SnO2 coatings across the entire inner and outer TiO2 nanotubes were achieved by atomic layer deposition with a controlled thickness of 4, 8, and 16 nm. The SnO2-coated TiO2 nanotube layers attained a higher sensing response than a reference Figaro SnO2 sensor. Specifically, the 8 nm SnO2-coated TiO2 nanotube layer has recorded up to ten-fold enhancement in response as compared to the blank nanotubes for the detection of 1 ppm NO2 at an operating temperature of 300 °C with 0.5 V applied bias. This is attributed to the SnO2/TiO2 heterojunction effect and controlled SnO2 thickness within the range of the Debye length. We demonstrated in this work, a tailored large surface area platform based on 1D nanotubes with thin active coatings as an efficient approach for sensing applications and beyond.

3.
Nanomaterials (Basel) ; 10(5)2020 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-32429573

RESUMEN

TiO2 nanotube layers (TNTs) decorated with Al2O3/MoS2/Al2O3 are investigated as a negative electrode for 3D Li-ion microbatteries. Homogenous nanosheets decoration of MoS2, sandwiched between Al2O3 coatings within self-supporting TNTs was carried out using atomic layer deposition (ALD) process. The structure, morphology, and electrochemical performance of the Al2O3/MoS2/Al2O3-decorated TNTs were studied using scanning transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and chronopotentiometry. Al2O3/MoS2/Al2O3-decorated TNTs deliver an areal capacity almost three times higher than that obtained for MoS2-decorated TNTs and as-prepared TNTs after 100 cycles at 1C. Moreover, stable and high discharge capacity (414 µAh cm-2) has been obtained after 200 cycles even at very fast kinetics (3C).

4.
ACS Appl Bio Mater ; 3(9): 6447-6456, 2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-35021776

RESUMEN

The present work exploits Ti sheets and TiO2 nanotube (TNT) layers and their surface modifications for the proliferation of different cells. Ti sheets with a native oxide layer, Ti sheets with a crystalline thermal oxide layer, and two kinds of TNT layers (prepared via electrochemical anodization) with a defined inner diameter of 12 and 15 nm were used as substrates. A part of the Ti sheets and the TNT layers was additionally coated by thin TiO2 coatings using atomic layer deposition (ALD). An increase in cell growth of WI-38 fibroblasts (>50%), MG-63 osteoblasts (>30%), and SH-SY5Y neuroblasts (>30%) was observed for all materials coated by five cycles ALD compared to their uncoated counterparts. The additional ALD TiO2 coatings changed the surface composition of all materials but preserved their original structure and protected them from unwanted crystallization and shape changes. The presented approach of mild surface modification by ALD has a significant effect on the materials' biocompatibility and is promising toward application in implant materials.

5.
Front Chem ; 7: 38, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30775363

RESUMEN

The present work presents a strategy to stabilize amorphous anodic self-organized TiO2 nanotube layers against morphological changes and crystallization upon extensive water soaking. The growth of needle-like nanoparticles was observed on the outer and inner walls of amorphous nanotube layers after extensive water soakings, in line with the literature on water annealing. In contrary, when TiO2 nanotube layers uniformly coated by thin TiO2 using atomic layer deposition (ALD) were soaked in water, the growth rates of needle-like nanoparticles were substantially reduced. We investigated the soaking effects of ALD TiO2 coatings with different thicknesses and deposition temperatures. Sufficiently thick TiO2 coatings (≈8.4 nm) deposited at different ALD process temperatures efficiently hamper the reactions between water and F- ions, maintain the amorphous state, and preserve the original tubular morphology. This work demonstrates the possibility of having robust amorphous 1D TiO2 nanotube layers that are very stable in water. This is very practical for diverse biomedical applications that are accompanied by extensive contact with an aqueous environment.

6.
ChemElectroChem ; 6(2): 336-341, 2019 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-31032171

RESUMEN

Herein, the synthesis of BiOCl nanoplatelets of various dimensions is demonstrated. These materials were prepared by anodic oxidation of Bi ingots in diluted HCl under dielectric breakdown conditions, triggered by a sufficiently high anodic field. Additionally, it is shown that the use of several other common diluted acids (HNO3, H2SO4, lactic acid) resulted in the formation of various different nanostructures. The addition of NH4F to the acidic electrolytes accelerated the growth rate resulting in bismuth-based nanostructures with comparably smaller dimensions and an enormous volume expansion observed during the growth. On the other hand, the addition of lactic acid to the acidic electrolytes decelerated the oxide growth rate. The resulting nanostructures were characterized using SEM, XRD and TEM. BiOCl nanoplatelets received by anodization in 1 M HCl were successfully employed for the photocatalytic decomposition of methylene blue dye and showed a superior performance compared to commercially available BiOCl powder with a similar crystalline structure, confirming its potential as a visible light photocatalyst.

7.
Int J Biol Macromol ; 65: 234-40, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24472505

RESUMEN

The present work aims to the development of innovative new derivatives of chitosan that can be used for medical applications. This innovation is based on the synthesis and characterization of chitosan-g-aminoanthracene derivatives. Thus, N-(anthracen-9-yl)-4,6-dichloro-[1,3,5]-triazin-2-amine (AT) reacted with chitosan by the following steps: at first, cyanuric chloride reacted with 9-aminoanthracene to obtain N-(anthracen-9-yl)-4,6-dichloro-[1,3,5]-triazin-2-amine (AT), then the AT reacted with chitosan to obtain (CH-g-AT). The final product of CH-g-AT was separated, purified and re-crystallized by dioxane. The structure of the prepared chitosan derivatives was confirmed by FTIR-ATR, solid-NMR, TGA, X-RD, and DSC. The new chitosan derivatives showed fluorescence spectra in liquid and in solid state as well. CH-g-AT showed also high antibacterial activity against gram -ve species (Escherichia coli).


Asunto(s)
Antibacterianos/síntesis química , Antibacterianos/farmacología , Quitosano/síntesis química , Quitosano/farmacología , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/farmacología , Antibacterianos/química , Técnicas de Química Sintética , Quitosano/química , Estabilidad de Medicamentos , Escherichia coli/efectos de los fármacos , Colorantes Fluorescentes/química , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA