Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Chem Biol ; 11(11): 862-9, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26436840

RESUMEN

Excessive aggregation of proteins has a major impact on cell fate and is a hallmark of amyloid diseases in humans. To resolve insoluble deposits and to maintain protein homeostasis, all cells use dedicated protein disaggregation, protein folding and protein degradation factors. Despite intense recent research, the underlying mechanisms controlling this key metabolic event are not well understood. Here, we analyzed how a single factor, the highly conserved serine protease HTRA1, degrades amyloid fibrils in an ATP-independent manner. This PDZ protease solubilizes protein fibrils and disintegrates the fibrillar core structure, allowing productive interaction of aggregated polypeptides with the active site for rapid degradation. The aggregate burden in a cellular model of cytoplasmic tau aggregation is thus reduced. Mechanistic aspects of ATP-independent proteolysis and its implications in amyloid diseases are discussed.


Asunto(s)
Péptidos beta-Amiloides/química , Amiloide/química , Fragmentos de Péptidos/química , Proteínas Recombinantes de Fusión/química , Serina Endopeptidasas/química , Proteínas tau/química , Amiloide/genética , Péptidos beta-Amiloides/genética , Transporte Biológico , Expresión Génica , Células HEK293 , Serina Peptidasa A1 que Requiere Temperaturas Altas , Humanos , Dominios PDZ , Fragmentos de Péptidos/genética , Agregado de Proteínas , Conformación Proteica , Proteolisis , Proteínas Recombinantes de Fusión/genética , Serina Endopeptidasas/genética , Proteínas tau/genética
2.
Angew Chem Int Ed Engl ; 54(12): 3592-7, 2015 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-25630797

RESUMEN

Today, DNA nanotechnology is one of the methods of choice to achieve spatiotemporal control of matter at the nanoscale. By combining the peculiar spatial addressability of DNA origami structures with the switchable mechanical movement of small DNA motifs, we constructed reconfigurable DNA nanochambers as dynamic compartmentalization systems. The reversible extension and contraction of the inner cavity of the structures was used to control the distance-dependent energy transfer between two preloaded fluorophores. Interestingly, single-molecule FRET studies revealed that the kinetics of the process are strongly affected by the choice of the switchable motifs and/or actuator sequences, thus offering a valid method for fine-tuning the dynamic properties of large DNA nanostructures. We envisage that the proposed DNA nanochambers may function as model structures for artificial biomimetic compartments and transport systems.


Asunto(s)
ADN/química , Transferencia Resonante de Energía de Fluorescencia , Nanoestructuras/química , Materiales Biomiméticos/química , Microscopía de Fuerza Atómica , Estreptavidina/química
3.
Nat Commun ; 8: 14472, 2017 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-28205515

RESUMEN

The self-organizational properties of DNA have been used to realize synthetic hosts for protein encapsulation. However, current strategies of DNA-protein conjugation still limit true emulation of natural host-guest systems, whose formation relies on non-covalent bonds between geometrically matching interfaces. Here we report one of the largest DNA-protein complexes of semisynthetic origin held in place exclusively by spatially defined supramolecular interactions. Our approach is based on the decoration of the inner surface of a DNA origami hollow structure with multiple ligands converging to their corresponding binding sites on the protein surface with programmable symmetry and range-of-action. Our results demonstrate specific host-guest recognition in a 1:1 stoichiometry and selectivity for the guest whose size guarantees sufficient molecular diffusion preserving short intermolecular distances. DNA nanocontainers can be thus rationally designed to trap single guest molecules in their native form, mimicking natural strategies of molecular recognition and anticipating a new method of protein caging.


Asunto(s)
ADN/química , Proteínas de Choque Térmico/química , Ligandos , Proteínas Periplasmáticas/química , Dominios y Motivos de Interacción de Proteínas , Serina Endopeptidasas/química , Sitios de Unión , Técnicas de Química Sintética , Ingeniería Genética , Proteínas de Choque Térmico/genética , Modelos Moleculares , Imagen Molecular , Sondas Moleculares , Estructura Molecular , Proteínas Periplasmáticas/genética , Polímeros/química , Serina Endopeptidasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA